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Abstract: In this paper, novel non-involute cylindrical gears are designed based on a curved path
of contact. Firstly, a parabolic curve is predesigned as the contact path of novel gears. Then, the
tooth profiles of the novel gears are calculated using differential geometry and spatial meshing
theory. Secondly, the three-dimensional tooth models of the novel non-involute gears are established
according to a machining simulation. Thirdly, a simulation model (including misalignment error and
longitudinal modification) is established to analyze the performance of the novel non-involute gears.
Finally, an example is given, and the results show that the presented novel non-involute gears have
greater load-carrying capacity compared with the involute gears. Moreover, whether modified or not,
with or without misalignment error, the stresses of the presented novel gears are lower than those of
involute gears.

Keywords: novel non-involute gear; curved path of contact; tooth profile design; tooth longitudinal
modification; misalignment error
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1. Introduction

Involute gears have superior performance and are the most commonly used gears
in machines. However, with the development of modern industry, some shortcomings of
involute gears have gradually appeared, such as low contact strength and limited bearing
capacity [1–5]. Due to an intrinsic property of the involute curve, the curvature radius
of the involute profile in the dedendum part approaching the base circle is very small.
Accordingly, this may lead to high contact stress in this area. Excessive contact stress
will lead to pitting and even scuffing on the tooth surface. The simplest way to increase
the load capacity of the involute gears is to increase the module and the tooth width.
However, this will increase the size and the mass, making the machines more cumbersome.
In addition, the required power of a machine is transmitted through its gears. Therefore, it
is an important basic component of a machine. A change in the size and mass of the gears
may bring a series of changes. The appearance of herringbone gears and asymmetric gears
has expanded the application of involute gears [6–11], but these changes are also limited in
improving load-carrying capacity.

It is well-known that tooth profile is the most fundamental factor in determining the
performance of gear transmissions. Therefore, some novel gears have been explored by
researchers. One of the representative gears is the double circular-arc gear [12–18]. Double
circular-arc gears transmit power through concave–convex contact, so the induced curvature
radius is large and the contact strength is high. Nevertheless, double circular-arc gears are
sensitive to center distance error, which seriously limits their popularization [19–21].

Another type that must be mentioned is gears with a curved path of contact. Up
to now, research on gears with a curved path of contact has mainly focused on S-gears,
sine-curve gears, cosine-curve gears, and so on. Luo et al. [22] proved that cosine gears had
a lower sliding coefficient and stress than involute gears. Similarly, a plastic sine-curve
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gear was studied by Koide et al. [23]. Wang et al. [24] designed a non-involute gear with a
parabolic path of contact. Nevertheless, his research contained neither tooth modification
nor error analysis. Liang et al. [25] proposed a novel involute-helix gear drive with convex–
concave contact based on the theory of conjugate curves. A study by Wang et al. [26] was
interesting—an internal gear with a high contact ratio based on a circular arc contact path
was designed, and the contact ratio of the presented novel internal gear was as high as
seven. Research on internal gears was also carried out by Peng et al. [27]. Liu et al. [28]
proposed a design method for tooth profiles based on the control of relative curvature. Chen
et al. [29] presented a design method for a nonrelative sliding gear mechanism for parallel
axis transmission based on polynomial contact curves. Wang et al. [30] studied a novel gear
with a small sliding coefficient. Trobentar et al. [31] and Zorko [32,33] comprehensively
studied the high-cycle tooth bending fatigue of polymer S-gears. Sun et al. [34] established
a mathematical model for the contact pattern and strength analysis of S-shaped gear pairs
based on the calculation of tooth contact stress and tooth root bending stress.

From the above discussion, it can be seen that the demand for high-power transmis-
sions in modern machines is increasing, and non-involute gears still need to be developed.
Gears with a curved path of contact have potential application value, but the research
is not sufficient. As a novel gear, its meshing contact is different from that of involute
gears. Therefore, it is necessary to further improve the design theory of a novel gear with a
curved path of contact by using differential geometry and space engagement theory. More-
over, because error is inevitable in actual working conditions, the tooth modification and
error-sensitivity analysis of novel gears with curved contact paths also need further study.

As shown in Figure 1, the path of contact of the novel non-involute gear presented
in this paper is curved. The tooth profile, sliding ratio, and contact ratio of the cylindrical
gears can be calculated according to the contact path using differential geometry and spatial
meshing theory. A simulation model including misalignment error and longitudinal tooth
modification is constructed to analyze the performance of the presented novel non-involute
gear. Based on the simulation results, the excellent characteristics of the presented novel
gear in terms of high load capacity are shown. However, it should be noted that the given
novel gears are not intended to replace involute gears in all application fields, but only as
a substitute product in some special machines. The gears presented in this paper are an
effective supplement to the application of gear transmissions.

Figure 1. The novel non-involute gears and involute gears. (a) Novel non-involute gears; (b) Invo-
lute gears.

