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Abstract: Recently, discriminative correlation filters (DCF) based trackers have gained much atten-
tion and obtained remarkable achievements for their high efficiency and outstanding performance.
However, undesirable boundary effects occur when the DCF-based trackers suffer from challenging
situations, such as occlusion, background clutters, fast motion, and so on. To address these problems,
this work proposes a novel adaptive spatial regularization and temporal-aware correlation filters
(ASTCF) model to deal with the boundary effects which occur in the correlation filters tracking.
Firstly, our ASTCF model learns a more robust correlation filter template by introducing spatial
regularization and temporal-aware components into the objective function. The adaptive spatial
regularization provides a more robust appearance model to handle the large appearance changes
at different times; meanwhile, the temporal-aware constraint can enhance the time continuity and
consistency of this model. They make correlation filters model more discriminating, and also reduce
the influence of the boundary effects during the tracking process. Secondly, the objective function
can be transformed into three sub-problems with closed-form solutions and effectively solved via
the alternating direction method of multipliers (ADMM). Finally, we compare our tracker with some
representative methods and evaluate using three different benchmarks, including OTB2015, VOT2018
and LaSOT datasets, where the experimental results demonstrate the superiority of our tracker on
most of the performance criteria compared with the existing trackers.

Keywords: spatial regularization; temporal-aware; correlation filter tracking; alternating direction
method of multipliers; boundary effect

MSC: 68U10

1. Introduction

Visual tracking [1–5] plays a very important role in machine vision field and has been
applied in many realistic scenes, including robots, traffic surveillance, self-driving cars,
criminal investigation, and so on. It aims to predict the position and size of a tracked object
with a bounding box in each frame, by employing a tracking method, where the position
and size information is given in the first frame of each sequence. Although many advanced
tracking methods [6–8] have been proposed in recent years due to the rapid development
of computer sciences, many methods still have their weakness, including accuracy and
robustness, speed and practicability in some specific scenes. Therefore, there are also lots
of challenges urgently needing to be address.

Due to a high speed and a good performance, the DCF-based tracking method [9–12]
has gained lots of attention, and various algorithms have been proposed in recent years.
Traditional correlation filters (CF) based methods perform well both on accuracy and
speed because of the usage of a circular shift operation. Thus, the training samples can

Mathematics 2022, 10, 4320. https://doi.org/10.3390/math10224320 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10224320
https://doi.org/10.3390/math10224320
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5706-7930
https://orcid.org/0000-0002-2485-8787
https://doi.org/10.3390/math10224320
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10224320?type=check_update&version=2


Mathematics 2022, 10, 4320 2 of 19

be obtained using a circulant matrix and correlation filters can be optimized and solved
in frequency domain by the fast Fourier transform (FFT). The CF-based tracking methods
can be efficiently divided into background and object regions by learning a strong and
discriminative classifier, and as a result a better performance can be achieved. The MOSSE
algorithm [9] first proposed the correlation filters-based tacking method by introducing
the correlation filter theory in the tracking field. It performed well, while the speed nearly
reached 600 frames per second (fps). Then the kernel correlation filter (KCF) tracker [11]
introduced a novel CF framework with kernel function, and also used multi-channel
features including Histogram of Oriented Gradient (HOG) and gray features to build a
robustness CF model. The KCF tracker can handle many challenging tracking problems,
such as occlusion, color change, motion blur and so on

Standard DCF-based tracking methods have a high efficiency and a good perfor-
mance [11,12]. Although the circular shifting operation can obtain the kernel CF-based
training samples, it also generates many unreal samples, which leads to undesirable bound-
ary effects [13]. The limitation of the introduced boundary effects on the standard DCF
model is mainly reflected in two aspects. On the one hand, the discriminative ability of the
learned model is weakened by the unreal training samples. On the other hand, the calcula-
tion of detection scores ignores the non-center of the region, which is heavily influenced by
periodic repetitions of the detection sample [14]. In order to address the above mentioned
boundary effect, which occurs in CF-based trackers, many excellent trackers have been
proposed in recent years. Although these trackers have made good achievements both with
tracking performances and tracking speed [15–21], there are still lots of challenges for the
CF-based tracking field.

In this work, we propose a novel CF-based tracking method with adaptive spatial reg-
ularization and temporal-aware (ASTCF) terms. On the one hand, the introduced adaptive
spatial regularization term is integrated with the formulation of multiple training samples
for the purpose of coupling of DCF learning and model updating. This operation benefits
the tracking accuracy and robustness, and also can be adapted to the appearance changes
for different objects at different times. Meanwhile, in order to enhance the time continuity
and consistency of this model, the temporal-aware component is introduced in the objective
function to penalize a large variation in the correlation filters between two successive
frames. The temporal-aware regularization can effectively prevent large changes in the
correlation filters and keep the interframe variation smoother, thus making the learned
appearance model more robust. On the other hand, unlike the high complexity produced
by SRDCF because of the formulation of multiple training images, our ASTCF model can
be effectively optimized with the ADMM algorithm. The related objective function can
be transformed into three subproblems with analytical closed-form solutions. Figure 1
illustrates the tracking results of the ASTCF and the BACF on two video sequences with
motion blur and deformation. Compared with the BACF [16], we can see that our ASTCF
performs better to adapt the large appearance changes by introducing the spatial regular-
ization and temporal-aware terms in the objective function. Finally, we have evaluated our
method using two classical tracking benchmarks and a recent long-term tracking dataset,
which are OTB2015 [22], VOT2018 [23] and LaSOT [24], respectively. These experimental
results show the superior accuracy and real-time performance of our model compared
with the advanced trackers. Moreover, the further ablation study also indicates the impor-
tance of the introduced adaptive spatial regularization and temporal-aware terms in the
objective function.

