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Abstract: Relative to randomized controlled trials (RCTs) with privacy and ethical concerns, observa-
tional studies are becoming dominant in education research. In an observational study, it is necessary
and important to correctly evaluate the effects of different interventions (i.e., covariates) on student
performance with observational data. However, these effects’ evaluation results are probably derived
from biased estimations because the distributions of “control” and “treatment” student groups can
hardly be equivalent to those in RCTs. Moreover, the collected covariates on possible educational
interventions (i.e., treatments) may be confounded with student characteristics that are not included
in the data. In this work, an estimation method based on the Rubin causal model (RCM) is proposed
to calculate the average treatment effect (ATE) of different educational interventions. Specifically,
with the selected covariates, the propensity score (i.e., the probability of treatment exposure condi-
tional on covariates) is considered as a criterion to stratify the observational data into sub-classes
with balanced covariate distributions between the control and treatment groups. Combined with
Neyman’s estimation, the ATE of each sample is then obtained. We verify the effectiveness of this
method with real observational data on student performance and its covariates.

Keywords: observational study; propensity score; data stratification; average treatment effect; education

MSC: 62H12

1. Introduction

In education research, the effects of educational interventions such as programs and
policies on student performance need to be properly and correctly estimated to provide in-
formative suggestions to improve education quality. Currently, the best process is to assign
different treatments through randomized controlled trials (RCTs) [1]. However, incomplete
and inconsistent (because missing) data sometimes coexist in RCTs. Interventions may also
vary by student or school, and the data can hardly be random as designed in RCTs. The
research results may thus not precisely focus on the groups of students and schools affected
by the considered interventions [2]. In recent years, because of the difficulty in conducting
RCTs, observational studies have been widely considered in education research [3].

Observational research is used in non-randomized comparative studies and refers to
the observation and description of the characteristics of the research object in a natural
state, as well as the comparative analysis of the recorded data. Considering a specified
intervention (e.g., a specific education program), the observational data can generally be
divided into treatment and control groups. The treatment group includes the students who
take the specified intervention, while the students in the control group do not follow the
specific intervention. The results of observational studies can better evaluate the actual
effect of interventions, that is, a good observational study has better external authenticity
than an RCT [4]. Observational studies have helped the academic community to clarify
many key causal relationships, and they are increasingly being adopted in studies of com-
parative effectiveness. Observational studies are particularly useful when RCTs cannot be
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performed for reasons such as ethnicity or incomplete randomization [4]; more specifically,
in education research, interventions such as individual growth environment, caste, edu-
cation level, and other factors are hard to be randomly controlled in RCTs. With effective
experimental design and data processing methods, however, observational studies can be
more coherent with the truth [3].

In data processing, correlation analysis is widely adopted to analyze the statistical
dependence between two variables [5]. Another popular method in statistics for observa-
tional study data analysis is the multivariate logistic regression [6]. Through the logistic
regression method, the probability of a sample belonging to one class in a binary classifica-
tion can be obtained with the collected data. However, neither of these previous methods
can properly tackle the main challenges in the observational studies, that is, (1) the biased
estimated effects brought by the unbalanced distribution of the covariates in the control
and treatment groups and (2) unreliable estimated effects brought by unobservable student
characteristics that confound student performance and the considered covariates.

In order to solve the two main problems of observational studies, propensity score
(PS) analysis is considered in practice. PS is a method for balancing the distribution of
covariates [7] (i.e., the observable variables related to student performance, except for the
considered intervention) in the treatment and control groups. The PS is the conditional
probability of the specific intervention, given the values of the covariates [8]. With the
calculated PS, the observational data can be balanced with matching methods [9,10], strati-
fication methods [11–13], or weighting [14]. Rosenbaum and Rubin [15] have pointed out
that the balance of PS produces an average balance in the observed covariates. PS analysis
can also yield unbiased causal effect estimates when all relevant covariates are available.
The purpose of adjusting PS is to achieve a balance in the observed covariates between the
treatment and control groups and thus to reproduce the expected outcomes in RCTs [16,17].

In recent years, many researchers have focused on exploring the application of PS
in the education field. Marvin G. Powell et al. [18] outline the concept of propensity
scores by explaining their theoretical principles and by providing two examples to identify
their usefulness within the realm of educational research. Lucio Masserini and Matilde
Bini [19] use PS to investigate whether university students’ dropout within the first year
is influenced by participation in social media groups. They use several PS matching
techniques and sensitivity analyses in order to correct for selection bias due to a set of
observable pretreatment covariates. Jianshen Chen and Bryan Keller [20] propose a five-step
approach using PS matching and regression trees to identify subgroups with heterogeneous
treatment effects in observational studies. Youmi Suk et al. [21] investigate causal forests to
estimate treatment effects in multilevel observational data. In recent education research,
many estimation methods with PS are used in observational studies. However, some of
them only consider the PS method to balance the covariates, rather than the causal inference
of the covariates. Further, some of the researchers introduce the machine learning method
to estimate the effects of a covariate, without considering the balance of different covariates.