2. Designation of the Tooth Profiles Based on a Curved Path of Contact
2.1. Mathematical Model of the Tooth Profiles Based on Path of Contact

When the gears rotate, the trajectory formed by the contact points in the fixed coordi-
nate system Sf is the path of contact. The tooth profile curvature, sliding ratio, and contact
ratio of the cylindrical gears can be calculated based on the path of contact. Therefore, the
path of contact can be predesigned according to the performance that the gears need to
meet. Essentially, the trajectory line in the coordinate systems of gears Si (i = 1, 2) when
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the contact point moves along the predesigned path of contact is the conjugate profile
satisfying the performance. The detailed design of the conjugate tooth profiles of gears
based on path of contact is described below.

As shown in Figure 2, the coordinate systems Si (i = 1, 2) and Sf are established, where
Si (i = 1, 2) is the coordinate system fixed with pinion and gear, respectively, and the origins
Oi (i = 1, 2) of the coordinate system are located at the center of the gears, respectively; Sf is
the fixed coordinate system, and the origin Of of the coordinate system Sf is located at the
tangent point of the pitch circles of the pinion and gear.

Figure 2. Coordinate systems of meshing gears.

The position vector of the predesigned path of contact in the coordinate system Sf can
be expressed by Equation (1):

⇀
r f =

x f (ut)
y f (ut)

1

 (1)

where ut is the parameter of the predesigned line-of-contact path.
The pinion tooth profile

⇀
r 1 that satisfies the predesigned path of contact can be

obtained via Equation (2) according to the gear meshing theory [35]:

⇀
r 1 = [L]1, f

⇀
r f (2)

where [L]1, f is the coordinate transformation matrix from the coordinate system Sf to S1,
obtained via Equation (3):

[L]1, f =

 cos φ1(ut) sin φ1(ut) r1 sin φ1(ut)
− sin φ1(ut) cos φ1(ut) r1 cos φ1(ut)

0 0 1

 (3)

where φ1 is the rotation angle of the pinion in the coordinate system S1, and r1 is the pitch
circle radius of the pinion, as shown in Figure 2.

Therefore, the pinion tooth profile
⇀
r 1, described as the locus of the point on the path

of contact represented in coordinate system S1, can be determined by Equation (4):

⇀
r 1(ut) =

 x f (ut) cos φ1(ut) + y f (ut) sin φ1(ut) + r1 sin φ1(ut)
−x f (ut) sin φ1(ut) + y f (ut) cos φ1(ut) + r1 cos φ1(ut)

1

 (4)
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Similarly, the gear tooth profile
⇀
r 2, satisfying the predesigned path of contact, can be

obtained via Equation (5):

⇀
r 2(ut) = [L]2, f

⇀
r f =

x f (ut) cos φ2(ut)− y f (ut) sin φ2(ut) + r2 sin φ2(ut)
x f (ut) sin φ2(ut) + y f (ut) cos φ2(ut)− r2 cos φ2(ut)

1

 (5)

where [L]2, f is the coordinate transformation matrix from the coordinate system Sf to S2; φ2
is the rotation angle of the gear in the coordinate system S2, and it should be noted that the
rotation angle of gears φi(i = 1, 2) meets the transmission ratio relationship. r2 is the pitch
circle of the gear, as shown in Figure 2.

According to meshing theory, the normal vector at the instantaneous contact point
must pass through the instantaneous center Of when the conjugate gears are engaged.
Therefore, the unit normal vector of tooth surface in coordinate system Sf can be expressed
by Equation (6):

⇀
n f =

1√
(x f )

2 + (y f )
2

x f
y f
0

 (6)

The unit normal vector in coordinate system S1 is determined via Equation (7):

⇀
n 1 = [L]1, f

⇀
n f =

1√
(x f )

2 + (y f )
2

 x f cos φ1(ut) + y f sin φ1(ut)
−x f sin φ1(ut) + y f cos φ1(ut)

0

 (7)

The equation of meshing of the pinion is determined via Equation (8):

f1 =
⇀
n 1 ·

d
⇀
r 1

dut
· dut

dt
= x′f x f + y′f y f + r1x f φ′1(ut) = 0 (8)

From Equation (8), we can obtain

φ′1(ut) = −
x′f x f + y′f y f

r1x f
(9)

By integrating Equation (9), the pinion rotation angle can be determined via Equa-
tion (10):

φ1(ut) = −
∫ ut

0

x′f x f + y′f y f

r1x f
dut (10)

The gear transmission ratio is given and represented by the ratio of the tooth number
of the gears via Equation (11):

m12 =
N2

N1
=

φ1

φ2
(11)

where N1 and N2 are the tooth numbers of the pinion and gear, respectively.
Then, the gear rotation angle is determined based on the pinion rotation angle and the

transmission ratio via Equation (12):

φ2(ut) =
φ1(ut)

m12
(12)

Finally, by substituting Equations (10) and (12) into Equation (4) and Equation (5), the
conjugate tooth profiles defined by the predesigned path of contact can be obtained.
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2.2. Checking Tooth Undercutting

If the tooth undercutting occurs, the thickness of the tooth root becomes thinner,
and the bending strength of the gear decreases; moreover, the contact ratio decreases,
which greatly affects the stability of the transmission. Therefore, the condition of tooth
undercutting should be checked during gear design.