The summary of our contribution in this work is as follows:

• We have proposed the ASTCF model by introducing adaptive spatial regularization
and temporal-aware terms into the DCF framework. The adaptive spatial regulariza-
tion can provide a more robust appearance model to handle large appearance changes
at different times, while the temporal-aware constraint can enhance the time continuity
and consistency of this model.
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• In order to solve ASTCF efficiently, we have optimized it with the ADMM algorithm,
where the related objective function can be transformed into three subproblems with ana-
lytical closed-form solutions. Moreover, our method can converge within a few iterations.

• Our ASTCF tracker has performed comparative experiments on both short-term track-
ing and long-term tracking datasets, including OTB2015, VOT2018 and LaSOT test
dataset. These experiments indicate that our tracker achieves a very impressive perfor-
mance and a real-time tracking speed in comparison with the state-of-the-art trackers.

Figure 1. The tracking results of ASTCF and BACF on two video sequences with motion blur
and deformation.

2. Related Works

Many competing DCF-based tracking algorithms have been proposed in recent years.
The traditional DCF-based trackers have been a great achievement and have addressed
many tracking problems. Following the MOSSE [9] and the KCF [11] trackers, Danelljan et al.
proposed the DSST tracker [15], which mainly deals with size change by employing a
translation filter and multiscale filters to accurately predict position and size information,
respectively. Bertinetto et al. proposed the Staple tracker [25] by using HOG and a color
histogram to establish a robust appearance model to adapt to changes in target appearance.
Subsequently, inspired by the Staple tracker, the CACF [26] tracker further proposed a
framework structure based on context information, which makes full use of background
information to establish samples and improve the discrimination of samples; this frame-
work is universal. Furthermore, some long-term trackers have been proposed to address
the tracking problems of long-term sequences [27–29]. For example, the LCT method [27]
proposes a classifier based on an online random fern which is connected to the correlation
filter tracker as a re-detector, and the response score is used to judge whether the target is
lost or not. Moreover, Liu et al. [12] proposed a long-term tracker by learning multi-featured
CF for tracking and a saliency detector to reposition the target.

To deal with the boundary effect of the CF-based tracker, many excellent methods
have been proposed. For example, the SRDCF tracker [14] addresses the boundary effect
problem by introducing a spatially regularized term in the objective function based on
the standard DCF model that enables the correlation filters to be learned on larger image
regions, leading to a more discriminative appearance model. However, the main drawback
of the SRDCF tracker is that it involves a lot of computation. Because the spatial regulariza-
tion term cannot make good use of the circular matrix of the traditional CF, a large number
of linear equations and the Gauss-Seidel method are used, which are very time-consuming
to solve. Therefore, its large computation cannot meet the real-time requirements. The
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BACF tracker [16] uses real background patches and target patches to learn the tracker,
and uses an online adaptation strategy to update the tracker model according to the new
appearance of the target and background. It perfectly solves the problem, which is that the
CF tracker lacks real negative training samples and boundary effects, and the speed meets
the real-time requirement. Recently, the ASRCF tracker [17] has introduced adaptive spatial
regularization into the objective function, and has optimized the objective function through
the ADMM algorithm [30], and it has finally obtained the reliable filtering coefficient. By in-
troducing temporal regularization into the single-sample SRDCF method, a spatio-temporal
regularized correlation filter (STRCF) [20] method is proposed, which can obtain multiple
training samples and also help to establish a more robust target tracking appearance model.
The AutoTrack tracking method [21] involves an automatic spatiotemporal regularization
framework for high-performance Unmanned Aerial Vehicle (UAV) tracking, where local
responses and global variations are used to constrain and control the learning of relevant
filters, reaching a speed of 60fps on the CPU. With the advancement of convolutional
neural networks (CNN) [31,32], many trackers use deep features from the deep network
which have a strong discriminative ability to recognize objects. These methods increase the
computational cost and decrease the tracking speed at the same time. Some deep trackers
have also combined the correlation filter and the deep network to obtain a good balance
between speed and performance, like the DeepSRDCF [33], the CFNet [34], the RPCF [35]
and the DeepSTRCF [20].

3. The Proposed Method

In this section, we will introduce the proposed ASTCF method. The aim of ASTCF
is to improve the robustness of the appearance model for visual tracking. We will first
introduce the overall framework, then show how to construct and solve the adaptive spatial
regularization and temporal-aware model.

