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Abstract: In accordance with the rapid development of smart devices and technology, unmanned
aerial vehicles (UAVs) have been developed rapidly. The two-degree-of-freedom helicopter system
is a typical UAV that is susceptible to uncertainty, unknown control direction and actuator faults.
Hence, a novel adaptive neural network (NN), fault-tolerant control scheme is proposed in this
paper. Firstly, to compensate for the uncertainty, a radial-basis NN was developed to approximate
the uncertain, unknown continuous function in the controlled system, and a novel weight-adaptive
approach is proposed to save on computational cost. Secondly, a class of Nussbaum functions was
chosen to solve the unknown-control-direction issue to prevent the effect of an unknown sign for
the control coefficient. Subsequently, in response to the actuator faults, an adaptive parameter was
designed to compensate for the performance loss of the actuators. Through rigorous Lyapunov
analyses, the designed control scheme was proven to enable the states of the closed-loop system to be
semi-globally uniformly bounded and the controlled system to be stable. Finally, we conducted a
numerical simulation on Matlab to further verify the validity of the proposed scheme.

Keywords: adaptive NN control; uncertainty; unknown control direction; fault-tolerant control
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1. Introduction

Recently, the development of helicopters has attracted remarkable attention. As easy-
to-operate and highly maneuverable aircraft, helicopters can take off and land vertically in
small areas and can move flexibly in the air [1–3]. As a result, helicopters are extensively
applied in military, civil and industrial applications, such as reconnaissance patrols, rescue
and delivery of supplies [4–6]. However, a helicopter is a typical multi-input multi-output
system. The complex dynamics model and the coupling between the inputs and outputs
bring enormous challenges to the controller design for a helicopter. Moreover, since the
model’s parameters are difficult to obtain precisely, there exists a huge uncertainty in the
helicopter system. This places a high demand on the control performance of the helicopter
controller [7,8]. Hence, there is an extreme requirement for an efficient control strategy to
address the uncertainty in helicopter systems.

Thus far, various approaches have reported to address the uncertainty of the 2-degree-
of-freedom (2-DOF) helicopters, such as proportional-integral-differential (PID) control,
linear quadratic regulator (LQR) control, particle swarm optimization (PSO) and reinforce-
ment Q-learning algorithms. In Raaja et al. [9], to improve the tracking performance of
a 2-DOF helicopter system under LQR control, an adaptive law was introduced to com-
pensate for the uncertainty caused by linearized systems. In Nuthi and Subbarao [10],
a combination of LQR control and the adaptive augmentation’s robustness was imple-
mented to handle parametric and model uncertainties. In Maiti et al. [11], two independent
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PID controllers were developed to control each of the two degrees of freedom of the heli-
copter, and a PSO-based parameter was designed to approximate the system’s uncertainties.
In Chun et al. [12], a LQR controller incorporating the Q-learning algorithm was proposed
to overcome uncertainties. This algorithm could search for the optimal control law by
using the system’s states and input information instead of the system’s modeled knowl-
edge to achieve optimal control. The above schemes have a certain effect on solving the
system’s uncertainty; however, designing a linear LQR controller by ignoring the nonlinear
part may lead to a controlled system that has poor control performance or even system
instability in a real environment. In addition, by introducing complex optimization algo-
rithms, it will cause high computational cost, which causes higher demands for hardware
performance [13,14]. Therefore, it is imperative to design a simple and efficient nonlinear
controller for a 2-DOF helicopter system.