According to the theory of gearing, undercutting will occur when the sliding velocity
of the contact point on the tooth is equal to zero at singular points [26,36]. Therefore,
the condition of undercutting can be expressed as the zero-sliding velocity of the tooth
contact point.

Undercutting of the pinion is derived via Equation (13) [36]:

⇀
v r1 ·

⇀
v r1 = 0 (13)

where
⇀
v r1 is the sliding velocity of the contact point on the pinion tooth, which can be

represented as Equation (14):

⇀
v r1 =

d
⇀
r 1

dt
=

d
⇀
r 1

dut
· dut

dt
(14)

Equation (15) is obtained by substituting Equations (4), (10), and (14) into Equation (13):

(1 + m12)x f x′f +
[
(1 + m12)y f + (r1 + r2)

]
y′f = 0 (15)

Similarly, the sliding velocity of the contact point on the gear tooth can be represented
via Equation (16):

⇀
v r2 =

d
⇀
r 2

dt
=

d
⇀
r 2

dut
· dut

dt
(16)

Undercutting of the gear is derived via Equation (17):

⇀
v r2 ·

⇀
v r2 = 0 (17)

Equation (18) is obtained by substituting Equations (5), (12), and (16) into Equation (17):

(1 + m12)x f x′f +
{

y f + m12

[
y f − (r1 + r2)

]}
y′f = 0 (18)

2.3. Determination of the Rack-Cutter Tooth Profile

In order to achieve the manufacturing of newly designed gears, the tooth profiles of
the rack-cutter need be derived.

As shown in Figure 3, the curve P1P2 is the predesigned path of contact; the coordinate
system Sc1 is established, which is the coordinate system fixed with the moving rack-cutter,
and the coordinate axis Xc1 is coincident with the pitch line of the rack-cutter.

Figure 3. Derivation of the tooth profile of the rack-cutter based on path of contact.

At the initial position, the moving coordinate system Sc1 is coincident with the fixed
coordinate system Sf. The tooth profile of the rack-cutter intersects contact path P1P2 at
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point D0. Then, with the rack-cutter moving, the rack-cutter and the curve P1P2 intersect at
point D, and we can obtain

tan α =
y f

x f
(19)

where α is the intersection angle between the coordinate axis Xf and line OfD; (xf, yf) are
the coordinates of point D in coordinate system Sf.

According to gear meshing theory, it can be known that the tangent at the point D of
the rack-cutter profile must be perpendicular to OfD, and we can obtain

dyc1

dxc1
= − cot α (20)

where (xc1, yc1) are the coordinates of point D in coordinate system Sc1.
Then, Equation (21) can be obtained from Equations (19) and (20):

dxc1 = −
y f

x f
dyc1 (21)

Meanwhile, since the y-axis coordinate of point D in coordinate system Sf is equal to
the y-axis coordinate in coordinate system Sc1, Equation (22) is obtained:

dxc1 = −
y f

x f
dy f (22)

Thus, the tooth profile of the rack-cutter is determined based on the path of contact
via Equation (23): {

xc1 =
∫ (
− y f

x f

)
dy f + ∆

yc1 = y f
(23)

where ∆ is the integral constant, which can be determined based on the starting position of
the rack-cutter.

Referring back to Equation (1), Equation (23) can be rewritten as follows:{
xc1(ut) =

∫ ut
0

(
− y f (ut)

x f (ut)

)
y′f (ut)dut + ∆

yc1(ut) = y f (ut)
(24)

According to the above method, the tooth profile of the rack-cutter for the pinion (one
half of the gear pair) can be obtained. The tooth profile of the rack-cutter for the gear (the
other half of the gear pair) can be determined based on the tooth profile of the rack-cutter
for the pinion via Equation (25):{

xc2(ut) = cos π · xc1(ut)+ sin π · yc1(ut)

yc2(ut) = − sin π · xc1(ut)+ cos π · yc1(ut)
(25)

2.4. Design of Tooth Profiles Based on Parabolic Path of Contact

As shown in Figure 4, the path of contact at the first quadrant of gears is predesigned
as a parabolic curve via Equation (26):{

x f = 2p1t
y f = 2p1t2 p1 > 0, t ≥ 0 (26)

where the vertex of the parabolic curve is at Of (0, 0) and the focus is at the point F (0, p1/2),
and t is the parameter of the parabolic curve.
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Figure 4. Parabolic path of contact at the first quadrant.

