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Abstract: Large-scale deep learning models have achieved impressive results on a variety of tasks;
however, their deployment on edge or mobile devices is still a challenge due to the limited available
memory and computational capability. Knowledge distillation is an effective model compression
technique, which can boost the performance of a lightweight student network by transferring the
knowledge from a more complex model or an ensemble of models. Due to its reduced size, this
lightweight model is more suitable for deployment on edge devices. In this paper, we introduce
an online knowledge distillation framework, which relies on an original attention mechanism to
effectively combine the predictions of a cohort of lightweight (student) networks into a powerful
ensemble, and use this as a distillation signal. The proposed aggregation strategy uses the predictions
of the individual students as well as ground truth data to determine a set of weights needed for
ensembling these predictions. This mechanism is solely used during system training. When testing
or at inference time, a single, lightweight student is extracted and used. The extensive experiments
we performed on several image classification benchmarks, both by training models from scratch (on
CIFAR-10, CIFAR-100, and Tiny ImageNet datasets) and using transfer learning (on Oxford Pets and
Oxford Flowers datasets), showed that the proposed framework always leads to an improvement
in the accuracy of knowledge-distilled students and demonstrates the effectiveness of the proposed
solution. Moreover, in the case of ResNet architecture, we observed that the knowledge-distilled
model achieves a higher accuracy than a deeper, individually trained ResNet model.

Keywords: online knowledge distillation; ensemble learning; attention aggregation; deep learning

MSC: 68T01; 68T07; 68T20; 68T30

1. Introduction

State-of-the-art machine learning models considerably improve the performance of var-
ious image understanding tasks, but they still fail to meet the non-functional requirements
necessary for deployment on real-world test scenarios (inference time, latency, performance,
throughput). Model compression techniques—such as quantization, pruning, low-rank
approximation, knowledge distillation, and neural architecture search—aim to control the
inference cost of neural networks [1].

There are numerous situations in which a trained neural network should be de-
ployed on mobile devices (take, for example, the concrete case of an object identifica-
tion/classification applet, which instead of sending the input to a dedicated server, runs
the classification task on the user’s device). In order to achieve this, knowledge distillation
serves the purpose of a compression tool. By means of KD, the “knowledge” of a large
trained model is transferred to a smaller student model. In this way, the lightweight
model’s accuracy on the test set is boosted, while preserving a low computational and
memory footprint.

Knowledge distillation (KD) [2] is an effective technique to boost the accuracy of a
lightweight network, by training it under the guidance of a more powerful network or an
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ensemble of networks. In the context of machine learning, knowledge typically refers to the
learned weights of a network. Various distillation techniques have been proposed, in which
the student mimics different knowledge sources of the teacher: the decision boundary
(logits), intermediate feature maps, or intra-data relationships.

The classical formulation of KD [2,3], offline KD, involves a pre-trained teacher model
with fixed weights when distilling knowledge to the student network. Despite its simplicity,
this method involves two training steps (one for the teacher and one for the student). A
large-capacity model might not always be available, and its training is resource consuming
and cumbersome. In addition, the knowledge transfer is one-way (from the teacher to the
student), as the teacher’s weights are “frozen” during the second training stage. Finally,
two-stage KD involves more parameters, which results in higher computational costs.

Online distillation frameworks [4–7] propose an alternative solution to the monolithic,
large-capacity teacher, and simplify the training process by simultaneously training several
peer students and learning from their combined predictions. One issue with online KD
is related to the strategy of building the ensemble based on the students’ individual
predictions. Simply aggregating the students’ logits affects the diversity of the student
peers and, therefore, limits the effectiveness of online learning [8].

In this paper, we propose an effective online knowledge distillation framework to
improve the generalization and learning capacity of a neural network architecture, while
avoiding the increase in inference cost. Our main contribution is an original aggregation
strategy inspired by attention mechanisms: The individual predictions of the peer student
networks are combined via an attention module that assigns a weight to each network, and
the ensemble is computed on the fly as the weighted average of the students’ predictions.
This ensemble is used throughout the training process as a distillation signal.

The remainder of this manuscript is organized as follows: In Section 2, we discuss
other knowledge distillation frameworks, and in Section 3, we present the details of the
proposed solution. Next, the experimental results and ablation studies are reported in
Sections 4 and 5. Finally, Section 6 concludes this work.