In this paper, a framework based on the Rubin causal model (RCM) is proposed for
bridging the research gap in educational studies. Papers by Neyman [22] and Rubin [23]
provide a statistical cornerstone for causal inference in experimental and quasi-experimental
research, known as the RCM [24]. Their work provides a framework for integrating
causality into a statistical model and demonstrates that statistical theory can be of great
help in discussions of causal inference [25]. In addition, their work has led to a greater
understanding of counterfactual causality in the statistical and social science communities,
as well as advancing counterfactual causality in the estimation of treatment effects [26].

This paper introduces the PS analysis method to balance the covariates in treatment
and control groups in the observational studies of the educational field; the observational
data are stratified into sub-classes with respect to the PS and, in the sub-classes, the
covariates are balanced in distribution. Under the framework of RCM, this paper uses
Neyman’s estimation method to calculate the average treatment effect (ATE) of the samples
in each sub-class, then estimates the total ATE of all of the observational data. It provides
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detailed steps and stratification criteria for stratification and ATE estimation, and the
accurate ATE value between each intervention and the student performance can be obtained,
which can be used to evaluate the effectiveness of various educational interventions.

The remainder of the paper is structured as follows. Section 2 details the methods
including PS calculation, stratification, and ATE calculation. Section 3 introduces the
dataset used in the work. Section 4 presents the process of calculation and the results’
analysis and, furthermore, compares the results with traditional methods. Finally, Section 5
summarizes the proposed method.

2. Methods
2.1. PS Calculation

An effective method for processing observational data is to estimate the PS for dis-
tribution bias and then to obtain a credible ATE estimate. The PS is usually estimated by
a linear regression model, with the output being in the range from zero to one. To better
tackle the distribution bias problem, the PS estimation method introduced in this paper
adds the process of iterative covariate selection to the original linear regression model.
The detailed steps of this method for the analysis and processing of observational data are
provided below.

2.1.1. Principle of PS

The PS was first proposed by Rosenbaum and Rubin in 1983 [15]. PS is a function
of multiple covariates and is used to deal with covariate distribution bias across different
groups in observational studies. It is the conditional probability that the i-th individual is
assigned to the treatment group, given the specific values for the related covariates:

e(X) = P(G = 1|X ) (1)

where G = 1 and G = 0 indicate that the individual is in the treatment group and the
control group, respectively; X represents the covariates with X = X1, X2, . . . , Xm. The PS
value is thus the conditional probability of an individual receiving an intervention (G = 1),
given the characteristic values X.

Unlike in RCTs, observational studies have many confounding factors that can signifi-
cantly bias the results. For example, a research team wants to study the factors influencing
middle school students’ performance in a mathematics course. In this case, the outcome
variable is math test scores, focusing on the impact of using multimedia for learning on
mathematics. There are other confounding factors, such as the student’s gender, tutoring
time, the socioeconomic status of the student’s family, teacher education, and university ma-
jors. When analyzing the effect of multimedia on students’ mathematics performance, one
hopes to minimize the influence of confounding factors on the results of the analysis—that
is, distributions of the covariates in the treatment group (using multimedia for learning)
and the control group (without multimedia learning) are as identical as possible. PS can be
very useful in such cases.

According to PS, we can screen the treatment and control groups, so that the confound-
ing factors (covariates) in different groups can be balanced to achieve the purpose of control.
The PS itself cannot control confounding factors, but can directly adjust confounding factors
through PS matching, weighting, or stratification (among other strategies) to improve the
balance degree between the treatment and control groups, thereby limiting the influence of
confounding covariates on the estimation of causal effects. A simple understanding is to
select the treatment and control group samples with common characteristics from a large
number of sample data and then analyze the samples that meet the requirements.

In practical research, logistic regression models are usually used to estimate PS values.
PS estimation is divided into the following steps: dividing the treatment and control groups,
selecting covariates, calculating the PS using binary logistic regression, and trimming.
In addition to the PS calculation process, this section also presents an average causal
effect estimation method based on sub-classification, which can better handle the average



Mathematics 2022, 10, 4333 4 of 18

causal effect between variables in a sample with a small amount of data. In the following
paragraphs, the content and method for each step are described in detail.