Connecting Of with the moving point M on the path of contact, and defining the angle
between Of M and the Xf-axis as α, Equation (26) can be expressed as:{

x f = 2p1 cot α

y f = 2p1(cot α)2 0 < α < π
2 (27)

If α = 0, the following relationship exists for Equation (27):{
x f = 0
y f = 0

(28)

It is assumed that the parameter r′ is a dimensionless parameter, and it is defined as r′

= p1/2 = k1r2. Then, Equation (28) can be obtained:

k1 =
p1

2r2
(29)

In Figure 4, according to the geometric relation of triangle OfMF, we can obtain

O f M
sin(ut)

=
MF

sin
(

π
2 − α

) (30)

where MF represents the distance between the focus of the parabolic curve and the moving
point M, and O f M represents the distance between the vertex Of of the parabolic curve and
the point M. MF and O f M have the following relationships with the parabola, respectively:

MF = y f +
p1

2
(31)

O f M =

√
(x f )

2 +
(

y f

)2
(32)

Incorporating Equations (27), (31), and (32) into Equation (30), the relationship between
the parameters ut and α can be obtained:

cot α =
1
2

√
sin(ut)

1− sin(ut)
(33)
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Substituting Equation (33) into Equation (27) gives the parabolic curve equation at the
first quadrant using ut as the parameter:x f = p1

√
sin(ut)

1−sin(ut)

y f = p1 sin(ut)
2[1−sin(ut)]

(34)

where the range of ut can be defined as 0 < ut < π.
Similarly, as shown in Figure 5, the path of contact at the third quadrant of the new

gears can be expressed as: x f = −p2

√
sin(ut)

1−sin(ut)

y f = − p2 sin(ut)
2[1−sin(ut)]

(35)

where the vertex of the parabola is at Of (0, 0) and the focus is at the point F (0, −p2/2).

Figure 5. Parabolic path of contact at the third quadrant.

It is assumed that the parameter r” is a dimensionless parameter, and it is defined as
r” = p2/2 = k2r1. Then, Equation (36) can be obtained:

k2 =
p2

2r1
(36)

Substituting Equations (5), (29), and (34) into Equation (18), the critical condition of
undercutting of the gear can be obtained as:

ut = sin−1
(

1− 2k1

1− k1

)
(37)

According to the theory of gear meshing, it is necessary to ensure that the contact
ratio of the gears is greater than 1 for a smooth transmission. When the moving point M is
located in the path of contact at the first quadrant, the angle β should be greater than the
angle corresponding to a quarter of a tooth of the gear, so the range of the parameter β can
be expressed as

π

2z2
< β ≤ ut (38)

As shown in Figure 4, according to the geometric relation of triangle O2MF, we
can obtain

MF
sin β

=
O2M

sin(π − ut)
(39)
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O2M =

√(
x f

)2
+
(

r2 − y f

)2
(40)

Substituting Equations (31), (34), and (40) into Equation (39), we have

β = sin−1

[
(1− 2k1)

√
k1(1− k1)

2k1(1− k1)

]
(41)

Substituting Equations (37) and (41) into Equation (38), we can obtain the range of k1
without undercutting:

sin
(

π

2z2

)
<

(1− 2k1)
√

k1(1− k1)

2k1(1− k1)
≤ 1− 2k1

1− k1
(42)

Similarly, substituting Equations (4), (35), and (36) into Equation (15), the critical
condition of undercutting of the pinion can be obtained as

ut = sin−1
(

1− 2k2

1− k2

)
(43)

The range of k2 without undercutting can be obtained via the same method:

sin
(

π

2z1

)
<

(1− 2k2)
√

k2(1− k2)

2k2(1− k2)
≤ 1− 2k2

1− k2
(44)

3. Error-Sensitivity Analysis and Tooth Modification

Errors are unavoidable in practical working conditions. Tooth modification has been
proved to be the most economical and effective technique to reduce the effect of errors. To
some extent, tooth modification is essential for gears. Therefore, the effects of errors and
tooth modification on the meshing performance of the presented novel gears need to be
comprehensively analyzed.

In this paper, the geometry of the shape of the tooth profile is determined by the
parameters of the curve of the contact path. Therefore, the tooth modification mainly refers
to the longitudinal modification of the tooth herein.

3.1. Three-Dimensional (3D) Grid Modeling of the Novel Gear with Tooth Modification

An accurate 3D model is the key to analyzing the meshing preference of gears. An
accurate 3D model of an unmodified gear is obtained based on the rack-cutter and the
motion relationship between the rack-cutter and the machined gear.

The simulation program for the gear generation process was written based on MAT-
LAB. The main steps of modeling were as follows:

(1) The coordinates of the instantaneous cutting points of the rack-cutter from entering
engagement to exiting engagement were solved by using gear meshing theory.

(2) The plane node coordinates of the tooth profiles on both sides of the tooth were
determined by rotating projection transformation.

(3) Similarly, the plane node coordinates of the gear tooth base can also be obtained by
rotating projection transformation.

(4) All the spatial joint coordinates of a gear tooth were calculated based on the plane
node coordinates using coordinate transformation along the longitudinal direction.

(5) The calculated node coordinate file was imported into ABAQUS to realize rapid 3D
modeling of the novel gear.

It should be noted that if the gear is helical, an additional rotation coordinate transfor-
mation is required in step (4) above.