As neural networks (NNs) have advanced, they have been commonly applied in
nonlinear system control engineering to approximate unknown dynamics [15,16], uncer-
tainties [17,18] and unknown external disturbances [19]. Radial basis NN (RBFNN) is a
kind of NN with a simple structure and powerful nonlinear approximation ability such
that it is often utilized to approximate the uncertain functions in complex systems [20–22].
Existing studies have indicated that the RBFNNs perform excellently for approximation
of uncertainty in the 2-DOF helicopter systems [23–27]. For example, in Chen et al. [23],
an adaptive NN controller with an external disturbance observer scheme was proposed to
cope with the system’s uncertainty, nonlinear actuator faults and disturbances. In Ouyang
et al. [24], to address the hybrid effects of system uncertainty and input deadzone, the
technique of RBFNN was applied in the design of the controller. In addition, to ensure
safe system operation, output constraints were taken into account in the control design.
In Zhao et al. [25], a reinforcement learning control strategy was presented to enhance the
robustness and stability of the 2-DOF helicopter system. In addition, the barrier Lyapunov
function was proposed to accelerate the system states’ convergence. In Zhao et al. [26],
considering the effects of system uncertainty and unknown backlash-like hysteresis, an
adaptive NN controller was introduced to achieve stable tracking of the desired set point
and trajectory. Although the aforementioned literature has made good use of NNs to
resolve system’s uncertainty, the traditional adaptive law was employed for the updating
of NN weights. In addition, the issue of a possible unknown control direction for the 2-DOF
helicopter systems has not been considered in the current literature.

In the last few years, the unknown-control-direction issue was widely investigated
for nonlinear systems [28–30]. The uncertainty in the direction of control is due to the sign
of the coefficient of the system controller’s input being indeterminate [31]. To solve the
issue of an unknown control direction in nonlinear systems, a kind of controller based on
the Nussbaum gain function was proposed [32–36]. In Zhang and Li [33], for the issue
of unknown control direction, the Nussbaum function was utilized to design a iterative
learning controller for a nonlinear system with unknown time-varying parameters. In Liu
and Tong [34], a novel control design was presented with the Nussbaum function technique
for a class of nonlinear strict-feedback systems subject to unknown control direction. In
addition, the barrier Lyapunov function was adopted to guarantee states within constraints.
In Liang et al. [35], a more widely applicable Nussbaum function was introduced, which can
be applied in particular to fractional-order interconnected systems. The above literature all
strongly suggests that the unknown control direction issue extensively exists in nonlinear
systems and the Nussbaum function can be a good solution. A similar issue also exists
in the 2-DOF helicopter system. This is because the actuators of the 2-DOF helicopter
system are two direct current (DC) motors, and the positive and negative poles of the
corresponding electric voltage of the DC motor are generally unknown [37]. Therefore, it is
very meaningful to study the controller design for a 2-DOF helicopter system subject to
unknown control directions.

In addition, the fault-tolerant control (FTC) of actuator faults should not be neglected
in the control design of helicopter systems as well [38–40]. Actuator faults during the control
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process can bring about insufficient drive forces, which will most probably ultimately lead
to undesirable movements or even to the destruction of the system [41–43]. Thus, to avoid
such undesirable results, the FTC must be considered in control design [44–47]. In Mokhtari
et al. [48], the Kalman filter was first incorporated into a helicopter model to estimate faults.
Then, based on the signals detected back, an active fault-tolerant controller was developed
to compensate for the faults. In Peng et al. [49], the helicopter model was represented firstly
using linearly varying parameters. Subsequently, an active fault-tolerant controller was
designed based on a linear unknown input observer to reduce the effect of actuator faults.
In Chen et al. [50], two auxiliary systems were designed in an adaptive FTC scheme for the
unmanned autonomous helicopter system, which can better embody the dynamics of fault
signals and solve actuator faults. These literature demonstrated the development of FTC in
helicopter systems, but little research has been reported thus far on handling the effects of
uncertainty, unknown control direction and actuator faults for the 2-DOF helicopter system,
thus inspiring our study.

Based on the above analysis, we developed a novel adaptive neural FTC for a 2-DOF
helicopter system subject to unknown control directions and actuator faults. The primary
efforts of this study are summarized as follows:

(i) The system’s uncertainty is approximated by the RBFNN. In addition, compared
with the conventional adaptive neural control shceme, a novel adaptive law for the RBFNN
weights is proposed that can effectively reduce the excessive computational cost.