2.1.2. Division of Treatment and Control Groups

Generally speaking, in observational studies, treatment groups and control groups
are divided according to the intervention (variable) to be analyzed. For example, in the
case mentioned above, to analyze the effect of multimedia on students’ mathematics
performance, one takes the students who use multimedia as the treatment group and the
students who do not use multimedia as the control group.

2.1.3. Covariate Selection

The process of covariate selection is shown in Figure 1 and is described in detail in the
following paragraphs.
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Figure 1. The process of covariate selection.

(1) Choose prior covariates

We choose KB base covariates under the a priori decision of the observational test.
Two types of covariates are selected: the ones that explain the allocation mechanism and
the others that are highly correlated with the potential outcome. Both types of covariates
depend on prior information. If the researcher has no prior information on the covariates,
KB = 0 can be set.

(2) Add linear combination terms

In the second step, we select the remaining covariates and gradually integrate them
into the PS estimation model. The remaining K − KB covariates are not all introduced
into the model; only one of them is considered for inclusion in the logistic regression
model at a time. Assume that K′L covariates have been selected at a certain time as the
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linear combination item in the logistic regression model, including the basic covariate
with dimension KB. Each of the remaining K − K′L covariates is incorporated into the
logistic regression model and the likelihood ratio statistic is calculated to evaluate the null
hypothesis that the newly included covariate has a coefficient of zero in the regression
model.

If all covariates are included in the original regression model and the likelihood ratio
statistic is lower than CL, the remaining covariates are not included in the regression model.
At this point, only the linear combination of K′L covariates from the original data is included
in the PS estimation model. If the likelihood ratio statistic of at least one covariate after
inclusion in the model exceeds CL, the covariate with the largest likelihood ratio statistic is
added into the model. Then, we have K′L + 1 covariates in the model and we should test
the likelihood ratio statistic for the remaining K− K′L − 1 covariates to determine whether
they should be included in the existing model. This process is iterated until the likelihood
ratio statistics of the remaining covariates are less than CL, and the covariate dimension of
the final model of the iteration is denoted as KL.

2.1.4. Calculation of PS Value for Individuals

In an observational study, proper regression methods are generally used to estimate
the PS value for each individual. A logistic regression model is established to derive the
probability of an individual belonging to the treatment group. Logistic regression has
categorical outputs and the PS is the probability derived by the logistic regression model.
The formula for the logistic regression is as follows:

ln
(

P
1− P

)
= β0 + β1X1 + . . . + βkXk (2)

where P is the probability of an individual being in the treatment group and X is a poten-
tially confounding variable. Linear regression is established to characterize the relationship
between the input variables X and ln

(
P

1−P

)
. Based on the above equation, the value of P

can be expressed as follows:

P =
1

1 + e−(β0+β1X1+...+βkXk)
(3)

SPSS software is adopted to calculate the PS in this study. In SPSS, the steps for PS
calculation are as follows: analysis, regression, binary logistic regression, setting depen-
dent and independent variables, setting categorical covariate, and output predicted value
probability.

2.1.5. Trimming

If the PS is close to 0, it is difficult for the control group to find matching members
in the treatment group, while if the PS is close to 1, it is difficult for the treatment group
to find matching members in the control group. A more practical approach is thus to
exclude individuals with a PS close to 0 or 1, which is named as trimming. Trimming
changes the measure and compromises external validity, in which case the average causal
effect estimated with the truncated sample cannot represent the average causal effect of the
original samples. However, trimming improves internal validity and the average causal
effect estimate in the trimmed sample is more precise and credible than the untrimmed
sample [27].

2.2. Stratification

Stratification is a PS analysis method. After obtaining the PS for all of the samples, the
covariates can be balanced using a stratified approach. This paper presents the standard
and specific steps for sample stratification.
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To ensure that there are comparative pairs between the treatment and control groups,
it is necessary to overlap the two groups of data, and we use the PS stratification method
to process the truncated samples. The method for constructing the PS stratification is as
shown in Figure 2.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 18 
 

 

estimated with the truncated sample cannot represent the average causal effect of the orig-

inal samples. However, trimming improves internal validity and the average causal effect 

estimate in the trimmed sample is more precise and credible than the untrimmed sample 

[27]. 

2.2. Stratification 

Stratification is a PS analysis method. After obtaining the PS for all of the samples, 

the covariates can be balanced using a stratified approach. This paper presents the stand-

ard and specific steps for sample stratification. 

To ensure that there are comparative pairs between the treatment and control groups, 

it is necessary to overlap the two groups of data, and we use the PS stratification method 

to process the truncated samples. The method for constructing the PS stratification is as 

shown in Figure 2. 

 

Figure 2. The process of stratification. 