2. Related Work

Knowledge distillation [3] was proposed as an effective and elegant compression
technique to derive a lighter and faster network (student) from a more complex one
(teacher), by penalizing the difference between their logits. Later, this mechanism was
formalized by [2] to distill the “dark-knowledge” from the teacher to the student. The
authors noticed that a powerful and confident teacher does not bring more knowledge
than ground truth data, as its prediction tends to be a narrow probability distribution
with a single peak for the ground truth class. To alleviate this issue, the teacher’s logits
are “softened” by a temperature scaling factor of the softmax activation. In such a manner,
the lightweight network can infer what other classes were found similar by the teacher
network. More formally, this can be expressed as

ζτ(zi) =
ezi/τ

∑j ezj/τ
(1)

where τ is the temperature of the softmax function (equation from [2]). When τ is greater than
1, the small probabilities of the softmax function are increased and the output is “softened”.

In the classical setup, during training, a Kullback–Libeler divergence loss term is
employed to ensure that the student network mimics the teacher’s softened predictions.
Other methods proposed using the root-mean-square error loss [9] or distilling from hard-
labels [10].
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2.1. Online KD

Online KD frameworks constitute an effective substitute for classical two-stage offline
KD: instead of using a “good” pre-trained teacher network, a cohort of student peers are
trained and share their knowledge.

In Deep Mutual Learning (DML) [5], several peer student networks mutually exchange
information through a Kullback–Liebler loss term. In this framework, each student plays the
role of the teacher for all the other peers. The main drawback of DML is that the predictions
of the peer networks can conflict with each other (and even with the ground truth).

On-the-fly Native Ensemble (ONE) [4] is an online KD framework in which an ensem-
ble is formed by adding several auxiliary branches over some shared low-level network
layers. A gating component is used to assemble the knowledge of the branches into a
more powerful prediction, which is, in turn, distilled back to all branches. This method is
applicable only to branches with the same architecture, and the knowledge transfer occurs
only at the branch layers.

In [6], the authors proposed a method for collaborative learning based on a hierar-
chical multiple branch network. The classifier heads provide different views on the data
to improve generalization but also act as a regularization term. In addition, backpropa-
gation rescaling was used to avoid gradient explosion and to provide supervision for the
shared layers.

A similar approach to the proposed solution is the Knowledge Distillation method
via Collaborative Learning (KDCL) [7]; it trains a pool of students together and aggregates
their logits to generate soft targets for knowledge distillation. Four methods for assembling
the students’ predictions were proposed and compared. To ensure the diversity of the peers,
each network applied a different set of augmentations to the training data. [11] combined
online ensembling and network collaboration into a unified framework. The architecture
consists in a multi-branch network, where each branch denotes a peer. To improve the
quality of the KD, two teachers were computed online: the peer ensemble teacher, which
distills knowledge from an online high-capacity teacher to each peer, and the peer mean
teacher, which distills knowledge among peers. Random augmentations were performed
multiple times on peer inputs.

In [12], Feature Fusion Learning (FFL) was proposed as an online distillation frame-
work for intermediate feature maps. In this framework, several parallel sub-networks are
trained together and a fusion module combines their feature maps into a more meaningful
one. This is passed to a fused classifier, which performs the overall classification but also
delivers its knowledge to each sub-network.

2.2. Attention-Based KD

Inspired by the human visual system, which can effectively focus on salient visual
features of complex scenes, attention mechanisms have been integrated into various deep
learning architectures, especially in the field of computer vision. The main idea is to
redistribute the weights of a feature map according to a computed attention-mask.

SeNets [13] introduced an attention mechanism to perform a channel-wise feature
re-calibration process by computing a weight for each channel in the feature maps. Inspired
by this mechanism, in [14], the channel attention information is transferred from the teacher
to the student. Channel attention weights are computed for the teacher’s and student’s
intermediate feature maps, and the student is guided to learn the attention information of
each channel.

In [15], the authors proposed an attention-based feature distillation mechanism, in
which a meta-network employs a query-key attention component [16] to identify similarities
between the student’s and teacher’s feature map. The resulting attention vector is used to
transfer the teacher’s knowledge selectively to student features. The query-key attention
mechanism computes the similarities for all possible combinations between the teacher and
student networks; so, the training process is computationally expensive.
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Online Knowledge Distillation with Diverse peers (OKDDip) [17] applies a two-level
KD using multiple auxiliary peers and one group leader. In the first level, group-based
learning is achieved via an attention-based mechanism, while in the second level, the
knowledge in the ensemble of peers is transferred to the group leader (the model used
for inference). The main drawback of this method is that it involves a complex training
strategy and more parameters are used during training.