(ii) The Nussbaum function is adopted to solve the issue of unknown control direction,
and the FTC technique is developed to compensate the effects of actuator faults.

(iii) Through theoretical analysis of Lyapunov theorem and numerical simulation
verification, the control scheme proposed in this paper is proved to be valid and effective.

The structure of this study is as follows. In Section 2, the problem formulation and
preliminaries are provided. In Section 3, we propose a novel adaptive NN fault-tolerant
control scheme and present the stability analysis. Section 4 provides the simulation results.
Finally, Section 5 concludes the article.

2. Problem Formulation and Preliminaries
2.1. System Description

In this study, the 2-DOF helicopter platform provided by Quanser was used, and its
structure was simplified as shown in Figure 1. It can be clearly observed that the 2-DOF
helicopter model consists mainly of an airframe and two DC motors. The front motor is
used to simulate a propeller, which can generate a lift Fp along the z-axis to control the
pitch motion. The back motor is used to simulate a tail rotor, which can generate a thrust
Fy along the y-axis to control yaw motion. Therefore, by controlling different lift and thrust,
the helicopter can complete flight, landing, hovering and other actions.

Using Lagrange’s equation to analyze the dynamics of the 2-DOF helicopter model,
we can obtain the following dynamics equations [27]:

(Jp + ML2)θ̈ =−MgL cos θ − µp θ̇ −MLψ̇2 sin θ cos θ + KppVp + KpyVy, (1)

(Jy + ML2 cos2 θ)ψ̈ =− µyψ̇ + 2ML2ψ̇θ̇ sin θ cos θ + KypVp + KyyVy, (2)

where the detail system parameters are shown in Table 1.
Define the states of system X1 = [θ, ψ]T and X2 = [θ̇, ψ̇]T , and the input of system

u = [Vp, Vy]T . Then, based on the dynamics Equations (1) and (2), the state-space equations
are given by

Ẋ1 = X2,

Ẋ2 = z(X1, X2) + G(X1)u,

y = X1,

(3)

where
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z(X1, X2) =

 −MgL cos θ−µp θ̇−MLψ̇2 sin θ cos θ

Jp+ML2

−µyψ̇+2ML2ψ̇θ̇ sin θ cos θ

Jy+ML2 cos2 θ

, G(X1) =

 Kpp
Jp+ML2

Kpy
Jp+ML2

Kyp
Jy+ML2 cos2 θ

Kyy
Jy+ML2 cos2 θ

.

Taking into account the uncertainty of the system, the unknown control direction and
actuator faults, the state space Equation (3) can be further given by as follows:

Ẋ1 = X2,

Ẋ2 = z(X1, X2)+∆z(X1, X2)+v[G(X1)+∆G(X1)]u f ,

y = X1,

(4)

where v = diag[v1, v2] is an unknown parameter and u f denotes the FTC input.
For convenience, z(X1, X2), ∆z(X1, X2), G(X1) and ∆G(X1) will be denoted by z,

∆z, G and ∆G below, respectively.

(a) (b)

Figure 1. Schematic diagram of a 2-DOF helicopter. 2-DOF helicopter platform structure (a) schematic
diagram (b) physical picture.

Table 1. System variables and description of parameters.

Symbol Definition

θ Pitch angle
ψ Yaw angle
θ̇ Pitch angular velocity
ψ̇ Yaw angular velocity
θ̈ Pitch angular acceleration
ψ̈ Yaw angular acceleration
Vp The voltage inputs of the front motor
Vy The voltage inputs of the back motor
µp The viscous friction constants of pitch
µy The viscous friction constants of yaw
Jp The moments of inertia of the pitch axis
Jy The moments of inertia of the yaw axis