(1) Linearization of PS values 

We linearize the PS values by taking the log ratio of PS as in Equation (4): 

( )
( )

( )

ˆ
ˆ log

ˆ1

e x
l x

e x

 
=   − 

 (4) 

(2) Stratification standard and t-statistic test 
We define 

( ) ( ) ( )
1

1
N

c i i

i

N j W B j
=

= −  (5) 
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(1) Linearization of PS values

We linearize the PS values by taking the log ratio of PS as in Equation (4):

l̂(x) = log
(

ê(x)
1− ê(x)

)
(4)

(2) Stratification standard and t-statistic test

We define

Nc(j) =
N

∑
i=1

(1−Wi)Bi(j) (5)

Nt(j) =
N

∑
i=1

WiBi(j) (6)

lc(j) =
1

Nc(j)

N

∑
i=1

(1−Wi) · Bi(j) · l̂(Xi) (7)

lt(j) =
1

Nt(j)

N

∑
i=1

Wi · Bi(j) · l̂(Xi) (8)



Mathematics 2022, 10, 4333 7 of 18

where Nc(j) represents the number of individuals in the control group; Nt(j) represents
the number of individuals in the treatment group; Wi = 1 represents the i-th individual
belonging to the treatment group; Wi = 0 represents the i-th individual belonging to the
control group; Bi(j) represents a stratification index, Bi(j) = 1 means the j-th sample is
within i-th layer, and Bi(j) = 0 means the j-th sample is not in i-th layer; lc(j) represents
the mean linearized PS of individuals in the control group; and lt(j) represents the mean
linearized PS of individuals in the treatment group. Based on Equations (5)–(8), we use the
t-statistic to test whether lc(j) and lt(j) are approximately equal.

(3) The t-statistic is a common measure of the difference of mean values of two groups of
data. Considering that the distribution bias in our case study refers to the difference in
the mean values between the treatment and control groups, the t-statistic is considered
to judge the significance of the difference between treatment and control groups. If
the obtained t-statistic exceeds the predefined threshold, it indicates that the PS values
in treatment and control groups exhibit a significant difference in this layer and need
to be further stratified.

(4) The layers are then further divided into two strata at the median PS of Nc(j) + Nt(j)
individuals. The two new layers must satisfy the following criterion: the number of
control groups and treatment groups in each new layer is not less than K + 2, where
K is the number of covariates. For example, in the process of stratification, if the
i-th layer is divided and it is found that the number of samples in treatment/control
groups in the new layers is less than K + 2, the stratification is stopped even if the
t-statistic is not satisfied. This is a stop criterion for the stratification process and the
influence is limited as the other stratification process satisfies the t-statistic threshold.

2.3. Calculation of the Average Treatment Effect

The ATE is the expected difference between the treatment and control groups for each
individual. The larger the value, the greater the influence of the intervention variable on
the student performance. We thus calculate the ATE to obtain the relationship between the
intervention variable and the response variable. The ATE based on the Neyman estimate
is calculated as follows. First, the estimated ATE between individuals within each layer
needs to be calculated. We can use weighted estimators to estimate it as Equation (9):

τ̂dif(j) =
1
N

N

∑
i=1

(
Wi ·Yobs

i
ê(Xi)

−
(1−Wi) ·Yobs

i
1− ê(Xi)

)
=

1
N

N

∑
i=1

(
(Wi − ê(Xi))Yobs

i
ê(Xi)(1− ê(Xi))

)
(9)

where τ̂dif(j) is the estimated ATE difference within the j-th layer; ê(Xi) is the estimated PS;
Wi = 1 represents the i-th individual belonging to the treatment group; Wi = 0 represents
the i-th individual belonging to the control group; and Yobs

i represents the observed value
of the i-th individual.

The ATE based on sub-classification is estimated as follows:

τ̂strat =
J

∑
j=1

q(j)τ̂dif(j) (10)

q(j) =
N(j)

N
(11)

where τ̂strat represents the final ATE; τ̂dif(j) represents the ATE of the j-th layer; N(j)
represents the number of individuals in this layer; and N represents the total number of
individuals in the dataset. This method of estimating the difference in the ATE is called
the Neyman inference for sub-classification estimation. The ATE of each layer is calculated
and then weighted according to the number of samples and, finally, the ATE of the entire
dataset is obtained.
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3. Data Description

In this paper, the UCI public dataset for student performance in an entrance exam-
ination is considered. The data are obtained from the Common Entrance Examination
(CEE) of Dibrugarh University for a given year at a medical school in the Indian state of
Assam [28]. This dataset was obtained from observational studies in education research,
and the relationship between multiple intervention variables and response variables is
considered. The sample size of this dataset is small, but, because of the particularity of the
individual growth environment, the balance between the treatment group and the control
group is poor. The ATE can thus be calculated using the method based on sub-classification
to obtain a more balanced value for the ATE.