After modeling of the unmodified gears is completed, modeling of the modified gears
can be carried out on the unmodified ones.
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As shown in Figure 6, the modified tooth is composed of an unmodified tooth and the
surface of the modified value. The surface of the modified value is obtained based on a 2D
modification curve designed for the longitudinal modification. The 2D modification curve
is composed of two second-order parabolic curves and a straight line, where y1 and y2 are
the maximum modification values; y3 is the unmodified length in the direction of tooth
width. Then, gridding is performed on the rotating projection surface of the unmodified
gear and the surface of the modified value. In Figure 6a, point P (x, y) is one node on the
grid of the tooth surface. In Figure 6b, the modified value δF of the node P (x, y) can be
determined based on the 2D modification curve. After that, the coordinates of the space
nodes of the unmodified gear are adjusted according to the modified values. Finally, the
calculated node coordinate file for the modified gear is imported into ABAQUS to realize
rapid 3D modeling.

Figure 6. Designation of tooth modification. (a) Gridding surface of the unmodified tooth; (b) Grid-
ding surface of the modified value.

The developed calculating program can realize the parameterized modeling of the
modified gear. The 3D grid model of the modified gear derived from this program is shown
in Figure 7. Based on the 3D grid model, the loaded-tooth contact analysis of the novel
gears can be carried out.

Figure 7. 3D grid model of the modified gears.

In the following finite element analysis, the Young’s modulus of the gear material is
2.01 × 105 MPa; the Poisson’s ratio is 0.29. No friction between contacting teeth is assumed.
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3.2. Error-Sensitivity Analysis

As shown in Figure 8, the misalignment error ∆γ is added to the rotating coordinate
system to analyze the effect of the errors on the performance of the given novel gears.
The coordinate system Sg is the coordinate system of the gear without misalignment error,
the coordinate system SF is the fixed coordinate system with misalignment error, and the
gears rotate around the coordinate axis Z2. The rotation matrices from systems Sg to SF for
misalignment error are represented in the following:

[L]g,F =

1 0 0
0 cos ∆γ − sin ∆γ
0 sin ∆γ cos ∆γ

 (45)

where [L]g,F is the coordinate transformation matrix from coordinate systems Sg to SF,
obtained via Equation (45).

Figure 8. Coordinate systems of meshing gears with misalignment error ∆γ.

4. Results

The proposed design method is verified via an example in Table 1. The performance
of the given novel non-involute gears is studied and compared with the involute gears. A
torque of 134 Nm is applied to the pinion. The engagement process from tooth contact to
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tooth leave is discretized, and the step is 1 degree. The 0◦ position is set at the position
where the gears engage at the pitch point.

Table 1. Design parameters of gears.

Design Parameter Novel Gears Involute Gears

Tooth number 17/29 17/29
Normal module (mm) 2.25 2.25

Face width (mm) 25 25
Addendum coefficient 1 1
Dedendum coefficient 1.25 1.25

Root radius (mm) 1 1
Contact ratio 1.93 1.58

k1 0.32 /
k2 0.32 /

4.1. Design of the Novel Gears

Based on the parameters of the novel gears in Table 1, it can be obtained that the
ranges of parameters k1 and k2 without undercutting are 0.2 ≤ k1 < 0.473 and 0.2 ≤ k2 <
0.454, respectively. To study the effect of the parabolic parameters of the contact path on
the tooth profile, some effective values of k1 and k2 are used to design the novel gears.

As shown in Figure 9, the path of contact is designed with different parameters, and
the corresponding tooth profiles are given in Figures 10 and 11, respectively. Figure 10
shows the effect of parameter k1 on the tooth profile of the novel gears. It can be seen
that the tooth profiles of the addendum of the pinion and the dedendum of the gear are
determined by the path of contact located in the first quadrant. The tooth thickness of the
addendum of the pinion increases with the increase in the parabolic coefficient k1 at the
first quadrant; at the same time, the gear’s dedendum tooth thickness decreases with the
increase of the coefficient k1. Figure 11 gives the effect of parameter k2 on the tooth profile
of the novel gears. It can be seen that the tooth profiles of the dedendum of the pinion
and the addendum of the gear are determined by the path of contact located in the third
quadrant. As the parabolic coefficient k2 increases, the tooth thickness of the dedendum
of the pinion decreases, while the tooth thickness of the addendum of the gear shows the
opposite trend.

Figure 9. Designation of the parabolic path of contact of the novel gears.
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Figure 10. Effect of parabolic coefficient k1 on the tooth profile of the novel gears. (a) Tooth profile of
the pinion; (b) Tooth profile of the gear.

Figure 11. Effect of parabolic coefficient k2 on the tooth profile of the novel gears. (a) Tooth profile of
the pinion; (b) Tooth profile of the gear.

Figure 12 shows the tooth profile of the rack-cutters of the novel pinion and gear. It can
be seen that the rack-cutters for the pinion and the gear are different. The rack-cutters of
the pinion and the gear can be embedded together. The addendum shape of the rack-cutter
of the pinion is the same as the dedendum of the rack-cutter of the gear. Likewise, the
dedendum shape of the rack-cutter of the pinion is the same as the addendum of the
rack-cutter of the gear.