3.1. Overall Framework

The framework of our ASTCF tracking method is shown in Figure 2, where the Coke
sequence is taken as an example. Firstly, due to the position and scale of the tracked
object shown in the first frame, we extract the features of the region of interest (ROI)
to obtain the initial correlation filter template. The extracted features include shallow
HOG features and deep CNN features, whose combination can effectively build a more
robust appearance model. Secondly, we transform the objective function based on the
adaptive regularization and temporal-aware terms into the frequency domain and solve
the relevant sub-problems efficiently by using the ADMM algorithm. Therefore, we can
obtain a more robust correlation filter. Thirdly, when the next frame comes, we extract
the features of ROI in different scales and perform the correlation operation between the
previous correlation filter template and the search region. Then we obtain the correlation
response in the temporal domain via the inverse Fourier transform. So, the maximum value
of the correlation response is defined as the object’s position in the frame. Moreover, the
object scale of the current frame can be estimated through a scale estimation model. Lastly,
the filter template of the current frame is updated by employing the filter template of the
previous frame and the object’s position in the current frame.

For ASTCF, the model learns a spatial regularization whose value always varies
adaptively for different objects at different times. As shown in Frame n of the Coke
sequence in Figure 2, the spatial regularization can suppress the interference of occlusions
and provide a greater penalty at related pixels during the tracking process. Moreover, the
correlation responses reflected in our model still maintain their peaks of responses despite
the target suffering from various interferences.
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Figure 2. The framework of adaptive spatial regularization and temporal-aware. Red bounding-boxes
donate the final results.

3.2. Adaptive Spatial Regularization and Temporal-Aware Model
3.2.1. Revisit the Objective Function of BACF Method

The BACF method [16] proposed a background-aware and multi-channels correlation
filters based on standard DCF. The related objective function of BACF is as follows:

E(h) =
1
2

T

∑
j=1

∥∥∥∥∥ K

∑
k=1

hk
TPxk

[
∆τj
]
− y(j)

∥∥∥∥∥
2

2

+
λ

2

K

∑
k=1
‖hk‖2

2 (1)

where
[
∆τj
]

is the operation of cyclic shift, xk
[
∆τj
]

donates the discrete cyclic shift of step j
is operated on the features xk of channel k. P is a binary mask matrix donates clips a T × D
matrix from the object feature xk, and T >> D, where T is the length of x. xk ∈ RT denotes
the k-th channel of the vectorized image. y ∈ RT is the desired response, which generally
uses a Gaussian-shaped ground truth generally, and h ∈ RD denotes the k-th channel of
the vectorized filter. The symbol T is the conjugate transpose.

The BACF method obtains positive and negative samples by using a binary mask
matrix to search samples and by utilizing dense sampling, resulting in the reduction of the
influence of boundary effect which is caused by cyclic shift.

3.2.2. Adaptive Spatial Regularization and Temporal-Aware Objective Function

To address the impact of tracking performance on unnecessary boundary effects,
we have introduced spatial regularization and temporal-aware terms into the objective
function. Firstly, inspired by the ASRCF [17] and BACF [16] methods, the adaptive spatial
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regularization term is introduced into the objective function for simulation to realize the
learning and model update of DCF. The adaptive spatial regularization term is helpful to
construct a more robust appearance description and a reliable correlation filter coefficient.
Secondly, in order to enhance the temporal continuity and consistency of the model, we
also introduce a temporal-aware term in the objective function to compensate for the large
variation of the correlation filter between two consecutive frames. In this work, we take∥∥∥PThk − PThv−1

k

∥∥∥2

2
as the temporal-aware term, where hv−1

k denotes the learned filter of
the previous frame. Thus, our objective function can be formulated as follows:

E(h, w) =
1
2

T

∑
j=1

∥∥∥∥∥ K

∑
k=1

(PThk)∗xk
[
∆τj
]
− y(j)

∥∥∥∥∥
2

2

+
λ1

2

K

∑
k=1
‖w� hk‖2

2 +
λ2

2
‖w−wr‖2

2 +
β

2

∥∥∥PThk − PThv−1
k

∥∥∥2

2
(2)

where xk ∈ RT denotes the k-th channel of the vectorized image, h ∈ RD denotes the k-th
channel of the vectorized filter, and P ∈ RT×T donates a diagonal binary matrix. K is the
total number of channels,

[
∆τj
]

is the operation of the cyclic shift, xk
[
∆τj
]

donates the
discrete cyclic shift of step j is operated on the features xk of channel k. The vector y ∈ RD×1

is the desired response, which generally uses a Gaussian-shaped ground truth. The symbol
∗ denotes the spatial correlation operator. Unlike the P matrix making the correlation
operator to apply on the true foreground and background samples in the BACF method, in
this paper it is applied directly to the filter template, and then the correlation operators are
evaluated on the object features. λ1 and λ2 are the spatial regularization parameters of the
second and third terms, respectively. The ‖w−wr‖2

2 term attempts to make the adaptive
spatial weight w similar to a reference weight wr. It introduces a priori information in
spatial weight w and effectively avoids the model degradation. β is the temporal-aware
regularization parameter, and symbol T is the operation of conjugate transpose.