3. Proposed Approach

The following notation will be used throughout this manuscript: N is the number of
peer student networks trained within the proposed KD framework, C is the number of
categories for the classification problem, P̂k

i ∈ RC are the non-normalized logits of the ith

student network for the kth image, Gk is the one-hot encoding of the ground truth data
associated with the kth sample, σ(·) is the sigmoid function, ζ(·) is the softmax function, and
ReLU(·) is the Rectified Linear Unit activation function. Table 1 organizes these notations
in tabular form.

Table 1. Notations used throughout this manuscript.

Notation Meaning

N number of peer students
C number of categories for the classification problem

σ(·) sigmoid function
ζ(·) softmax function

ReLU(·) Rectified Linear Unit activation function
P̂k

i non-normalized logits of the ith student network for the kth sample
Gk one-hot encoding of the ground truth data of kth sample

3.1. Research Methodology

Online KD methods are preferred to classical offline KD frameworks because they
involve a simplified one-stage training process, in which all the models are treated as
students that gain extra knowledge from each other’s predictions or feature representations.
This study investigates the problem of online KD and, more specifically, how the students’
predictions can be combined to obtain an effective knowledge distillation signal. To this
end, we propose a framework in which several student models are trained simultane-
ously, and an original attention-based aggregation mechanism is employed to combine
their predictions into a powerful ensemble. The proposed method was tested on several
image classification benchmarks using various network architectures. To demonstrate the
effectiveness of the solution, we first train an individual model (“vanilla” model) on a clas-
sification benchmark using the classical cross-entropy loss function. Then, using the same
training schedule and data processing techniques, we train several models with the same
network architecture within the proposed KD framework. Throughout the training process,
the predictions of the models are combined using the proposed attention mechanism and
the “knowledge” of this ensemble guides the student models via an additional KD loss. For
testing, a single knowledge-distilled student is selected—the one with the highest accuracy
on the test set. To validate the proposed method, we compare the accuracy of the “vanilla”
student with the accuracy of the knowledge-distilled student. The experimental results
show that the accuracy of the knowledge-distilled model is always improved, regardless of
the network architecture, classification benchmark, or training setup (from scratch or by
using transfer learning).
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3.2. Solution Outline

The outline of the proposed solution is depicted in Figure 1. A group of lightweight
student peers is simultaneously trained into an online distillation framework and their
predictions are aggregated into a more powerful ensemble based on an attention mechanism
inspired by [18].
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Figure 1. Solution outline. The proposed framework simultaneously trains a group of student peers
and learns from the peers’ predictions. The red arrows indicate the loss terms applied to each output:
Ldata—the standard cross-entropy loss; LKD—the knowledge distillation loss.

The output of the attention aggregation module is a list of weights w (one for each
peer network), used to ensemble the predictions (Ê):

Ê =
∑N

i=1 wi · Pi

∑N
i=1 wi

. (2)

The ensemble output (Ê) will be used as a distillation signal throughout the train-
ing process.

All the models are trained in an end-to-end manner, with a multi-task loss function (L):

L = Ldata(G, Ê) +
N

∑
i=1

(Ldata(G, P̂i) + λLKD(Ê, P̂i, τ)) (3)

where λ is the distillation strength and τ is the softmax temperature. The students and the
ensemble’s output logits are trained with the standard cross-entropy loss [19] (Ldata):

Ldata(G, P̂) = − ∑
x∈χ

G(x) · log(ζ(P̂(x))). (4)

In addition, the ensemble’s output is used as a distillation signal for all of the students,
through a Kullback–Liebler [20] loss term (LKD):

LKD(G, P̂, τ) = ∑
x∈χ

τ2DKL(ζτ(Ê), ζτ(P̂)), (5)
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where τ is the softmax temperature parameter; Ê and P̂ are the ensemble’s and student-
softened predictions, respectively; and DKL is the Kullback–Liebler divergence between
two distributions p1 and p2 defined on the probability space χ:

DKL(p1, p2) = − ∑
x∈χ

p1(x) · log
p2(x)
p1(x)

. (6)

During the inference phase, a single knowledge-distilled student is used; in all the
experiments, we report the accuracy of the most accurate student.