The original dataset contains 12 variables and 666 samples, of which performance
in the CEE is set as the response variable and the other variables are interventions, that
is, the performance of students in the CEE is related to factors such as caste, gender,
coaching, or father’s occupation. The cause–effect relationship between variables is shown
in Figure 3. This paper uses the above method to calculate the ATE value between students’
entrance examination performance and other intervention variables and then analyzes
the influencing factors according to the results. The basic dataset information is shown in
Table 1.
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Table 1. Dataset information [28].

Variable Description Values

Performance Performance in Common Entrance
Examination (CEE)

{‘Excellent’, ‘Vg’, ‘Good’, ‘Average’}
If the percentage is top 100, Excellent

If the percentage is next 200, Very Good (Vg)
If the percentage is next 200, Good

Remainder, Average
Here, the percentage means the percentage score on the

CEE Examination

Gender Gender of the candidate {‘male’, ‘female’}

Caste Caste of the candidate

{‘General’, ‘OBC’, ‘SC’, ‘ST’}
OBC—Other Backward Caste

SC—Schedule Caste
ST—Schedule Tribes

Coaching
Whether or not the candidate

attended any coaching classes within
Assam or outside Assam

{‘NO’, ‘WA’, ‘OA’}
No—No Coaching

WA—Within Assam
OA—Outside Assam

Time The length of time students received
coaching {‘ONE’, ‘TWO’, ‘THREE’, ‘FOUR’, ‘FIVE’, ‘SEVEN’}

Class ten_
education

Name of the board where the
candidate studied at Class X level {‘SEBA’, ‘OTHER’, ‘CBSE’}
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Table 1. Cont.

Variable Description Values

twelve_
education

Name of the board where the
candidate studied at Class XII level {‘AHSEC’, ‘CBSE’, ‘OTHER’}

medium Medium of instruction for the study
at the Class XII level {‘ENGLISH’, ‘OTHER’, ‘ASSAMESE’}

Class_X_Percentage The percentage secured by the
candidate at Class X standard

{‘Excellent’, ‘Vg’, ‘Good’, ‘Average’}
If the percentage is above 80%, Excellent

If 70% ≤ percentage < 80%, Very Good (Vg)
If 60% ≤ percentage < 70%, Good

The remainder, Average

Class_XII_Percentage The percentage secured by the
candidate at Class XII standard

{‘Excellent’, ‘Vg’, ‘Good’, ‘Average’}
If the percentage is above 80%, Excellent

If 70% ≤ percentage < 80%, Very Good (Vg)
If 60% ≤ percentage < 70%, Good

The remainder, Average

Father occupation The occupation of the father of
the candidate

{‘DOCTOR’, ‘SCHOOL_TEACHER’,
‘BUSINESS’,

‘COLLEGE_TEACHER’, ‘OTHER’,
‘BANK_OFFICIAL’, ‘ENGINEER’, ‘CULTIVATOR’}

Mother occupation The occupation of the mother of
the candidate

{‘OTHER’, ‘HOUSE_WIFE’, ‘SCHOOL_
TEACHER’, ‘DOCTOR’,

‘COLLEGE_TEACHER’, ‘BANK_
OFFICIAL’, ‘BUSINESS’, ‘CULTIVATOR’,

‘ENGINEER’}

4. Calculation and Results
4.1. Average Treatment Effect Calculation
4.1.1. Division of Treatment and Control Groups

The ATE value is calculated between all interventions and the response variable using
the method based on sub-classification estimation. The response variable, i.e., student
performance, is divided into four categories. We encode “excellent” as 1, “very good” as
2, “good” as 3, and “average” as 4. These four values are used as the observed value for
subsequent ATE calculations.

Some intervention variables are not binary, so they need to be preprocessed when
dividing the control and treatment groups. For example, for the “medium” intervention
variable, after classification processing, the medium was set to “English” for the treatment
group and to “not English” for the control group. The division of intervention variables
into the control and treatment groups is shown in Table 2.

Table 2. Grouping of intervention variables.

Intervention Variables Treatment Group Control Group

Gender Male Female

Caste General, OBC SC, ST

Coaching WA, OA NO

Time THREE, FOUR, FIVE,
SEVEN ONE, TWO

Class_ten_education SEBA Other, CBSE

twelve_education CBSE AHSEC, Other
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Table 2. Cont.