3.2.3. Optimization of Objective Function

The objective function in Equation (4) is convex, and it can be minimized to obtain
the optimal solution. Inspired by the existing correlation filters tracking methods, the
correlation filters can be learned efficiently in the frequency domain. Thus, we have
converted the objective function into the frequency domain by using the Parseval’s theorem,
and also introduce an auxiliary variable ĝ for solutions. The formulation of the constrained
optimization in the frequency domain can be expressed as follows:

E(h, ĝ,w) = 1
2T

∥∥X̂ĝ− ŷ
∥∥2

2 +
λ1
2 ‖w� h‖2

2 +
λ2
2 ‖w−wr‖2

2 +
β
2

∥∥ĝ− ĝv−1
∥∥2

2

s.t. ĝ =
√

TFPTh
(3)

where X̂ =
[
diag(x̂1)

T, . . . , diag(x̂K)
T
]
∈ RT×KT , h =

[
hT

1 , . . . , hT
K

]T
∈ RKT×1 donates a

cascade of correlation filters vectorization with K channels, and ĝ =
[
ĝT

1 , . . . , ĝT
K
]T ∈ RKT×1.

The symbolˆindicates the discrete Fourier transform of signal, F is the orthonormal T × T
matrix of complex basis vectors to map any T dimensional vectorized signal into the Fourier
domain, for example, â =

√
TFa. ĝv−1 =

√
TFPThv−1 is an auxiliary variable, where hv−1

similar to h.
It can be observed that the model in Equation (5) is convex, thus it could be solved

iteratively to obtain the optimal solution via the ADMM algorithm. Therefore, we first
use the Augmented Lagrangian Method (ALM) to optimize Equation (5), for which the
Lagrangian function can be formulated as follows:

L(h, ĝ,ξ̂, w) = 1
2T

∥∥X̂ĝ− ŷ
∥∥2

2 +
λ1
2 ‖w� h‖2

2 +
λ2
2 ‖w−wr‖2

2 +
β
2

∥∥ĝ− ĝv−1
∥∥2

2

+ξ̂T(ĝ−
√

TFPTh) + µ
2

∥∥∥ĝ−
√

TFPTh
∥∥∥2

2

(4)
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where ξ̂ =
[
ξ̂T

1 , . . . , ξ̂T
K

]T
is set of the Lagrange multipliers, and µ is a penalty factor. Then,

the ADMM algorithm can be used for solving the subproblems ĝ, h, w and update ξ̂.

• Subproblem h

If variables ĝ, w and ξ̂ are fixed in Equation (5), we can get the closed-form solution
for variable h. Thus, h can be computed as:

h = argmin
h

{
λ1

2
‖w� h‖2

2 + ξ̂T(ĝ−
√

TFPTh) +
µ

2

∥∥∥ĝ−
√

TFPTh
∥∥∥2

2

}
(5)

Equation (5) also can be reformulated as follows:

C(h) =
λ1

2
‖w� h‖2

2 + ξ̂T(ĝ−
√

TFPTh) +
µ

2

∥∥∥ĝ−
√

TFPTh
∥∥∥2

2
(6)

where W = diag(w) ∈ RT×T and w� h = Wh. Next, take the partial derivation of C(h)
and we can get the solution of h as:

h = (λ1WTW + µ T PPT)−1TP(ξ + µg)

= Tp�(ξ+µg)
λ1(w�w)+ µT p

(7)

where p = [P11, P22, . . . , PTT ] denotes the row vectors with the binary matrix P, and
PPT = P. By using an inverse transform, we can estimate the related spatial values of
each element in variables ĝ and ξ̂, and then connected them to obtain variables g and ξ.

• Subproblem ĝ

Following the solution of subproblem h, fixing variables h, w and ξ̂, we can get the
closed-form solution for variable ĝ. The minimization of ĝ can be formulated as follows:

ĝ = argmin
ĝ

{
1

2T
∥∥X̂ĝ− ŷ

∥∥2
2 +

β

2

∥∥ĝ− ĝv−1
∥∥2

2,+ξ̂T(ĝ−
√

TFPTh) +
µ

2

∥∥∥ĝ−
√

TFPTh
∥∥∥2

2

}
(8)

We can find that each element of ŷ depends only on the K values of x̂ and ĝ. Let
ŷ written as ŷ(t), and x̂(t) = [x̂1(t), . . . , x̂K(t)]

T, and ĝ(t) = [ĝ1(t), . . . , ĝK(t)]
T. Thus, the

solution of Equation (13) can be decomposed into T linear subsystems of size K× K. Each
independent objective function can be formulated as:

ĝ(t) = argmin
ĝ(t)