Kpp Torque thrust gains acting on pitch axis from pitch propeller
Kpy Torque thrust gains acting on pitch axis from yaw propeller
Kyp Torque thrust gains acting on yaw axis from pitch propeller
Kyy Torque thrust gains acting on yaw axis from yaw propeller

L The center of mass distance from the body-fixed frame origin
M The mass of the 2-DOF helicopter
g The gravitational acceleration
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Remark 1. In [25], we proposed a reinforcement learning control strategy with state constraints for
the 2-DOF helicopter system to achieve tracking control. The RBFNNs were used to approximate not
only the cost function but also the system’s uncertainty, and the BLF function was used to accelerate
the convergence rate of the system. In [27], we proposed a deterministic learning control strategy
for the 2-DOF helicopter system to achieve the identification of unknown dynamics and backlash
parameters. However, in this paper, our control objective was to solve the system uncertainty,
unknown control direction and actuator fault issues of the 2-DOF helicopter system using RBFNNs,
Nussbaum functions and adaptive fault-tolerant techniques.

2.2. Preliminaries

According to previous studies on RBFNN, for a continuously bounded unknown
function, the RBFNN can approximate such an unknown function with arbitrary accuracy
if the nodes are sufficient. This means that if f (φ): Rk → R is continuous, the approximated
function can be expressed as [51–53]

f (φ) = ŴTΨ(φ), (5)

where φ ∈ Rq denotes the input vector of RBFNN, with q is the input dimension;
Ŵ = [ω1, ω2, · · · , ωn]T ∈ Rn denotes the weight of RBFNN, with n denoting the number
of nodes; Ψ(φ)= [Ψ1, Ψ2, · · · , Ψn] stands for the Gaussian function of φ, which is expressed
as

Ψi(φ) = exp

[
−(φ− µi)

T(φ− µi)

bi
2

]
, i = 1, 2, ..., n, (6)

where µi = [µi1, µi2, · · · , µiq]
T and bi represent the center and the width of the RBFNN,

respectively.
In addition, the unknown function using the optimal weight vector can be expressed as

fnn(φ) = W∗TΨ(φ) + ε∗, (7)

with W∗T being the optimal weight vector and ε∗ being the ideal approximation error.

Lemma 1 ([54]). Define V(t) ≥ 0 and κ(t) as smooth functions. N(·) denotes a class of smooth
Nussbaum-type function. If the following inequality holds:

V(t) ≤
∫ t

0
(vN(κ) + 1)κ̇dτ + β, ∀t ∈ [0, T], (8)

where β is a reasonable constant and T > 0 stands for a moment in time, then the boundedness of∫ t
0 (vN(κ) + 1)κ̇dτ, V(t) and κ(t) is guaranteed.

3. Control Design and Stability Analysis

In this section, based on the backstepping design procedure, we design a novel adap-
tive NN controller to solve the unknown control direction and actuator faults. Additionally,
the controller is proved to make the system stable through rigorous Lyapunov analyses.

3.1. Control Design

Considering the actuator faults may occur, the input signal u f can be expressed as

u f = u + fu(t) (9)

where fu(t) represents the actuator bias faults and we assume that 0 < | fu| < f u is bounded.
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Define the tracking error vectors Z1 and Z2 as follows:

Z1 = X1 − yd,

Z2 = X2 − α1, (10)

where yd ∈ R2 represents the reference tracking trajectory, and α1 = ẏd − K1Z1 ∈ R2 de-
notes a virtual controller, with K1 ∈ R2×2 being a positive definite diagonal matrix.

Taking the time derivatives of Z1 and Z2 yields

Ż1 = Ẋ1 − ẏd = X2 − ẏd = Z2 + α1 − ẏd,

Ż2 = Ẋ2 − α̇1

= z+ ∆z+ v[G + ∆G](u + fu)− α̇1

= z+ vGu + vG fu + ∆z+ v∆Gu + v∆G fu − α̇1, (11)

where fnn = ∆z+ v∆Gu− α̇1 is a bounded and continuous function that can be consid-
ered as the uncertainty of the system. Hence, we adopt the RBFNN to approximate the
unknown function expressed as fnn = W∗TΨ(φ) + ε∗.