Intervention Variables Treatment Group Control Group

Medium English Other, Assamese

Class_X_Percentage Excellent Vg, Good, Average

Class_XII_Percentage Excellent Vg, Good, Average

Father’s occupation SCHOOL_TEACHER,
COLLEGE_TEACHER

DOCTOR, BUSINESS, OTHER, BANK_OFFICIAL,
ENGINEER, CULTIVATOR

Mother’s occupation HOUSE_WIFE
SCHOOL_TEACHER, DOCTOR,

COLLEGE_TEACHER, BANK_OFFICIAL,
BUSINESS, CULTIVATOR, ENGINEER, OTHER

Here, we calculate the ATE between intervention variable coaching and student en-
trance exam performance, as an example. The control and treatment groups are set as fol-
lows: individuals who Attended Coaching as treatment group; individuals with No Coaching
as control group. The remaining intervention variables that could be included as covariates
are Gender, Caste, Class_ten_education, Twelve_education, Medium, Class_X_Percentage,
Class_XII_Percentage, Father’s occupation, and Mother’s occupation.

4.1.2. Select Covariates for Inclusion in Logistic Regression Models

According to the covariate selection method described in Section 2.1.3, the likelihood
ratio statistic is used to select the covariates for the logistic regression model. Ten covariates
are not introduced into the model at the beginning, and these covariates are included in the
logistic regression model one by one with respect to the calculated likelihood ratio statistic.
Taking the intervention Coaching as an example, we set the threshold CL = 1 according to
the stepwise regression, and then calculate the likelihood ratio statistic for each covariate
and incorporate the covariate with the largest likelihood ratio statistic for each step into the
logistic regression model. The results of the likelihood ratio statistic are shown in Table 3.
In the first round, the covariate Caste with largest likelihood ratio statistic is included in
the model. By repeating this process with respect to Table 3, the covariate with the largest
likelihood ratio statistics (highlighted in yellow) is recursively added to the model in each
step. From Table 3, one may observe that all the covariates are integrated in the model for
PS calculation, as the likelihood ratio statistic is always above the predefined threshold.

Table 3. Results of the likelihood ratio statistic for each step.

Covariate
Step

1 2 3 4 5 6 7 8 9 10

Gender 5.012 3.923 5.926 5.935 6.070 7.593 7.173 5.831 5.729 6.317

Caste 474.493

Time 21.36 18.071 16.781 18.541 26.074

Class_ten_education 12.164 11.521 7.322 7.542 6.564 7.592 7.048 16.441

twelve_education 8.894 6.437 4.298 4.468 4.216 7.319 8.962

Medium 31.220 20.703 20.075 19.472 18.338 18.760

Class_X_Percentage 40.910 11.458 11.762 11.950 6.355 2.943 3.067 3.703 15.242

Class_XII_Percentage 72.628 24.394 21.414 21.854

Father’s occupation 64.999 38.281

Mother’s occupation 46.597 37.237 32.471
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4.1.3. Calculate PS for Sample Data

Here, we set the treatment group (Attended Coaching) = 1 and the control group (No
Coaching) = 0. The observation results are set to “excellent” = 1, “very good” = 2, “good” = 3,
and “average” = 4. The PS of the sample is estimated using the SPSS multinomial logistic
regression model—that is, the probability value obtained in that model.

4.1.4. Trimming

For this dataset, we exclude samples with a PS very close to 0 and very close to 1 to
ensure linearized PSs that are not too extreme. In total, 649 samples of data are left, with
500 and 149 individuals in the treatment group and control group, respectively.

4.1.5. Stratification

The samples are stratified according to PS values and the final stratified results had to
have at least 12 samples of data per group. The main steps of this process are shown as
below.

(1) The estimated PS is linearized according to Equation (4).
(2) The t-statistic is used to test whether the linear PSs of the treatment and control groups

are approximately equal. Before conducting the t-test, the F-statistic is constructed to
test whether the variances in the treatment and control groups are comparable. In this
case, equal variances are justified with an F-test within each level, so the variances of
the two groups are considered equal in the calculation of the t-statistic.

The t-statistic calculation results of all samples are shown in Table 4. As the t-statistic
exceeds 1 [29], it is divided into two layers at the median, and then the t-statistic is calculated
separately for each layer.

Table 4. The t-statistic calculation results of all samples.

Step Layer Lower
Bound

Upper
Bound

Interval
Width

Number in
Control Group

Number in
Treatment Group t-Statistic

1 1 0.04 0.98 0.94 149 500 12.715

(3) The first stratification

The results of the first stratification are shown in Table 5. After the first stratification,
the t-statistic of the first layer is greater than 1, thus it is divided into two layers at the
median. Because there are only 30 samples left in the control group in the second layer,
continuing stratification would make the number of samples in the group less than 12, so
no further stratification is required.

Table 5. The results of the first stratification.