{
1

2T

∥∥∥x̂(t)Tĝ(t)− ŷ(t)
∥∥∥2

2
+

β

2

∥∥ĝ(t)− ĝv−1(t)
∥∥2

2 + ξ̂T(t)(ĝ(t)− ĥ(t)) +
µ

2

∥∥ĝ(t)− ĥ(t)
∥∥2

2

}
(9)

where ĥ(t) = [ĥ1(t), . . . , ĥK(t)]
T

, and ĝv−1(t) = [ĝ1
v−1(t), . . . , ĝK

v−1(t)]
T

.
Next,

C(ĝ(t)) =
1

2T

∥∥∥x̂(t)Tĝ(t)− ŷ(t)
∥∥∥2

2
+

β

2

∥∥ĝ(t)− ĝv−1(t)
∥∥2

2 + ξ̂T(t)(ĝ(t)− ĥ(t)) +
µ

2

∥∥ĝ(t)− ĥ(t)
∥∥2

2 (10)

Take the partial derivation of C(ĝ(t)) and let ∂C(ĝ(t))
∂ĝ(t) = 0, then:

ĝ(t) =
(

x̂(t)x̂(t)T + T(β + µ)IK

)−1
(x̂(t)ŷ(t)− Tξ̂(t) + Tµĥ(t) + Tβĝv−1(t)) (11)

Following the theory of Sherman-Morrison, (uvT + A) = A−1 − A−1uvTA−1

1+vTA−1u
. Putting

A = T(β + µ)IK and u = v = x̂(t) in Equation (17), the inverse matrix in Equation (17) can
be formulated as:(

x̂(t)x̂(t)T + T(β + µ)IK

)−1
=

1
T(β + µ)

(
IK −

x̂(t)x̂(t)T

T(β + µ) + x̂(t)Tx̂(t)

)
(12)
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Next, combining Equations (18) and (17), we can get the solution as:

ĝ(t) =
1

(β + µ)

(
1
T

x̂(t)ŷ(t)− ξ̂(t) + µĥ(t) + βĝv−1(t)
)
− x̂(t)

(β + µ)b

(
1
T

Ŝx(t)ŷ(t)− Ŝξ(t) + µŜh(t) + βŜgv−1
(t)
)

(13)

where Ŝx(t) = x̂(t)Tx̂(t), Ŝ
ξ
(t) = x̂(t)Tξ̂(t), Ŝh(t) = x̂(t)Tĥ(t), Ŝgv−1

(t) = x̂(t)Tĝv−1(t) and
invariant b = Ŝx(t) + T(β + µ).

• Subproblem w

If h, ĝ and ξ̂ are given, we can get the closed-form solution of w, which can be
formulated as:

w = argmin
w

{
λ1

2
‖w� h‖2

2 +
λ2

2
‖w−wr‖2

2

}
(14)

Take the partial derivation of Equation (14) as follows:

∂

∂w

(
λ1

2
‖wH‖2

2 +
λ2

2
‖w−wr‖2

2

)
= λ1wH + λ2(w−wr) (15)

where H = diag(h) ∈ RT×T . Let the partial derivation to be zero. Thus:

w = (λ1HTH + λ2I)−1
λ2wr

= λ2wr

λ1h�h+λ2I

(16)

• Lagrange multiplier ξ̂

After solving these subproblems, the Lagrange multiplier ξ̂ can be updated. The
updating formula is as follows:

ξ̂(i+1) = ξ̂(i) + µ(ĝ(i+1) − ĥ(i+1)
) (17)

where ξ̂(i+1) and ĥ(i+1)
denote, respectively, the (i + 1)th solution of ĝ and ĥ in the Fourier

domain. And the (i + 1)th regularization constant µ is set as µ(i+1) = min(µmax, δµ(i)),
where δ is a size factor, and parameters µ and δ can be referred to the ADMM algorithm.

The ASTCF model is convex and each of its subproblems has a closed-form solution
by using the ADMM algorithm. Therefore, this model satisfies the conditions of Eckstein-
Bertsekas [36] and can converge to the global optimum. By using the ADMM algorithm,
the evaluation of most sequences can be converged within three iterations.

3.2.4. Locate Object Position and Model Update

The object position can be obtained via the correlation response between ĝ of the last
frame and the feature map of the search region. Thus, the computation of the response map
can be expressed as follows:

R(xk) = F−1(
K

∑
k=1

x̂k�ĝv−1
k ) (18)

where K is the number of channels in the feature map, and ĝv−1
k denotes the learned

correlation filter from the last frame via the ADMM algorithm in the frequency domain.
The maximum response is defined as the position of the tracked object.

Following the ASRCF method [17], we can learn another scale CF to reduce the
computation. The scale CF is trained with efficient shallow HOG features. Then, four scales
search regions are selected and their related response maps are obtained. While the location-
related CF is trained with fusion features with deep CNN features and shallow HOG
features. In this work, we have chosen Conv4-3 of the pretrained VGG-16 [37] model on
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ImageNet [38] as CNN features. The scale CF is learned with 31 dimensions HOG features,
and the location-related CF is learned with 111 dimensions HOG and CNN fusion features.

For the update of the appearance model, we have employed the following formula:

X̂model
v = (1− η)X̂model

v−1 + ηX̂v (19)

where v and v− 1 denote the vth and (v− 1)th frames respectively. η donates the learning
rate of the appearance model. The specific steps of our ASTCF are shown as Algorithm 1.