We design the following Lyapunov function as

V1 =
1
2

ZT
1 Z1. (12)

The derivative of V1 is given by

V̇1 = ZT
1 Ż1

= ZT
1 (Z2 + α1 − ẏd)

= −ZT
1 K1Z1 + ZT

1 Z2. (13)

Subsequently, in order to eliminate ZT
1 Z2, the following Lyapunov function candidate

is considered:

V2 =
1
2

ZT
1 Z1 +

1
2

ZT
2 Z2. (14)

Differentiating (14) yields

V̇2 =− ZT
1 K1Z1 + ZT

2

[
Z1 +z+ W∗TΨ(φ) + ε∗ + vGu +vG fu+v∆G fu

]
. (15)

We designed an adaptive parameter η̂ = [η̂1, η̂2]
T ∈ R2 to compensate for the effect of

actuator bias faults. The ideal parameter η = η̂ + η̃ can be expressed as

η = vG fu + v∆G fu. (16)

Remark 2. By combining the system models (1) and (2) and the system parameters described in
simulation section, we can conclude that the matrix G is invertible and bounded for 0 < θ < π/2 and
0 < ψ < π/2. Then, we can conclude that ‖vG fu + v∆G fu‖ is bounded because fu is bounded.

Therefore, the desired control law is designed as follows:

u = G−1N(κ)Ξ(t), (17)

where N(κ) = diag[κ2 cos κ, κ2 cos κ] is the designed Nussbaum function, and Ξ(t) is the
auxiliary controller, which can be expressed as follows:

Ξ(t) = Z1 + K2Z2 +z+
ϑ̂

2λ2 Z2ΨT(φ)Ψ(φ) + η̂, (18)
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given ϑ = ‖W∗‖2 and ϑ̂ = ‖Ŵ‖2. Additionally, ϑ̃ = ϑ− ϑ̂ is the approximation error of ϑ.
K2 is a designed control gain satisfying λmin(K2) > 0. In addition, φ = [X1, X2, yd, ẏd, ÿd, ϑ̂]
are the input vectors of the RBFNN and λ > 0 is a designed constant.

The adaptive law of ϑ̂ is constructed as

˙̂ϑ = Γ
[

1
2λ2 ZT

2 Z2ΨT(φ)Ψ(φ) + σϑ̂

]
, (19)

where Γ is an adaptive gain constant and σ is a small constant.
The adaptive law of η̂ is defined as

˙̂η = Γ1(Z2 + σ1η̂), (20)

where Γ1 is a gain diagonal matrix satisfying λmin(Γ1) > 0 and σ1 is a small constant.

Remark 3. Compared with the conventional adaptive law ˙̂W = Γ(ZT
2 Ψ(φ)− σŴ), the proposed

adaptive law (19) can simplify the design and computational cost of the controller. This is because
the weight Ŵ ∈ Rn×2 and its updating law ˙̂W are usually multidimensional vectors, and ϑ̂ ∈ R is
an adaptive parameter.

The adaptive law of κ is designed as

κ̇ = ZT
2 Ξ, (21)

Stability Analysis

The Lyapunov function for stability analysis is chosen as follows:

V =
1
2

ZT
1 Z1 +

1
2

ZT
2 Z2 +

1
2Γ

ϑ̃2 +
1
2

η̃TΓ−1
1 η̃. (22)

Combining (15), (18), (19), (20) and (21), the time derivative of V can be derived as

V̇ = −ZT
1 K1Z1 + ZT

2

[
Z1+z+vGu+W∗TΨ(φ)+ε∗+η

]
+

1
Γ

ϑ̃ ˙̃ϑ + η̃TΓ−1
1

˙̃η

= ZT
1 K1Z1 + ZT

2

[
Z1+z+vGu+W∗TΨ(φ)+ε∗+η

]
+

1
Γ

ϑ̃(ϑ̇− ˙̂ϑ) + η̃TΓ−1
1 (η̇ − ˙̂η)