Step Layer Lower
Bound

Upper
Bound

Interval
Width

Number in
Control Group

Number in
Treatment Group t-Statistic

2 1 0.04 0.86 0.82 119 206 7.838

2 2 0.86 0.98 0.12 30 294 1.040

(4) The second stratification

The results of the second stratification are shown in Table 6. According to the stratifi-
cation results, the t-statistics of the first and second layers are all greater than 1, but further
stratification in the second layer would lead to less than 12 samples in the control group, so
only the first layer would continue to be stratified.
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Table 6. The results of the second stratification.

Step Layer Lower
Bound

Upper
Bound

Interval
Width

Number in
Control Group

Number in
Treatment Group t-Statistic

3 1 0.04 0.59 0.55 86 76 2.419

3 2 0.59 0.86 0.27 33 130 3.631

3 3 0.86 0.98 0.12 30 294 1.040

(5) The third stratification

The results of the third stratification are shown in Table 7. So far, the t-statistic of
each layer is less than 1. Two of the t-statistics are still greater than 1, but, because of the
minimum sample size requirement, the stratification could not be continued. Therefore,
we considered that these four layers met the necessary conditions. The whole process of
stratification in this case study can be seen from the Figure 4.

Table 7. The results of the third stratification.

Step Layer Lower
Bound

Upper
Bound

Interval
Width

Number in
Control Group

Number in
Treatment Group t-Statistic

4 1 0.04 0.49 0.45 29 52 0.949

4 2 0.49 0.59 0.1 34 47 0.054

4 3 0.59 0.86 0.27 33 130 3.631

4 4 0.86 0.98 0.12 30 294 1.040
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4.1.6. Calculation of Average Treatment Effect

When calculating the difference in the ATE, we set the treatment group (Attended
Coaching) = 1, the control group (No Coaching) = 0, and the observation result as the student
entrance exam performance. We substitute the value into Equation (9) and calculate the
value of the ATE between coaching and student performance in each layer. The value of
the ATE between coaching and student performance in each layer is shown in Table 8.
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Table 8. The value of the ATE between coaching and student performance in each layer.

Layer 1 2 3 4

Value −0.21 0.27 0.45 −0.6

Using Neyman inference based on sub-classification, referring to Equations (10) and (11),
the average causal effect difference estimate of the sample population is obtained as follows:

τ̂strat =
(
−0.21× 81

649

)
+
(

0.27× 81
649

)
+
(

0.45× 163
649

)
+
(
−0.6× 324

649

)
= −0.18

(12)

According to Equation (12), the ATE between coaching and student performance
is −0.18.

4.2. Average Causal Effect between Response and Other Intervention Variables

Repeating the procedure in Section 4.1 for other interventions, we obtain the values of
the ATE between each intervention and the response variable, as shown in Table 9.

Table 9. Average treatment effect values between intervention and response variables.

Intervention Variables ATE Value

Gender −0.13
Caste −1.37

Coaching −0.18
time 0.45

Class_ten_education −0.47
twelve_education −0.54

medium 0.41
Class_X_Percentage 0.15

Class_XII_Percentage 0.31
Father_occupation 0.14
Mother_occupation 0.0022

As the ATE value measures the magnitude of the causal relationship between variables
in terms of absolute value, its absolute value can be graphed in the following Figure 5.
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4.3. Case Study Result Analysis

According to the above results, among the intervention variables, the ATE between caste
and student performance is the largest. The intervention variables time, Class_ten_education,
Twelve_education, medium, and Class_XII_Percentage have similar important effects on stu-
dent performance; however, the variables of father’s occupation, mother’s occupation, gender,
coaching, and Class_X_Percentage have less influence on student performance.

(1) The data are obtained from the Dibrugarh University CEE for a given year at a medical
school in the Indian state of Assam. In India, caste determines the environment in
which individuals are born, the environment and quality of education, as well as
other factors. Therefore, the two races ‘SC—Schedule Caste’ and ‘ST—Schedule Tribes’
have lower social status than ‘general’; thus, overall, they have a lower social status in
India. There is, not surprisingly, also a large gap in performance on entrance exams
based on caste.

(2) Several intervention variables such as time, Class_Ten_education, Twelve_education, and
medium are relatively direct influencing factors in the learning process. From the
perspective of education, these factors have a certain impact on student performance.
This also indicates, however, that students who perform well in Class XII courses also
perform well in the entrance examination.

(3) Factors such as parental occupation and gender appear to have little impact on student
performance, which indicates that parents’ education level, work environment, and
other such factors have little effect on a student’s learning ability or that these factors
have an indirect influence rather than a direct one.

(4) To improve student exam performance, the most influential direct factor appears to be
caste—that is, social class—but this factor is difficult to change. Therefore, in the field
of education, teachers can try to increase the training time of students and choose the
appropriate Class_ten_education, Twelve_education, and medium of instruction.