3.3. Ensembling Strategy

The question that remains is as follows: “how could the individual predictions of the
student networks be combined into a more powerful ensemble used as a distillation signal?” To this
end, we extract three features based on the predictions of the students, which are then fed
to a channel attention mechanism (Figure 2) inspired by [18] to establish the ensembling
weights (Equation (2)).

The proposed solution is directly influenced by the attention mechanism proposed
in [18]; therefore, it will be described in detail. In [18], the authors proposed the Convolu-
tional Block Attention Module (CBAM), an effective attention mechanism that computes
attention maps across the channel and spatial dimensions of intermediate feature maps.
The channel attention mechanism is used to ensure the model’s focus on relevant features
in the input volume; it starts with two pooling operations to aggregate the spatial infor-
mation of each channel. These pooled features are then forwarded to a shared multi-layer
perceptron with a single hidden layer. The output layer uses sigmoid activation to compute
the weights for each channel in the input volume. Mathematically speaking, the channel
attention mechanism [18] determines the weights w as follows:

w = σ(MLP(GAP(F)) + MLP(GMP(F))) (7)

where MLP denotes the shared multi-layer perceptron, GAP(·) and GMP(·) represent
the Global Average and Max pooling operations, F is the input feature map, and σ is the
sigmoid activation function.

In the proposed method, the extracted features rely on global pooling operators and
are then fed to a multi-layer perceptron, summed together, and passed through a sigmoid
activation to determine the attention weights. The aggregation process is also guided by
the ground truth data, as it is solely used during training. In the beginning, the individual
predictions of the students are stacked into a single tensor Pk ∈ RN×C. The entire process is
detailed in Figure 2.

P – students’ logits

G – ground truth data

ensembling

weights+ σ

Shared 

MLP

max(P·G) GMP

P – max P·G

ReLu(-z) GAP

ReLu(−z)

−z + 𝜖
GAP

z

F1

F2

F3

P

P

G

G

Figure 2. Ensembling strategy. The logits of the peer networks are assembled by an attention
mechanism. P are the stacked logits of the sub-networks, and G represents the one-hot encoded
ground truth data. Three features (F1, F2, and F3) are computed and then passed through a multi-layer
perceptron to compute the assembling weights of the ensemble.

The first extracted feature F1
k ∈ RN is related to each student’s prediction confidence

for the ground truth class:
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F1
k = GMP(Pk · Gk) (8)

where GMP is the Global Maximum Pooling operator. By multiplying the predictions with
the one-hot encoding of ground truth, all except the ground truth class predictions will be
set to zero. After applying the global maximum pooling operator, each network will be
assigned either a strictly positive value (its confidence on the ground truth class) or a 0 (if
its confidence for the ground truth class is less than 0).

The other features account for the students’ predictions for the other classes. Let us
define zi

k = (Pi
k −max(Pi

k · G
i
k)) as difference between the ith student’s prediction and its

prediction for the ground truth class. If the value on position j in zi
k vector is positive, then

the student’s prediction for the jth class is larger than for the ground truth class (i.e., the
network is more confident on the jth class than on the actual class).

The second feature F2
k accounts for the magnitude of the differences between the

student’s confidence in the actual class versus the other classes. By applying the ReLu
activation function on the negative of zk, all the classes on which the classifier was more
confident than on the actual class will be assigned to zero, while for the other classes, the
difference between the classifier’s confidence in the actual class and the current class will
be preserved. More formally, the second feature F2

k can be expressed as

F2
k = GAP(ReLU(−zk)) (9)

where GMP is the Global Maximum Pooling operator and ReLU(·) is the Rectified Linear
Unit activation function.

Lastly, the third feature F3
k is related to the number of classes that have smaller

confidence than the actual class. Similarly to F2
k , we take the ReLU on the negative of zk but

we also divide the result by −zk. In this way, all classes with smaller confidence than the
ground truth class will be assigned to one.

F3
k = GAP

ReLU(−zk)

−zk + ε
(10)

where ε is a small constant to avoid division by zero.
Finally, as in [18], each of these descriptors (F1, F2, and F3) are forwarded through

a multi-layer perceptron with a single hidden layer. Then, to compute the combination
weights, the outputs are merged using element-wise summation and passed through a
sigmoid function. The ensemble’s output is computed as the weighted average of the
students’ logits and these weights.

4. Experimental Results

In this section, we report the results of a series of experiments conducted to evaluate
the proposed knowledge distillation framework on several image classification datasets.
We evaluate our method on CIFAR-10, CIFAR-100, and TinyImageNet image classifica-
tion benchmarks.