Algorithm 1. The proposed ASTCF model

Input: The initial position p0 and scale size s0 of the object in the first frame, initialize
parameter w.
Output: Estimate object position pv and scale size sv in the vth frame, tracking model, and
CF template.
repeat:

1. Learn scale correlation filter by using HOG features and learn the location- related
correlation filter by using features combined with HOG and CNN.

2. Use Equation (18) to compute response R of object localization CF. Define the
maximum response value as the position of the object, and the maximum of the
responses in four scale estimation CF is the scale of the object.

3. Update the appearance model by using Equation (19);
4. Compute subproblems h and ĝ by using Equations (13) and (7), and update

subproblems ĝ and w in three iterations.

Until last frame of sequence

4. Experimental Results

We implemented our ASTCF method based on the MATLAB2017a platform with the
MatConvNet toolbox, and ran it on a PC machine equipped with an Intel 3.7 GHz, 16 G
RAM and a single NVIDIA GTX 1080ti GPU. For parameter setting, the regularization
parameters λ1 and λ2 are chosen as 0.2 and 0.001, respectively. The initial value of wr is set
as 7. The learning rate of ASTCF is chosen as η = 0.0175, and the temporal-aware constraint
parameter is set as β = 15. We use three iterations of the ADMM optimization process,
and the penalty factor is set as µ = 1. The penalty factor at iteration i + 1 is updated as
µ(i+1) = min(µmax, δµ(i)), where δ = 10 and µmax = 1000.

We evaluate our tracker and other advanced trackers on three benchmarks. Our
ASTCF method is first evaluated on the classical OTB2015 [22] with 100 sequences and
VOT2018 [23] short-term datasets with 60 video sequences, respectively. Then, we evaluated
our tracker on the LaSOT [24] long-term dataset with 280 sequences.

4.1. OTB2015 Dataset

As a popular dataset in the tracking field, the OTB2015 [22] dataset has 100 video
sequences, which is twice as many as OTB2013 [39]. All sequences use uniform input and
output formats, and each image of each sequence comes with an annotated data file to
facilitate training and evaluation of the algorithm. For better analyzing the advantages
and disadvantages of the tracking algorithm, the OTB dataset was based on Illumination
Variation (IV), in-plane Rotation (IPR), scale change, out-of-plane rotation (OPR), Back-
ground Clutters (BC), Low Resolution (LR), and out-of-view (OV) attributes to classify
sequences. The OTB dataset follows the one-pass evaluation (OPE), which consists of
the accuracy plot of the central location error measurement and the success rate plot of
the intersection measurement of the union of the predicted target box and the manually
annotated data [39]. In addition, we have employed distance precision and overlap success
metrics for evaluation among the compared trackers. For this experiment, we compare our
tracker with 11 existing advanced trackers, including trackers using hand-crafted features
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and CNN features, such as SiamRPN++ [40], ECO [41], SRDCF [14], DeepSRDCF [33],
MCPF [42], TADT [43], BACF [16], STRCF [20], MDNet [44], SiamFC [45] and VITAL [46].

Figure 3 shows the precision plots and success plots of the 11 compared trackers which
are evaluated using the OTB2015 dataset [22], where the legend in the precision plots
denote the distance precision (DP) score with the threshold at 20 pixels, and the legend
in the success plots donates an area-under-the-curve (AUC) score [12] for each tracker,
respectively. It can be seen that the proposed ASTCF tracker achieves the best results both
on the DP score and the AUC score, reaching 0.699 and 0.927, respectively. The overall
precision shows DP scores improving by 10.3% and 7% compared with those of the baseline
BACF [16] and DeepSRDCF [33], respectively. In addition, the gained AUC scores are 7.8%
and 6.2%, respectively.

Figure 3. Overall precision plots and success plots of OPE evaluated on OTB2015.

Figure 4 shows the precision plots of the compared trackers with 11 different attributes.
It can be seen that the performance of our tracker is pretty good, and ranks high on most
attributions. Similarly, Figure 5 shows the overlap success plots of the compared trackers
with 11 attributions. It can be seen that our ASTCF tracker has achieved good results on
all the attributions, especially the occlusion, out-of-plane rotation and out of view. For
example, in the background attribution, our tracker achieves remarkable improvements
over the compared trackers, i.e., improves the AUC score by 0.7% and 7.5% compared with
VITAL [46] and BACF [16], respectively.

Table 1 reports the overall DP scores, AUC scores, and speed between the five methods
and our proposed tracker. It illustrates that the speed of our tracker is approximately
23.5 fps, which satisfies the real-time requirement. Compared with ECO [41] and MD-
Net [44], which cannot meet the real-time requirement, our proposed ASTCF tracker has
an obvious advantage on speed.

Table 1. The comparisons of precision, success rate and speed.