=−ZT
1 K1Z1+ZT

2

[
Z1+z+vN(κ)Ξ + W∗TΨ(φ)+ε∗+η

]
− ϑ̃

[
1

2λ2 ZT
2 Z2ΨT(φ)Ψ(φ) + σϑ̂

]
− η̃T(Z2 + σ1η̂)

= −ZT
1 K1Z1 + ZT

2 (vN(κ) + I)Ξ + ZT
2

[
W∗TΨ(φ)+ε∗

]
+ ZT

2 (Z1 +z− Ξ + η)− ϑ̃

[
1

2λ2 ZT
2 Z2ΨT(φ)Ψ(φ) + σϑ̂

]
− η̃TZ2 − σ1η̃T η̂

= −ZT
1 K1Z1 − ZT

2 K2Z2 + ZT
2 (vN(κ) + I)Ξ + ZT

2

[
W∗TΨ(φ)+ε∗

]
− ϑ̂

2λ2 ZT
2 Z2ΨT(φ)Ψ(φ)− ϑ̃

[
1

2λ2 ZT
2 Z2ΨT(φ)Ψ(φ) + σϑ̂

]
− σ1η̃T η̂, (23)

where I denotes the identity matrix.
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Subsequently, using the Young’s inequality, we can obtain the following inequality:

ZT
2 W∗TΨ(φ) ≤ ϑ

2λ2 ZT
2 Z2ΨT(φ)Ψ(φ) +

λ2

2

ZT
2 ε∗ ≤ 1

2
ZT

2 Z2 +
1
2
‖ε∗‖2

− σϑ̃ϑ̂ ≤ −σϑ̃(ϑ− ϑ̃) ≤ −σ

2
ϑ̃2 +

σ

2
ϑ2

− σ1η̃η̂ ≤−σ1η̃(η − η̃)≤ −σ1

2
‖η̃‖2 +

σ1

2
‖η‖2 (24)

Taking the inequalities (24), we can further derive from (23) as follows:

V̇ ≤ −ZT
1 K1Z1 − ZT

2 (K2 −
1
2

I)Z2 + ZT
2 (vN(κ) + I)Ξ

− σ

2
ϑ̃2 − σ1

2
‖η̃‖2 +

σ

2
ϑ2 +

σ1

2
‖η‖2 +

λ2

2
+

1
2
‖ε∗‖2

≤ −ρV + ZT
2 (vN(κ) + I)Ξ + Υ, (25)

with

ρ = min

{
2λmin(K1), 2λmin(K2 −

1
2

I), σΓ,
σ1

λmax(Γ−1
1 )

}
,

Υ =
σ

2
ϑ2 +

σ1

2
‖η‖2 +

λ2

2
+

1
2
‖ε∗‖2. (26)

Theorem 1. Consider the helicopter system (4) subject to uncertainty, unknown control direction
and actuator faults. The RBFNN is adopted to approximate the system’s uncertainty, a Nussbaum-
type function is adopted to handle the issue of unknown control direction and an adaptive parameter
is used to handle actuator faults. With the control law (17) and appropriate choice of control
parameters, all closed-loop system signals are semi-globally uniformly ultimately bounded if they
are bounded initially [55,56]. In other words, the system is eventually stable and the tracking errors
are convergent. In addition, the following conclusions hold:

ΩZ1 = {Z1 ∈ R2 | ‖Z1‖ ≤
√

2(V(0) + Υ/ρ + ϕ)},

ΩZ2 = {z2 ∈ R2 | ‖Z2‖ ≤
√

2(V(0) + Υ/ρ + ϕ)},

Ωϑ̃ = {ϑ̃ ∈ R | ‖ϑ̃‖ ≤
√

Γ(2(V(0) + Υ/ρ + ϕ))},

Ωη̃ = {η̃ ∈ R | ‖η̃‖ ≤
√

2(V(0) + Υ/ρ + ϕ)

λmin(Γ−1
1 )

}, (27)

where ϕ = sup |e−ρt ∫ t
0 λmax(vN(κ) + I)κ̇eρτdτ|, ρ and Υ are both positive constants.