As the purpose of this study is to improve the accuracy of a lightweight model via
knowledge distillation, without increasing its number of parameters, we employed the
following evaluation strategy for a model. We first obtain the “vanilla” version of the
model by training independently and evaluate it using the accuracy metric. Then, we train
several models with the same architecture within the proposed knowledge distillation
framework. For inference/deployment, we select the knowledge-distilled student with the
highest accuracy on the test set and evaluate it. As we are interested in the improvement
obtained after knowledge distillation, the metric that we are interested in is the gain in
accuracy, which we compute as follows:

KD_Gain = ACCKD − ACCVanilla (11)
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where ACCKD is the accuracy of the knowledge-distilled student and ACCVanilla is the
accuracy of the “vanilla”, independently trained student.

The CIFAR-10, CIFAR-100, and TinyImageNet datasets are generic image classification
benchmarks and have balanced testing sets; so, we report only the accuracy metric.

4.1. CIFAR-10 and CIFAR-100 Datasets

CIFAR-10 and CIFAR-100 datasets [21] comprise 60000 RGB-images with 32 × 32 im-
age resolution, split into training (50,000 images) and validation (10,000 images) subsets.
The images of CIFAR-10 are divided into 10 classes, while in CIFAR-100 each image is
annotated with a “coarse” label (20 super-classes) and the actual class label (100 categories).

All the models were trained from scratch for 200 epochs, using a batch size of 32, with
Adam optimizer and different variants of the ResNet architecture [22]. The initial learning
rate was set to 10−3 and decayed by 0.1 at epochs 80, 140, and 170. In addition, a learning
rate reducer was applied to reduce the learning rate by a factor of

√
0.1 if learning stagnates

for 5 epochs. For experiments, N = 3 peer networks were trained, the softmax temperature
τ was set to 3, and the knowledge distillation strength was set to λ = 1. (See the ablation
studies in Section 5 for more information on varying this hyper-parameter.)

Table 2 reports the results on the CIFAR-10 and CIFAR-100 image classification bench-
marks. Vanilla refers to the accuracy of the independently trained student and KD to the
accuracy of the knowledge-distilled student. MFLOPS represents the number of mega
FLOPS (floating point operations per second) of the model, and Params. represents the
number of parameters of the model.

Table 2. Results on CIFAR-10 and CIFAR-100 datasets.

Dataset Model MFLOPS Params. Vanilla KD KD Gain

CIFAR-10 ResNet-20 82.298 274,442 92.1% 92.96% 0.86
ResNet-32 139.325 470,218 92.77% 93.88% 1.11

CIFAR-100
ResNet-20 82.309 280,292 67.54% 69.73% 2.19
ResNet-32 139.337 476,068 69.60% 72.76% 3.16
ResNet-50 224.877 769,732 71.35% 73.93% 2.58

The knowledge-distilled network always surpasses an independently trained network.
Moreover, the results show that the knowledge-distilled student has a higher accuracy
than the immediately larger ResNet version (i.e., a knowledge-distilled ResNet-20 student
surpasses an individually trained ResNet-32 network). As a detailed example, in the
CIFAR-100 setup, a 0.19 accuracy improvement (0.19 = 92.96− 92.77) is attained with a
41.12% decrease in parameters (from 470,218 to 274,442) and 40.93% decrease in the number
of FLOPS (from 139.325 MFLOPS to 82.298 MFLOPS).

4.2. TinyImageNet Dataset

TinyImageNet [23] is a subset of the ImageNet [24] benchmark with 200 class cate-
gories; each category has 200 training images, 50 validation images, and 50 test images. In
addition, the resolution of the images was reduced to 64 × 64.

For this setup, the networks were trained from scratch for 100 epochs with Adam
optimizer. The initial learning rate was set to 10−3 and decayed by 0.1 at epochs 30, 60, and
90. To prevent overfitting, several geometrical augmentation techniques (horizontal flips,
width and height shifts, rotations) as well as cutout [25] were applied to the training data.
Similar to the CIFAR training setup, the hyper-parameters of the framework were set to
N = 3, τ = 3 and λ = 1.

Table 3 reports the results on the TinyImageNet classification benchmark. A 1.43% gain
in accuracy is achieved when training the network in the proposed framework.
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Table 3. Results on TinyImageNet dataset.