Figure 12. The tooth profile of the rack-cutters of the novel pinion and gear, k1 = k2 = 0.32.
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4.2. Loaded-Tooth Contact Analysis of the Novel Gears
4.2.1. Verification of Finite Element Calculation Accuracy

Before the following finite element analysis, the accuracy of the finite element calcula-
tion results is verified by comparison with the classic Hertz formula calculation results.

A 3D grid model of the standard involute gears was used in the verification process
herein. In this paper, the grid setting of the novel gear is the same as that of the involute
gear. In the loaded-tooth contact analysis, the constraint conditions and the loads of
the novel gear are also the same as those of the involute gear. Therefore, if the finite
element calculation accuracy of the involute gear is sufficient, the new gear can also meet
the requirements.

The accuracy of the finite element calculation was evaluated by comparing the contact
stress at the pitch circle. The CPRESS stress calculated by finite element analysis was
1351.33 MPa, and the contact stress calculated by Hertz contact theory was 1427.49 MPa.
The error between the finite element analysis and the theoretical calculation is 5.34%.

4.2.2. Load-Carrying Capacity Verification of the Novel Gears

In order to verify the load-carrying capacity of the presented novel gears, Figure 13
gives the comparison of their stress with that of the involute gears. It can be seen from
Figure 13 that both the in-contact stress and bending stress of the novel gears are lesser
than those of the involute gears. Moreover, it can be found that the maximum contact stress
and the bending stress of the involute gears occur near the middle of the tooth surface; the
maximum bending stress of the novel gears appears at the edge where the tooth is about
to leave engagement. As shown in Table 2, the values of the maximum stress of the novel
gears and the involute gears are given. Compared with the involute gears, the maximum
contact stress is reduced by 16.10%, the maximum bending compressive stress by 6.75%,
and the maximum bending tensile stress by 8.49%.

Figure 13. Comparison of bearing capacity between novel gears and involute gears. (a) Contact
stress; (b) Bending compressive stress; (c) Bending tensile stress.

Table 2. Comparison of maximum stress between novel gears and involute gears (MPa).

Gears Contact Stress
σc

Bending
Compressive

Stress σbc

Bending Tensile
Stress σbt

Involute gears 510.65 206.39 165.65
Novel gears

Decrease
428.41
16.10%

192.45
6.75%

151.59
8.49%
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4.2.3. Tooth Modification of the Novel Gears

It is well-known that errors in assembly and manufacturing are unavoidable in actual
working conditions. Tooth modification has been proved to be the most economical and
effective technique to reduce the influence of errors. Therefore, a comprehensive analysis
of the influence of tooth modification on the meshing performance of the novel gears is
given below, and only the pinion is modified.

In Figure 6, the parameters of tooth modification are given. y1 and y2 are the maximum
modification values of tooth width at both ends; y3 is the unmodified length in the direction
of tooth width. In this section, six cases of tooth modification are designed to study the
effect of tooth modification on the stress of the novel gears.

Tooth modification first changes the tooth surface load distribution, and then causes a
change in stress. In order to study the influence of tooth modification on the tooth surface
load distribution, Figure 14 gives the tooth surface load distribution of the novel gears at
the pitch circle position. For the unmodified gear, the load on both ends of the tooth side
is large due to the edge effect. For the modified example, it can be seen from Figure 14a
that the load is concentrated in the middle of the tooth surface due to the tooth surface
modification, which is beneficial to the gear transmission. However, it can also be found
that with the increase in the tooth modification, the degree of load accumulation gradually
increases, which may lead to local stress concentration and even reduce bearing capacity.
In Figure 14b, y3 is set to 8 mm for comparison with Figure 14a. It can be seen that the
change in y3 reduces the degree of load accumulation. Therefore, in practical application,
the tooth modification parameters must be carefully designed. To observe the influence
of tooth modification directly, Figure 15 demonstrates the contour map of the von Mises
stresses of the unmodified novel gears and modified novel gears meshing at pitch point.

Figure 14. Tooth surface load distribution of the novel gears at the pitch circle position. (a) Parameter
of tooth modification y3 = 0; (b) Parameter of tooth modification y3 = 8 mm.
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Figure 15. Comparison of tooth surface load distribution at the pitch circle position. (a) Unmodified;
(b) Modified values y1 = y2 = 8 µm and y3 = 0; (c) Modified values y1 = y2 = 8 µm and y3 = 8 mm.

In order to further study the influence of tooth modification on the bearing capacity
of the novel gears, Figure 16 shows the comparison of the stress of the novel gears with
different values of tooth modification. As can be seen from Figure 16a,b, the contact stress
of the novel gears increases with the increase in tooth modification value, because the load
on the tooth surface gradually transfers from both sides of the tooth surface to the middle
area of the tooth surface with the increase in the tooth modification value. It can also the
observed that the position of maximum contact stress is approximately at the pitch circle
position. As shown in Table 3, when y3 is 0, y1 and y2 are 4 µm, and the maximum contact
stress is 448.62 MPa; when y3 remains unchanged and y1 and y2 increase to 12 µm, the
maximum stress increases to 529.6 MPa, and the increase percentage is 18.05%. When y1
and y2 remain unchanged, equal to 8 µm, and y3 increases from 0 to 8 mm, the contact
stress decreases by 1.32%.
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Figure 16. Comparison of stress of novel gears with different values of tooth modification. (a) Contact
stress, y3 = 0; (b) Contact stress, y3 = 8 mm; (c) Bending compressive stress, y3 = 0; (d) Bending
compressive stress, y3 = 8 mm; (e) Bending tensile stress, y3 = 0; (f) Bending tensile stress, y3 = 8 mm.