The above analysis only concerns this particular dataset, which has obvious social
background characteristics; however, it can be seen from this case that, in observational
studies with a small sample size, the use of the ATE estimation method based on sub-
classification is effective. This method can well estimate the value of the ATE between
the intervention variable and the response variable. In the field of education, the value of
the ATE can be combined with the social background to determine the factors that have
a greater impact on students’ learning performance among the intervention variables to
clarify the necessary direction of improvement.

4.4. The Results of Traditional Methods

In order to compare to the method proposed in this paper, we introduce the commonly
used correlation analysis method and traditional ATE calculation method to obtain the
calculation results.

4.4.1. Correlation Analysis

Correlation analysis is often used in observational studies to judge the relationship
of the covariates and the response variable. The software SPSS is used to calculate the
correlation between each intervention and the response variable. The result is shown as
follows in Table 10.

The results of the correlation analysis indicated that the three intervention variables,
caste, Class_X_Percentage, and Class_XII_Percentage, are significantly correlated with
the response variable at the 0.05 significance level, and time and Class_ten_education are
significantly correlated with the response variable at the 0.01 significance level. Correlation
analysis considers solely the correlation between the response variable and one of the
intervention variables, which can be misled by the confounding variables. Such a treat-
ment amounts to ignoring the relationship between their intervening variables, and it is
untrustworthy in the analysis of observational studies in the education field.
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Table 10. Correlation values between intervention and response variables.

Intervention Variables Correlation Value

Gender 0.058
Caste 0.598 **

Coaching 0.031
time −0.076 *

Class_ten_education −0.096 *
twelve_education 0.067

medium −0.006
Class_X_Percentage 0.204 **

Class_XII_Percentage 0.280 **
Father_occupation 0.031
Mother_occupation −0.061

** represents significant correlation at the 0.01 level; * represents significant correlation at the 0.05 level.

4.4.2. ATE Calculation Method Based on DoWhy

The treatment effect calculation method based on observed data is also considered as a
benchmark method to calculate the ATE result of the intervention variables. The calculation
can be divided into two steps, that is, identification and estimation. Identification represents
the causal effects as a statistic, then ATE can be obtained from the model [30]. In this work,
the causal model is shown in Figure 3. Code form [31] named DoWhy is adopted to
calculate the ATE and the results are shown in Table 11.

Table 11. ATE values between intervention and response variables based on DoWhy.

Intervention Variables ATE Value

Gender 0.09
Caste 1.26

Coaching 0.21
time −0.16

Class_ten_education −0.22
twelve_education −0.11

medium −0.08
Class_X_Percentage −0.12

Class_XII_Percentage 0.29
Father_occupation 0.03
Mother_occupation −0.01

The traditional ATE calculation method leads to the conclusion that caste has the great-
est effect on student performance, followed by Class_XII_Percentage, Class_ten_education,
Coaching, and time, with the remaining intervention variables having a limited effect. This
result still differs from the ATE calculation based on PS proposed in this work. The main
reason is that, in the process of the traditional ATE calculation, its causal effect is only
treated as a statistic, and the confounding factors among its variables are not considered
and treated. Therefore, there is still some error in the calculation of its causal effect.

The comparison of the three methods can be seen in the Figure 6. It can be seen from
the bar chart that the results of the three methods are different in some ways. The method
proposed in this work takes into account the relationship among the intervention variables,
while treating the problem of confounding variables in the data. Compared with both the
traditional correlation analysis and ATE calculation methods, it has higher reliability and is
more adaptable to the analysis of observational study data in education.
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5. Conclusions

Considering the unbalanced distributions of control and treatment groups in an
observational education study, this paper proposes a method for calculating the ATE
based on observational study samples—that is, a sub-classification method based on PS
analysis. The proposed method can correct the biased intervention effect estimation results.
Compared with the correlation analysis method and the ATE calculation method based
on DoWhy in observational studies, the method proposed in this paper takes into account
both the unobservable confounding factors in the treatment variables and the causal
relationships between the response variable and intervention variables. In addition, the
distribution bias between the treatment and control groups is balanced by stratification
with respect to PS. In summary, this method is more credible than the traditional methods
in observational studies with biased distribution and unobservable confounding factors.

The UCI public dataset for student performance in an entrance examination in this
work is used to test the credibility of the proposed method in observational education
study. The data are divided into subgroups through trimming and stratification methods
with respect to the PS. The ATE of each layer of samples is calculated using the Neyman
estimation method. Then, the ATE on the response variable in the whole dataset is derived.
This value may reflect the effect of educational intervention policies, indicating that this
method could be suitable for application in the formulation of intervention policies in
education research.
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