Model MFLOPS Params. Vanilla KD KD Gain

ResNet-20 329.277 325,192 52.92% 54.35% 1.43%

4.3. Transfer Learning

Collecting a large-scale dataset required for training an accurate deep model is a
challenging and cumbersome task, if not impossible for some tasks for which a limited
amount of data are available. Nowadays, as a wide variety of pre-trained models are
publicly available, transfer learning is the norm. In this section, we experiment with transfer
learning on two classification benchmarks (Oxford Pets and Oxford Flowers datasets)
with a limited amount of training data and higher resolution images than CIFAR and
TinyImageNet datasets.

Oxford pets [26] contains 37 cat and dog breed categories, with approximately 200 im-
ages per class. The images feature large variations in size, lighting, and pose. Oxford
flowers [27] is a 102 flower category dataset, and each class contains between 40 and 258
images. Both datasets are already split into training, validation, and test sets. For this
experiment, we used the same splits as provided in the datasets. Oxford Flowers comprises
1020 training images, 1020 validation images, and 6149 test images, while Oxford Pets
comprises 3680 training images and 3699 test images.

For the transfer learning setup, all peer student networks share the same “frozen” back-
bone (weights remain fixed during training) initialized with ImageNet weights [24], and
only their final classification layers were trained. The weights of the architectures trained
on the ImageNet dataset were retrieved from the tensorflow machine learning framework
https://www.tensorflow.org/api_docs/python/tf/keras/applications, accessed on 25 Au-
gust 2022. The final trainable classification layers were initialized using Xavier uniform
initialization [28]. This process is depicted in Figure 3.
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Figure 3. Transfer learning setup: The peer student networks share the same “frozen” backbone,
initialized with ImageNet weights.

All the models were trained for 32 epochs, using RMSProp optimizer [29] with a
learning rate of 10−3. The data pre-processing step involved padding the images to square
shape by duplicating the edge features and then resizing them to 224 × 224. Table 4 reports
the results obtained when using transfer learning on Oxford Pets and Oxford Flowers
datasets. We experimented with several neural network architectures: DenseNet [30],
ResNet [22], NASNet [31], and MobileNet [32]. In this table, the column Vanilla indicates

https://www.tensorflow.org/api_docs/python/tf/keras/applications
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the accuracy of an independently trained, “vanilla” student, the column KD reports the
accuracy of a knowledge-distilled student, and KD Gain is the accuracy improvement
obtained when training a network in the proposed KD framework.

Table 4. Transfer learning results on Oxford Pets [26] and Oxford Flowers datasets [27].

Model Oxford Pets Oxford Flowers
Vanilla KD KD Gain Vanilla KD KD Gain

DenseNet 90.51 90.89 0.38 85.66 86.11 0.45
ResNet-50 87.66 88.87 1.21 85.31 85.51 0.20
NASNet 87.44 87.63 0.19 69.36 69.85 0.49

MobileNet 88.43 88.98 0.55 82.04 82.68 0.64

The knowledge-distilled student always surpasses the accuracy of the vanilla-trained
network; however, in this case, the improvement is lower than by training the networks
from scratch. This is expected, as only the final layer benefits from knowledge distillation
because the rest of the weights in the peer student networks are frozen.

4.4. Comparison with State of the Art

In this section, we provide a comparison of the proposed KD framework with similar
methods for the literature. It is noteworthy that a direct numerical comparison is not
always relevant, as other methods use different training schedules, optimizers, and model
architectures, all of which have an impact on the networks’ performance. However, as
we are dealing with the process of KD (in which we want to improve an individually
trained model by making it benefit from the knowledge of a more powerful model), we
are actually interested in the gain of the knowledge distillation process (i.e., difference
between the accuracy of the knowledge-distilled student and the individually trained
model). Consequently, when interpreting the results, we rely on the accuracy improvement
of a knowledge-distilled student over an independently trained student.

Table 5 compares the results obtained on CIFAR-10 classification benchmark.

Table 5. Comparison with state-of-the-art works on CIFAR-10 database using ResNet-32 [22] as
student network.(best gain represented in bold).

Method Vanilla KD KD Gain

ONE [4] 93.07% 94.01% 0.94%
CLCNN [6] 93.17% 94.14% 0.97%
OKDDip net. [17] 93.66% 94.38% 0.72%
OKDDip br. [17] 93.66% 94.42% 0.76%
PCL [11] 93.26% 94.33% 1.07%

Proposed 92.77% 93.88% 1.11%

The improvement of the knowledge-distilled students over the independently trained
student is marginal (around 1% for all the methods); however, these accuracy levels are
close to the reported human accuracy on CIFAR-10 [33].