SRDCF BACF STRCF ECO MDNet Ours

DP 0.791 0.824 0.854 0.915 0.910 0.927
AUC 0.596 0.621 0.647 0.692 0.677 0.699
FPS 5.8 26.5 24.8 9.9 1.4 23.5

4.2. VOT2018 Dataset

The VOT datasets publish a visual tracking challenge and hold an ECCV and ICCV
workshop every year. They also build a tracking community which provides a precisely
defined and repeatable way to compare trackers and they host a common platform to
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discuss evaluation and progress in the visual tracking field. Now the VOT Challenge has
been held since 2013 and has gained more and more attention. Each year, the VOT Challenge
is updated with a new dataset based on the previous year. We compare our ASTCF model
with eight trackers, including DSTRCF [20], ECO [41], SiamDW [47], UpdateNet [48],
DeepSRDCF [33], SRDCF [14], DSST [15] and Staple [25]. We have used some tracking
algorithm evaluation indicators given by the official VOT competition, such as accuracy,
robustness and Expected Average Overlap (EAO) [49].

Figure 4. Precision plots of OPE on eleven video sequence attributions of OTB2015 dataset.

Table 2 shows the accuracy results of trackers with VOT dataset showing nine different
attributes they are: empty, camera motion, motion change, illumination change, occlusion,
size change, weighted mean, mean and pooled. The accuracy is used to evaluate the
accuracy of the target tracking algorithm. The higher the value, the higher the accuracy.
Table 2 reports that our ASTCF achieves the best result on the accuracy metric compared
with other methods, and its attribution score on pooled reaches 0.6098. In addition, Table 3
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presents the robustness results which represents the stability of the tracking algorithm when
tracking the target in the sequence set, which represents the number of tracking failures.
Table 3 shows that the robustness of the ASTCF is better than those of others, except on the
attribution of camera motion and pooled. Table 4 shows the metrics of Expected Average
Overlap results. The EAO evaluation metric is the average overlapping expected value of
each tracker on a short-term image sequence. It can be seen that our ASTCF tracker ranks
the first among all the trackers, and its EAO score is 0.3943.

Figure 5. Success plots of OPE on eleven video sequence attributions of OTB2015.

4.3. LaSOT Dataset

The LaSOT dataset [24] is a new and huge dataset which was released in 2018. It has
1400 sequences in 70 categories, totaling 3.52 million frames. Each category contains exactly
20 sequences, keeping the dataset balanced across classes. It also provides longer time
sequences containing more than 1000 frames (average 2512 frames) to meet the long-term
trends currently tracked. For comparison, the LaSOT dataset also follows the one-pass eval-
uation (OPE) criteria of OTB. In this experiment, we used the test sets with 280 sequences,
whose average frame length is more than 2500 frames. In this experiment, we compared
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our method with 12 advanced trackers, including ASRCF [17], SiamFC [45], ECO [41],
STRCF [20], BACF [16], TRACA [50], Staple [25], LCT [27], SRDCF [14], MDNet [44],
DSST [15] and KCF [11].

Table 2. Accuracy results among all compared trackers evaluate on VOT2018.

Methods Camera
Motion Empty Illum

Change
Motion
Change Occlusion Size

Change Mean Weighted
Mean Pooled

Ours 0.5974 0.6322 0.6012 0.6131 0.4899 0.6201 0.6163 0.6094 0.6098
DSTRCF 0.5706 0.5898 0.5294 0.5286 0.4661 0.4660 0.5251 0.5399 0.5564
SiamDW 0.5707 0.6225 0.4819 0.5111 0.4981 0.4267 0.5185 0.5393 0.5594

ECO 0.5221 0.5598 0.5253 0.4775 0.3714 0.4436 0.4833 0.4978 0.5130
UpdateNet 0.5226 0.5713 0.5179 0.4936 0.4805 0.4842 0.5117 0.5194 0.5324
DSRDCF 0.4982 0.5716 0.5252 0.4842 0.4239 0.4569 0.4933 0.5016 0.5156
SRDCF 0.4855 0.5499 0.5912 0.4493 0.4322 0.4398 0.4913 0.4866 0.5009
Staple 0.5580 0.5958 0.5634 0.5187 0.4764 0.4799 0.5320 0.5405 0.5518
DSST 0.4219 0.4517 0.5110 0.3751 0.3482 0.3195 0.4046 0.4005 0.4090

Table 3. Robustness results among all compared trackers evaluate on VOT2018.

Methods Camera
Motion Empty Illum

Change
Motion
Change Occlusion Size

Change Mean Weighted
Mean Pooled

Ours 19.000 6.000 1.000 15.000 10.000 6.000 9.000 9.083 38.000
DSTRCF 11.000 11.000 2.000 13.000 10.000 7.000 9.000 10.255 36.000
SiamDW 26.000 9.000 3.000 20.000 26.000 15.000 16.500 18.041 62.000

ECO 19.000 7.000 4.000 18.000 18.000 9.000 12.500 13.511 44.000
UpdateNet 29.000 11.000 3.000 33.000 21.000 13.000 18.333 20.876 75.000
DSRDCF 33.000 13.000 5.000 31.000 27.000 20.000 21.500 23.964 80.000
SRDCF 52.000 20.000 8.000 47.000 27.000 28.000 30.333 35.426 116.000
Staple 8.000 11.000 5.000 26.000 22.000 15.000 17.833 19.883 68.0000
DSST 103.000 45.000 6.000 76.000 32.000 36.000 49.667 63.072 206.000

Table 4. The EAO rank among all compared trackers.