Proof. Multiplying (25) by eρt yields

V̇eρt ≤ −ρVeρt + Υeρt +
[

ZT
2 (vN(κ) + I)Ξ

]
eρt

V̇eρt + ρVeρt ≤ Υeρt +
[

ZT
2 (vN(κ) + I)Ξ

]
eρt

d
dt
(Veρt) ≤ Υeρt +

[
ZT

2 (vN(κ) + I)Ξ
]
eρt. (28)
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Then, by integrating (28), we have

V(t) ≤ V(0) +
Υ
ρ
+ e−ρt

∫ t

0
λmax(vN(κ) + I)κ̇eρτdτ. (29)

According to Lemma 1, we can conclude that V(t),
∫ t

0 (vN(κ) + I)κ̇eρτdτ and κ(t) are
bounded. Hence, we can further derive

‖Z1‖2 ≤ 2(V(0) + Υ/ρ + ϕ),

‖Z2‖2 ≤ 2(V(0) + Υ/ρ + ϕ),

‖ϑ̃‖2 ≤ 2Γ(V(0) + Υ/ρ + ϕ).

‖η̃‖2 ≤ 2(V(0) + Υ/ρ + ϕ)

λmin(Γ−1
1 )

. (30)

From the above derivation (28)–(30), it can be found that the signals of Z1, Z2 and ϑ̃
are bounded. Moreover, based on the control law (17), the control signal u is bounded.
Subsequently, it can be obtained from (30) that the signals, Z1, Z2, ϑ̃ and η̃, can be made
to converge to a small region near zero by adjusting the parameters K1, K2, Γ, Γ1 and λ to
ensure ρ > 0.

4. Simulations

In this section, in order to verify the effectiveness of the proposed control method,
numerical simulations were performed and the expected simulation results were obtained.
First, the model of the controlled system for this simulation was described in (4), and the
detailed values of the model parameters are presented in Table 2.

Table 2. System parameters.

Symbol Value Unit Symbol Value Unit

µp 0.0171 N/V µy 0.232 N/V
Jp 0.0215 kg ·m2 Jy 0.0237 kg ·m2

Kpp 0.0015 N ·m/V Kpy 0.0021 N ·m/V
Kyp −0.0027 N ·m/V Kyy 0.0014 N ·m/V

L 0.0071 m M 1.075 kg

Initially, the states of system were set as X1 = [0, 0]T and X2 = [0, 0]T . The adaptive
NN parameter was set as ϑ̂(0) = 0, and the adaptive parameter of Nussbaum function was
set as κ(0) = 0. The adaptive faults parameter was selected as η = [0, 0]T . In addition, the
reference trajectory was chosen as yd = [10π sin(t)/180, 15π sin(t)/180]T .

For the selection of other parameters, to achieve fast tracking of the reference trajectory,
the control gain in the simulation was selected as K1 = diag[25, 25] and K2 = diag[45, 45].
In addition, for further reducing the tracking errors, the parameters λ = 0.01 and σ = 0.0001
were chosen to minimize the value of η. As for the RBFNN, the width and the center of the
Gaussian function were set as b = 0.5 and µij(j = 1, 2, · · · , q) = [−1.2,−0.8,−0.4, 0, 0.4, 0.8,
1.2], respectively. In addition, the adaptive gain Γ = 2 was selected for the RBFNN and
Γ1 = diag[5, 5] was selected for the adaptive faults parameter η. The actuator bias faults fu
was designed as