When compared with other works, the proposed method achieves a higher accuracy
gain after knowledge distillation. As opposed to the proposed method, in ONE [4] and
CLCNN [6], the low-level layers of the student networks are shared, which could limit the
discriminative power and diversity of peer networks.

In Table 6, we compare the proposed solution with other knowledge distillation
frameworks on the CIFAR-100 dataset.
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Table 6. Comparison with state-of-the-art works for ResNet-32 architecture trained on CIFAR-
100 dataset.

Method Vanilla KD KD Gain

DML [5] 68.99% 71.19% 2.20%
KDCL [7] 71.28% 73.76% 2.48%
OKDDip net. [17] 71.24% 74.60% 3.36%
OKDDip br. [17] 71.24% 74.37% 3.13%
SAD [15] 75.32% 77.47% 2.15%
PCL [11] 71.28% 74.14% 2.86%

Proposed 69.6% 72.76% 3.16%

For a fair comparison, the results of KDCL [7] were retrieved from [11], in which the
KDCL framework was trained on three parallel peer networks.

The proposed method surpasses DML [5] by almost 0.96% accuracy gain. In DML, a
cohort of student networks is trained together with mutual distillation and the parameters
of the network are updated in a multi-stage setting. Furthermore, we surpass SAD [15], an
offline attention-based KD framework by over 1% accuracy gain. In SAD, a pre-trained
teacher network is used together with an attention module that learns the similarities
between the teacher’s and the student’s feature maps, and then applies them to control the
distillation intensities of all possible pairs.

Compared with other online KD frameworks [7,11,17], the proposed method attains
comparable if not better results. OKDDip [17] can be implemented either in a branch-based
setting (the low-level layers of the students are shared)—denoted br. in Table 6, or in
a network-based setting (each student is an individual network)—denoted net. in the
table. The OKDDip in-network approach slightly surpassed the proposed method by 0.2%;
however, it uses more parameters for training and a more complex training strategy.

5. Ablation Studies

In this section, we perform a series of ablation studies to investigate further properties
of the proposed method. All the experiments reported in this section use ResNet-20 [22] as
peer student networks trained on the CIFAR-100 dataset. For all studies—except Section 5.1,
where N varies from 2 to 5—the number of student networks is set to N = 3.

5.1. Number of Student Networks

In the proposed KD framework, the “teacher” is computed on the fly as the weighted
average of the N peer student networks. Table 7 reports the impact of this hyper-parameter
N over the accuracy of the knowledge-distilled student and the ensemble. The first row
from the table accounts for the accuracy of a vanilla-trained student.

Table 7. The effect of the number of students N on the distillation performance.(best results repre-
sented in bold).

N KD Ensemble KD Gain

1 67.54% N/A N/A
2 69.30% 72.28% 1.76
3 69.73% 73.32% 2.19
4 69.01% 73.61% 1.47
5 69.9% 73.69% 2.36

It should be noted that the ensemble is used only as a training component (the “teacher”
from which the knowledge is distilled) and cannot be used for inference on real-world
data because the ground truth data are required when computing the attention features
(Section 3.3). Nevertheless, we report its accuracy on the test data to analyze the relationship
between the teacher’s accuracy and the accuracy of the knowledge-distilled students.
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As the number of peer student networks N increases, the accuracy of the ensemble
increases as well. The accuracy of the knowledge-distilled students follows the trend, but
there is an exception for the case of N = 4 students, where we obtained a slightly lower
and out-of-order gain in accuracy than the other configurations. Still, in all cases, when
training a network in the proposed KD framework we obtain a higher accuracy (with an
accuracy boost ranging from 1.47 when N = 4 to 2.36 when N = 5) than by independently
training it. Continuously increasing the number of students would not continually improve
the performance of the best student as their knowledge absorption is not boundless.

5.2. Ensembling Features

The main contribution of this paper is the attention-based ensembling strategy that
is used to compute the distillation signal across the training process. To compute the
ensembling weights, we extracted three features based on the students’ logits and the
ground truth data (as described in Section 3.3). In Table 8, we analyze the impact of these
features on the accuracy of the knowledge-distilled student and the ensemble.

Table 8. Ensembling features.(best results represented in bold).