Figure 16c–f give the variations of the bending compressive stress and the bending
tensile stress with the tooth modification value, respectively. It can be seen that the variation
trend of the bending compressive stress and the bending tensile stress with the rotation of
the pinion are basically the same, and the maximum stress occurs in the area where the
tooth is about to exit the mesh. As shown in Table 3, when y3 remains unchanged, equal to
0, and y1 and y2 increase from 4 µm to 12 µm, the maximum bending compressive stress
and maximum bending tensile stress increase by 12.19% and 11.43%, respectively; when y1
and y2 remain unchanged, equal to 8 µm, and y3 increases from 0 to 8 mm, the maximum
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bending compressive stress and maximum bending tensile stress decrease by 2.87% and
2.32%, respectively.

Table 3. Maximum stress of novel gears with different modified values (MPa).

Modified Value Contact Stress
σc

Bending Compressive
Stress σbc

Bending Tensile
Stress σbty1/µm y2/µm y3/mm

0 0 0 428.41 192.45 151.59
4 4 0 448.62 194.19 158.44
8 8 0 479.87 206.09 167.54

12 12 0 529.60 217.86 176.55
4 4 8 438.81 191.27 156.53
8 8 8 473.53 200.18 200.18

12 12 8 507.97 208.74 170.51

4.2.4. Error-Sensitivity Analysis of the Novel Gears

Errors such as assembly, manufacturing, and so on are unavoidable in actual practice.
Therefore, in this section, the error sensitivity of the novel gears is carried out and compared
with involute gears.

In this section, the parameters of tooth modification yi (i = 1, 2, and 3) of the novel
gears and the involute gears are 8 µm, 8 µm, and 8 mm, respectively.

Figure 17 illustrates the tooth surface load distribution of the novel gears and the
involute gears with and without tooth modification at the pitch circle position. It can
be seen from Figure 17 that the load of the gears transfers rapidly from one side to the
other with the increase in misalignment error, and this is extremely detrimental to the
gear transmission. Comparing the conditions before and after tooth modification, it can be
seen that the tooth surface load distribution has been significantly improved after tooth
modification. Moreover, it can be observed that the tooth surface load distribution of the
given novel gears is significantly better than that of the involute gears, whether modified
or not. In order to visually observe the effect of the misalignment errors and the tooth
modification on tooth surface load distribution, Figure 18 gives the contour map of the von
Mises stresses of the involute gears and the novel gears when the misalignment error is
equal to 3′. The contact position of both gear pairs is at the pitch point.

Figure 17. Comparison of tooth surface load distribution between novel gears and involute gears
with different misalignment errors. (a) Unmodified involute gears; (b) Unmodified novel gears;
(c) Modified involute gears; (d) Modified novel gears.
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Figure 18. Comparison of tooth surface load distribution between novel gears and involute gears
at the pitch circle position, ∆γ = 3′. (a) Unmodified involute gear; (b) Unmodified novel gear;
(c) Modified involute gear; (d) Modified novel gear.

In the following, the stresses of the unmodified and modified novel gears with different
misalignment errors are calculated and compared with the involute gears with the same
modified value. Figure 19 shows the comparison of contact stress between novel gears
and involute gears with different misalignment errors. Table 4 gives the maximum contact
stress of the unmodified gears. When the misalignment error is 0, the maximum contact
stresses of the unmodified involute gears and the novel gears are 510.65 and 428.41 MPa,
respectively; when the misalignment error increases to 3′, the maximum contact stress of
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the unmodified involute gears is 800.69 MPa and the unmodified novel gears is 745.41 MPa.
Table 5 shows the maximum contact stress of the modified gears. When the misalignment
error is 0, the maximum contact stresses of the modified involute gears and the novel gears
are 531.94 and 473.53 MPa, respectively; when the misalignment error increases to 3′, the
maximum contact stress of the modified involute gears is 647.75 MPa and the unmodified
novel gears is 599.72 MPa. Whether modified or not, the contact stress of the novel gears is
less than that of the involute gears.

Figure 19. Comparison of contact stress between novel gears and involute gears with different
misalignment errors. (a) Unmodified involute gears; (b) Unmodified novel gears; (c) Modified
involute gears; (d) Modified novel gears.

Table 4. Comparison of maximum stress between unmodified novel gears and unmodified involute
gears with different misalignment errors (MPa).