Method All

Ours 0.3943
DeepSTRCF 0.3723

ECO 0.3077
SiamDW 0.2925

Staple 0.2733
UpdateNet 0.2499

DeepSRDCF 0.2282
SRDCF 0.1621
DSST 0.0976

Figure 6 shows that our ASTCF method has achieved good results on both precision
and success rate; most especially, it has an obvious advantage compared with the CF-based
trackers. Figure 7 shows the overlap success plots of the compared trackers with 14 different
attributes, such as illumination variation, deformation, full occlusion, and so on. It can
be seen that our ASTCF method achieves outstanding results on most of the attributions,
especially the partial occlusion, full occlusion and deformation attributions. Therefore, the
results depict the effectiveness of our ASTCF method.
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Figure 6. Precision plots and success plots of OPE on LaSOT test dataset.

4.4. Qualitative Evaluation

To further verify the effectiveness of our tracking algorithm, we have taken the qual-
itative evaluations of eight trackers with the representative sequences, including Bird1,
Skiing, Soccer, Coke, Freeman4, Singer2, and Ironman. There are seven compared trackers,
including DeepSRDCF [33], ECO [42], MCPF [43], TADT [43], SimaFC [45], BACF [16],
SRDCF [14]. Figure 8 shows the results of the qualitative evaluation. It can be seen that
the proposed ASTCF method has achieved better tracking performance on qualitative
evaluation, especially the tracking results after 100 frames. Take the Birds sequence for
example, we can see that our ASTCF method can still track the object accurately after it
disappears and reappears, but other trackers lose their tracked objects.

4.5. Temporal-Aware Constraint Parameter

The choice of temporal constraint parameter β will influence the tracking performance,
which is introduced in Equation (1) as the temporal-aware term. Table 5 shows the tracking
performance when we choose different temporal regularization parameters. In this experi-
ment, we present the value only from 10 to 20 at an interval of 1. It can be seen that the
precision and success rates reached their highest values when we choose β = 16.

4.6. Ablation Studies

This ablation study is to verify the effectiveness of the adaptive spatial regularization
and temporal-aware terms of our ASTCF tracker; the results of different versions of ASTCF
tracker on OTB2015 can be seen in Table 6. ASTCF-s donates ASTCF without adaptive
spatial regularization term, ASTCF-t donates ASTCF without temporal term and ASTCF-st
donates ASTCF without adaptive spatial regularization and temporal-aware terms (equal
baseline tracker). From the results of Table 6, we can see that the adaptive regularization
and temporal-aware terms can effectively improve the performances of trackers, and they
become better when fused together. Compared with ASTCF-s, ASTCF improves 6.0% in
DP score and 4.7% in AUC score. Moreover, ASTCF also improves 1.2% in DP score and
1.0% in AUC score compared with ASTCF-t.
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Figure 7. Success plots of OPE evaluate on fourteen sequence attributions.
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Figure 8. Representative tracking results of qualitative evaluation. The selective sequences are Bird1,
Skiing, Soccer, Coke, Freeman4, Singer2, and Ironman.

Table 5. Precision and success rates on OTB2015 dataset with different temporal-aware regularization
parameters β.

β Precision Success

10 0.871 0.662
11 0.879 0.669
12 0.887 0.672
13 0.895 0.681
14 0.919 0.689
15 0.918 0.692
16 0.927 0.699
17 0.920 0.689
18 0.912 0.680
19 0.901 0.682
20 0.896 0.677
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Table 6. DP scores and AUC scores of different versions of ASTCF on OTB2015 dataset.

Tracker ASTCF ASTCF-s ASTCF-t ASTCF-st

Precision (DP) 0.927 0.867 0.915 0.802
Success (AUC) 0.699 0.652 0.689 0.601

5. Conclusions

This paper proposes a novel adaptive spatial regularization and temporal-aware cor-
relation filters (ASTCF) model for solving the unwanted boundary effects which occur in
the correlation filters tracking. The proposed ASTCF method can help to build a robust
appearance model and improve the tracking accuracy by introducing adaptive spatial
regularization and temporal-aware terms into the objective function. Further, the objective
function can be effectively optimized via the ADMM algorithm. The three related sub-
problems have analytical closed-form solutions, and greatly reduce the computational cost.
Compared with other trackers on several benchmarks, the ASTCF method depicts obvious
advantages on most of the evaluation metrics. For the OTB2015 dataset, our ASTCF tracker
achieved the best results both on DP score and AUC score, which reached 0.699 and 0.927,
respectively. Moreover, the speed of the ASTCF method is approximately 23.5 fps, which
satisfies the requirements of real-time. In the future, we will further explore the application
of this model for small object tracking on UAV and dark scenes.
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