Features KD Ensemble KD Gain

Vanilla 67.54% N/A N/A
F1 67.89% 71.66% 0.35
F2 68.76% 72.74% 1.22
F3 67.29% 71.57% -0.25

F1F2 69.59% 75.5% 2.05
F1F3 68.34% 72.39% 0.80
F2F3 68.98% 72.64% 1.44

F1F2F3 69.73% 73.32% 2.19

The first column indicates which features are used by the attention mechanism when
computing the ensembling weights. Feature F2 has the most discriminative power. The
experiments show that the best results are obtained when using all the proposed features
F1, F2, and F3. The ensemble with the highest accuracy is the one obtained using features
(F1, F2) at 75.5%. However, this is not the setup yielding the best knowledge-distilled
student. Feature F3 used individually brings a negative gain. However, when combined
with either F1 or F2, it increases their respective induced gains behaving like a catalyst.
When used in combination (F1, F2, F3), F3 keeps its catalytic effect, helping this combination
of features achieve the largest improvement.

5.3. Distillation Strength

Finally, we analyze the impact of the knowledge distillation loss weight λ (Equation (3))
over the accuracy of the knowledge-distilled students (Table 9). The first row from the table
represents the accuracy of an independently trained student.

Table 9. Impact of the KD loss weight.(best results represented in bold).

λ KD KD Gain

Vanilla 67.54% N/A
0 68.01% 0.47

0.1 68.69% 1.15
1 69.73% 2.19
2 69.41% 1.87
3 68.94% 1.40

Even when the knowledge distillation weight is disabled (λ = 0), we observe a slight
improvement over the independently trained “vanilla” student; so, just by training a model
in the proposed framework without any KD loss (Equation (5)), a small boost in accuracy is
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observed. This is due to the regularizing effect of training the cohort of students together.
As we increase the value of λ towards 1, the accuracy of the knowledge-distilled students
increases; however, for larger values, the accuracy starts to decrease. Within the proposed
framework, the student networks are influenced by two loss functions (Equation (3)): the
classification loss Ldata and the knowledge distillation loss (Kullback–Liebler divergence)
LKD. As λ increases, the weight of the latter also increases, while the weight of the
classification loss remains the same. These results indicate that the classification loss still
plays an important role in the proposed framework and that the students benefit from
the ground truth data. Moreover, the classification loss is important because the teacher
ensemble relies on the predictions of the individual students.

As future work, we also plan to experiment by varying the λ parameter during the
training process.

6. Conclusions and Future Work

This work tackled the problem of knowledge distillation, a teacher–student training
setup in which a lightweight student network is guided by the knowledge of a teacher
network formed from lightweight students to improve its accuracy while maintaining a
low computational cost. As opposed to offline KD, where a pre-trained powerful teacher
is required, the proposed method simultaneously trains a group of student models and
learns from peers’ predictions, which are aggregated into an ensemble via an attention
mechanism. The attention mechanism is employed solely throughout the training process
and, for inference, a single lightweight network is selected and used. The main advantage
of this work is that by training a model in the proposed online KD framework, its accuracy
is boosted, without adding any additional parameters. In addition, the learning process is
end-to-end, and the teacher’s (ensemble) logits are computed on the fly using an original
attention-based mechanism.

The proposed method was evaluated on several image classification benchmarks,
both by training the networks from scratch and by transfer learning. We proved that the
proposed method can be generically used to improve the accuracy of image classification
problems. The results show that by training a network in this framework, the performance
of the knowledge-distilled student is consistently improved when compared with the
vanilla-trained networks. Moreover, for the ResNet architecture, a knowledge-distilled
student exceeds the performance of the immediately larger ResNet model trained on the
vanilla configuration. Our method was compared with several state-of-the-art works on
multiple image classification benchmarks, and the experimental results shows that it attains
comparable if not better results. Although the “gain” is not significant in absolute terms,
its magnitude is on par with the results from the state of the art. The main contribution is
to achieve better accuracy using the same network architectures by slightly changing the
training process. Thus, the same known network architectures will obtain better results
using KD techniques on the same datasets.

As for all online knowledge distillation methods, one limitation of the present study is
the exact mechanism that leads to the accuracy improvement of knowledge distillation over
other approaches has not been fully understood [8]. Moreover, the training process has a
higher computational resource footprint, as it involves optimizing several peer students
at once. However, as opposed to offline KD methods, the training process occurs in a
single step.

As future work, we plan to incorporate attention mechanisms to also distill knowledge
from intermediate feature maps and to extend the framework for other vision tasks.
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