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Abstract: In this paper, the dynamic response of piecewise linear systems with asymmetric damping
and stiffness for random excitation is studied. In order to approximate the statistical characteristics
for each significant output of piecewise linear system, a method based on transmissibility factors
is applied. A stochastic linear system with the same transmissibility factor is attached, and the
statistical parameters of the studied output corresponding to random excitation having rational
spectral densities are determined by solving the associated Lyapunov equation. Using the attached
linear systems for root mean square and for standard deviation of displacement, the shift of the
sprung mass average position in a dynamic regime, due to damping or stiffness asymmetry, can be
predicted with a good accuracy for stationary random input. The obtained results are compared with
those determined by the Gaussian equivalent linearization method and by the numerical integration
of asymmetric piecewise linear system equations. It is shown that the piecewise linear systems with
asymmetrical damping and stiffness characteristics can provide a better vibration isolation (lower
force transmissibility) than the linear system.
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1. Introduction

The limitations of vibration isolation systems with linear passive damping and stiffness
characteristics are well known. A high damping ratio is effective in the resonance frequency
range but increases the dynamic response of isolation system for higher frequencies. On the
other hand, lower damping ratios could be effective above the resonance range with the cost
of an unacceptable increase in the dynamic response within the resonance range. Piecewise
linear (PWL) systems with asymmetric damping and stiffness characteristics can provide a
lower transmissibility factor over the entire frequency range than linear systems.

Many approximate methods have been proposed for studying the vibration of systems
with PWL stiffness and damping characteristics [1–6]. The dynamic behavior of PWL
systems was studied in [7–9]. A piecewise linear aeroelastic system with and without
a tuned vibration absorber was investigated [10]. The experimental results show that
the introduction of the piecewise linear stiffness and damping significantly decreases the
response amplitude at the primary resonance [11]. The beneficial effect for ride comfort
of road vehicles, mainly due to the suspension damping asymmetry, which introduces
a downward shift in the mean position of the sprung mass in addition to the vibratory
response, has been studied [12–18]. The classical dynamics of the systems with both
the statistically uncertain piecewise constant drift and diffusion were extended in [19].
Asymmetric damping forces induce the equilibrium position of the isolated body to shift
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downward [20]. A nonlinear interval optimization of asymmetric damper parameters for a
racing car is proposed to improve road holding [21].

Various linearization methods have been developed for the analysis of nonlinear
systems [22–24]. A very useful property of piecewise linear systems is the independence
of their transmissibility factors with respect to the excitation amplitude [25,26]. These
factors could be defined as the ratios of root mean square (rms) or standard deviation (std)
of output for the same parameters of the harmonic input within the frequency range of
practical interest. Therefore, a first order linear differential system can be attached to the
considered piecewise linear system so that the first vector component of the attached system
has the same transmissibility factor as the chosen output of the nonlinear system. This
approach was employed to obtain approximate solutions of PWL systems with piecewise-
linear damping with variable friction for application to semi-active control of vibration [23]
and for the comparison of the on–off control strategies of vehicle suspensions [24].

In the present work, the Lyapunov equation for attached linear systems is used to
approximate the first and second order statistical moments of any significant output of
PWL systems with passive asymmetric damping and stiffness. In classical linearization
methods, the nonlinear system is replaced by a single equivalent linear system. In the
framework of the method used in the present paper, a set of attached linear systems is
employed to approximate the statistical characteristics of the PWL system output. Using
the attached linear systems for rms and std displacement, the shift of sprung mass average
position in dynamic regime, due to damping or stiffness asymmetry, can be predicted with
a good accuracy for stationary random input, as confirmed by the numerical results.

In Section 2, the asymmetrical piecewise characteristics are described. In Section 3, the
mathematical model of single degree of freedom (SDOF) vibration isolation system with
PWL characteristics is presented. In Section 4, the effect of asymmetry of damping and
restoring characteristics on the dynamic behavior of piecewise linear systems under sta-
tionary random excitation is illustrated. In Section 5, the Gaussian equivalent linearization
method for PWL systems is applied. In Section 6, the results obtained by the proposed
approach are compared with those given by the Gaussian equivalent linearization method.
In order to estimate the statistical characteristics for the output of asymmetric PWL systems,
the corresponding attached linear systems are determined in Section 7. In the last section,
the statistical characteristics of the simulated output with those calculated by solving Lya-
punov equation for corresponding attached linear system are compared. The relative errors
show the efficiency and applicability of this method for PWL systems.

2. Modeling the Asymmetrical Piecewise Characteristics

Figure 1 shows the plots of asymmetrical PWL stiffness in Figure 1a and damping
characteristics in Figure 1b, given by

Fs(x) =
{

k1x, x ≤ 0
k2x, x > 0

, Fd
( .
x
)
=

{
c1

.
x,

.
x ≤ 0

c2
.
x,

.
x > 0

(1)

where k1, k2 ≥ 0 are the stiffness coefficients and c1, c2 ≥ 0 are the damping coefficients
and x is the travel of vibration isolation system.