fu =

{
[0, 0]T , if t < 5,
[5 cos(t),−5 cos(t)]T , if t ≥ 5,

In order to compare it with the proposed scheme, we designed an LQR controller after
linearizing the 2-DOF helicopter system. The simulation results are shown in Figure 2a–e.
From Figure 2a,b, owing to ignoring the system’s uncertainty in the control design, the yaw
and pitch angles cannot track the reference trajectories with satisfactory tracking errors. In
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addition, when the actuator faults occur (the time is 5 s), the input voltage signals change
significantly, as shown in Figure 2e, and the tracking errors become larger. Therefore, we
can conclude that the LQR controller cannot solve the system’s uncertainty and actuator
faults of the 2-DOF helicopter system.
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Figure 2. The control performance under the LQR control. (a) Tracking trajectory diagram of θ.
(b) Tracking trajectory diagram of ψ. (c) Tracking error diagram of θ. (d) Tracking error diagram of ψ.
(e) The input signals of the 2-DOF helicopter system.

The simulation results of the proposed control scheme are displayed in Figures 3 and 4.
As can be seen in Figure 3a,b, the pitch angle θ and the yaw angle ψ successfully tracked
the intended trajectories θd and ψd with few tracking errors. The corresponding error
variations can be observed in Figure 3c,d, from which we can see that the tracking errors
varied periodically and remained in a small region around zero. Therefore, it is satisfactory
in terms of tracking performance. Subsequently, Figure 3e illustrates the input voltage
for the 2-DOF helicopter. The input signals rose rapidly at the beginning and stabilized
quickly without overlarge voltage shocks. As for the adaptive parameter ϑ̂ of the RBFNN,



Mathematics 2022, 10, 4342 11 of 14

Figure 4a displays its changing trend. It can be seen that the value of ϑ̂ rises rapidly at
first and then converges to a certain value. In addition, the changes in the adaptive fault
tolerance parameter are displayed in Figure 4b. In particular, we can see from the input
signals diagram that actuator faults were imposed at 5s and the actuator faults were rapidly
compensated.
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Figure 3. The control performance under the proposed control. (a) Tracking trajectory diagram of θ.
(b) Tracking trajectory diagram of ψ. (c) Tracking error diagram of θ. (d) Tracking error diagram of ψ.
(e) The input signals of the 2-DOF helicopter system.

By combining above simulation results, we can find that the proposed scheme has a
better control performance until 5 s. This suggests that the proposed control strategy can
approximate the system’s uncertainty efficiently. Subsequently, when the actuator faults
occurr, the tracking errors under the LQR control become larger, while the tracking errors
under the proposed strategy remain almost unchanged. Hence, we can conclude that the
proposed control scheme effectively solves issue of the uncertainty, unknown direction
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control and actuator faults for the 2-DOF helicopter system, and achieves quite excellent
control performance.
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Figure 4. The variation tendencies of the parameters ϑ and η. (a) The value of the parameter ϑ.
(b) The value of the parameter η.

5. Conclusions

This study presented an adaptive NN control scheme for the 2-DOF helicopter system
subject to system’s uncertainty, unknown control directions and actuator faults. To ap-
proximate the system’s uncertainty, we proposed a novel weight-adaptive law, RBFNN, to
approximate the unknown dynamics of the system with low calculation costs. Considering
the unknown control direction issue, the Nussbaum function technique was proposed
in the control design in order to eliminate the influence of uncertain control coefficients.
In addition, we designed the adaptive parameter to compensate for the actuator faults.
Finally, the controlled system was demonstrated to be stable under the proposed control
scheme, and the simulation results further illustrated that the proposed control scheme
was feasible and effective. The limitation of the proposed scheme is that the selection of
neural network nodes depends mainly on experience. In addition, there are more control
gains to be tuned. In addition, for severe actuator failure, the proposed scheme may not
fully compensate for it. Hence, future work will focus on dynamical model identification
for the 2-degree-of-freedom helicopter system and the wider application of FTC.
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