Gears Condition Contact Stress
σc

Bending
Compressive

stress σbc

Bending Tensile
Stress σbt

Involute
gears

∆γ = 0′ 510.65 206.39 165.65
∆γ = 1′ 606.65 238.74 191.73
∆γ = 2′ 703.67 272.88 217.91
∆γ = 3′ 800.69 307.39 244.06

Novel
gears

∆γ = 0′ 428.41 192.45 151.59
∆γ = 1′ 533.78 225.32 174.97
∆γ = 2′ 639.50 258.18 198.84
∆γ = 3′ 745.41 291.15 227.04
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Table 5. Comparison of maximum stress between modified novel gears and modified involute gears
with different misalignment errors (MPa).

Gears Condition Contact Stress
σc

Bending
Compressive

stress σbc

Bending Tensile
Stress σbt

Involute
gears

∆γ = 0′ 531.94 216.60 178.04
∆γ = 1′ 564.92 227.21 185.37
∆γ = 2′ 604.31 246.41 199.69
∆γ = 3′ 647.75 275.36 220.69

Novel
gears

∆γ = 0′ 473.53 200.18 163.66
∆γ = 1′ 510.99 209.24 171.05
∆γ = 2′ 553.01 230.36 185.52
∆γ = 3′ 599.72 259.56 204.01

Figure 20 gives the variations in the bending compressive stress of the presented novel
gears with the misalignment error, compared with that of the involute gears. It can be seen
from the figures that the misalignment error has a great influence on bending compressive
stress; the bending compressive stress of the novel gears and the involute gears gradually
increases with the increase in the misalignment error. Moreover, similar to the results for
contact stress in Figure 19, the bending compressive stress of the novel gears in much less
than that of the involute gears, whether modified or not. For the unmodified gears, the
bending compressive stress of the novel gears is 5.62%, 5.38%, and 5.28% less than that of
the involute gears at the misalignment errors of 1′, 2′, and 3′, respectively; for the modified
gears, the bending compressive stress of the novel gears is 7.91%, 6.51%, and 5.74% less than
that of the involute gears at the misalignment errors of 1′, 2′ and 3′, respectively. Figure 21
demonstrates the variations in the bending tensile stress of the presented novel gears and
the involute gears with the misalignment errors. Similarly, the bending tensile stress of the
given novel gears is less than that of the involute gears. When the misalignment error is
equal to 3′, for the unmodified gears, the stress of the novel gears is 6.97% less than the
involute one; for the modified gears, the stress of the novel gears is 7.42% less.

Figure 20. Cont.
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Figure 20. Comparison of bending compressive stress between novel gears and involute gears
with different misalignment errors. (a) Unmodified involute gears; (b) Unmodified novel gears;
(c) Modified involute gears; (d) Modified novel gears.

Figure 21. Comparison of bending tensile stress between novel gears and involute gears with different
misalignment errors. (a) Unmodified involute gears; (b) Unmodified novel gears; (c) Modified
involute gears; (d) Modified novel gears.
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5. Conclusions

In this paper, novel non-involute cylindrical gears based on a parabolic path of contact
were presented. From the present study, the following conclusions are drawn:

(1) Compared with the involute gear, the tooth contact stress of the presented novel
gear is reduced by 16.10%. The presented novel gear is helpful in reducing tooth
surface wear.

(2) The presented novel gear has higher load capacity than the involute gear. Whether it
is modified or not, with or without misalignment error, the calculated stress of the
presented novel gear is lower than that of the involute gear.

(3) Tooth modification has a great influence on the performance of the novel gear. When
the misalignment error is 3′, after tooth modification, the contact stress, bending
compressive stress, and bending tensile stress of the novel gear are reduced by 19.54%,
10.85%, and 10.14%, respectively.

(4) Change in the design parameters leads to a change in the tooth profile of the presented
novel gears and the change of the dedicated rack-cutters. Considering the processing
problem, the cost of the presented novel gear will be higher than for an involute gear.

(5) Small-batch production of the presented novel gears can be realized based on the
dedicated rack-cutter. The presented novel gears processed by the same type of
dedicated rack-cutter can be interchanged.

(6) The presented novel gear in this paper is not mature in some respects, but it has great
advantages over the involute gear in others, especially high contact strength. The
presented gear has potential application prospects in high-power roadheaders and
tunnelling machines.
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Nomenclature

ut parameter of the predesigned line of contact path
ri the pitch circle radius of the pinion and gear (i = 1, 2)
φi rotation angle of pinion and gear (i = 1, 2)
m12 gear transmission ratio
Ni tooth number of pinion and gear (i = 1, 2)
⇀
r i,

⇀
n i position vector and unit normal vector of surface (i = 1, 2)

Si coordinate system i (i = 1, 2, f, p, g)
[L]i,j coordinate transmission matrix (from Sj to Si)
⇀
v ri sliding velocity of contact point on tooth profile of pinion and gear
k1, k2 parabolic coefficients
y1, y2, y3 parameters of tooth longitudinal modification
δF modified value of the grid node
∆γ misalignment error
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σc maximum contact stress
σbc maximum bending compressive stress
σbt maximum bending tensile stress
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