Total hysteretic force developed by vibration isolation system for imposed harmonic
motion x(t) = X sin ωt, where ω = 2π f , f is the frequency and X is the amplitude, is
Fh
(

x,
.
x
)
= Fs(x) + Fd

( .
x
)
. The time histories of hysteretic force Fh

(
x,

.
x
)
, stiffness force

Fs(x) and damping force Fd
( .
x
)

are illustrated in Figure 2, for parameters values shown in
Table 1.
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Figure 1. Asymmetrical PWL: (a) stiffness characteristics; (b) damping characteristics.

Figure 2. Time histories of forces developed by a vibration isolation system with asymmetric PWL.

Table 1. Values of parameters for hysteretic force.

k1 [KN/m] k2 [KN/m] c1 [KNs/m] c2 [KNs/m] X [m] f [Hz]

1500 500 50 150 0.05 1

The loops portraying the variation of damping force Fd and total hysteretic force Fh
versus the imposed displacement x are shown in Figure 3.

Figure 3. The stiffness characteristic and hysteresis loops portraying the variation of damping force.
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The enclosed area by these loops represents Ed, the energy dissipated per cycle:

Ed =

2π
ω∫

0

Fd(
.
x)

.
xdt = 0.5πωX2(c1 + c2) (2)

Figure 4 depicts the schematic model of a device with asymmetrical damping and
stiffness characteristics.

Figure 4. Design principle of a device with PWL asymmetric damping and stiffness characteristics.

The metallic bellows, filled with hydraulic fluid, are welded at both ends, and, there-
fore, the fluid damper is leak proof. The asymmetry of damping force is controlled by the
openings of extension and compression valves. The dimensions of valve openings and
fluid viscosity must be assessed such that to have laminar flow within the range of damper
operating conditions. Since the bellows geometry is identical, there is no need for any
volume compensation system. The suspension springs with different stiffness are in the
unloaded condition (free length) when the isolation system is in the equilibrium position.
Each of them has only one end fixed on the device structure. Therefore, they work only as
compression springs for both extension and compression strokes. The bellows longitudinal
stiffness, being much smaller than the stiffness of springs, is neglected.

3. Mathematical Model of SDOF Vibration Isolation System with PWL Characteristics

Vibration isolation systems are widely used to reduce the dynamic forces transmitted
from the base input to sprung mass (Figure 5) or from the sprung mass to the system base
(Figure 6).

Figure 5. PWL system for mitigation the dynamic forces transmitted from the base input to the
sprung mass.
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Figure 6. PWL system for mitigation the dynamic forces transmitted from the sprung mass to the
system base.

The equation of motion for both vibration isolation systems, shown in Figures 5 and 6,
can be written as:

m
..
x + Fd

( .
x
)
+ Fs(x) = P0(t) (3)

where x = x1− x0 is the relative displacement of sprung mass, P0(t) = −m
..
x0 is the input of

system shown in Figure 5, x1 is the absolute displacement and x0 is the base displacement.
For the system depicted in Figure 6, x is the absolute displacement of sprung mass, relative
to its static equilibrium position, and P0(t) = F0(t) is the force applied to the sprung
mass. In both cases, x is the stroke (travel) of sprung mass suspension and will be called
displacement (disp). The main output of interest for vibration isolation systems are the
absolute accelerations of sprung mass

..
x1, for system shown in Figure 5, and

..
x, for system

shown in Figure 6. The absolute acceleration is a measure for mitigation of dynamic forces
transmitted through the sprung mass suspension. In the rest of the paper it will be called
acceleration and abbreviated as acc. The analytic expressions of asymmetric damping and
elastic characteristics Fd

( .
x
)

and Fs(x) can be written as

Fd
( .
x
)
= 0.5

[
c1
(
1− sgn

.
x
)
+ c2

(
1 + sgn

.
x
)] .

x,
Fs(x) = 0.5 [k1(1− sgnx) + k2(1 + sgnx)]x.

(4)

Introducing the notations

ω1 = 2π f1 =
√

k1
m , ω2 = 2π f2 =

√
k2
m , ζ1 = c1

2ω1m , ζ2 = c2
2ω2m

β = c2
c1

= ζ2 f2
ζ1 f1

, γ =
√

k2
k1

= f2
f1

fd
( .

x
)
=

Fd(
.
x)

m , fs(x) = Fs(x)
m and p0(t) = P0(t)

m ,

(5)

the equation of motion (3) becomes

..
x + fd

( .
x
)
+ fs(x) = p0(t) (6)

where
fd
( .

x
)
= ζ1ω1

[
(β+ 1)

.
x + (β− 1)

∣∣ .
x
∣∣ ],

fs(x) = 0.5ω2
1
[(

γ2 + 1
)

x +
(
γ2 − 1

)
|x|
]
.

(7)

From (2) and (5), one can see that asymmetry parameter β is the ratio of dissipated
energy per rebound

(
Ed2 = 0.5πωX2c2

)
and bound

(
Ed1 = 0.5πωX2c1

)
strokes for an

imposed harmonic motion.

4. The Effect of Asymmetry of Damping and Restoring Characteristics on the Dynamic
Behavior of Piecewise Linear Systems under Stationary Random Excitation

In general, the asymmetry of damping or stiffness characteristics leads to a drift of
sprung mass average position in dynamic regime, different from its static equilibrium
position. Nevertheless, by a suitable combination of the asymmetry parameters β and γ,
one can obtain outputs of PWL systems with almost no drift.
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Suppose that p0(t) is a stationary Gaussian random process with zero mean and standard
deviation σ0. If x(t) is the steady state stationary solution of Equation (6), with constant mean
value mx= E[x] then E

[ .
x
]

= E
[ ..
x
]

= 0. Therefore, by applying the average operator
corresponding to joint distribution of the output of Equation (6), mx is obtained as follows:

mx = −
m|x|

γ2 + 1

[(
γ2 − 1

)
+ 2(β− 1)ζ1

m| .
x|

ω1m|x|

]
(8)

where
m|x| = E[|x|] and m| .

x|= E
[∣∣ .

x
∣∣] (9)

The relation (8) shows that mx = 0 if γ = 1, β = 1; mx < 0 if γ > 1, β > 1 and mx > 0
if γ < 1, β < 1. It is worth noting that by assuming m| .

x|/ω1m|x| ≈ 1, for all case studies
considered in this work (including γ > 1, β < 1 or γ < 1, β > 1), the sign of mx could be
predicted by determining the sign of expression S(γ,β, ζ1) = −

[(
γ2 − 1

)
+ 2(β− 1)ζ1

]
,

without being necessary the numerical simulation values from (9).

5. Gaussian Equivalent Linearization Method of PWL Systems

The Gaussian equivalent linear system (LinEq) of system (6), where p0(t) is a stationary
Gaussian process, E[p0(t)] = 0 and E

[
p2

0(t)
]
= σ2

0 is written as

..
x + 2ζeωe

.
x +ω2

ex = p0(t) (10)

The joint probability density function of the Gaussian stationary solution of equivalent
linear system is

g
(
x,

.
x
)
= g1(x)g2

( .
x
)

g1(x) = 1√
2πσx

exp
[
− x2

2σ2
x

]
, g2
( .
x
)
= 1√

2πσ .
x

exp
[
−

.
x2

2σ2.
x

]
,

(11)

where σx = σx(ωe, ζe) and σ .
x = σ .

x(ωe, ζe) are the standard deviations for the solution
of Equation (10).

The variance of the acceleration
..
x1 = 2ζeωe

.
x +ω2

ex of the equivalent linear system is

σ2..
x1

= E
[ ..

x2
1

]
= 4ζ2

eω
2
eE
[ .

x2
]
+ω4

eE
[

x2
]
= ω2

e

[
4ζ2

eσ
2.
x +ω

2
eσ

2
x

]
(12)

Applying the linearization criteria,

εe(ωe) = E
[(

fs(x)−ω2
ex
)2
]
= min, ∂εe(ωe)

∂ωe
= 0

εd(ζe,ωe) = E
[(

fd
( .
x
)
− 2ζeωe

.
x
)2
]
= min , ∂εd(ζe,ωe)

∂ζe
= 0

(13)

the linear equivalent stiffness and damping coefficients are obtained using (6), (11) and (13):

ω2
e = E[x fs(x)]

E[x2]
=
ω2

1+ω
2
2

2 =
ω2

1(1+γ2)
2 ,

ζe =
E[

.
x fd(

.
x)]

2ωeE
[ .

x2
] = ζ1ω1+ζ2ω2

2ωe
= ζ1ω1(1+β)

2ωe
.

(14)

Using (14) one can write

fe = f1

√
1 + γ2

2
, ζe =

ζ1(1 + β)√
2(1 + γ2)

, fe = ωe/2π, f1 = ω1/2π (15)

In order to highlight the advantage of using the vibration isolation systems with
asymmetric PWL characteristics, the obtained results are compared with those of optimal
linear equivalent system.
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For given values of linear equivalent system ζe, fe and chosen values of asymmetry
parameters γ, β, relations (15) yield:

f1 = fe

√
2

1 + γ2 , f2 = γ f1, ζ1 =
ζe
√

2(1 + γ2)

1 + β
and ζ2 =

β

γ
ζ1 (16)

From (16) one can obtain the balance equation between the energy dissipated by
PWL asymmetric system and its linear equivalent system per cycle for same imposed
harmonic motion:

ζ1 f1 + ζ2 f2 = 2 feζe (17)

As one can see from previous relations, there are an infinite number of PWL asymmet-
ric systems having same linear equivalent system.

Following [27], the standard deviation of the stationary steady state acceleration of
sprung mass for stochastic linear system (10) with Gaussian white noise excitation p0(t)
and constant spectral density S0 is

σ ..
x1e =

√√√√√2S0

∞∫
0

A2..
x1e

(ω) dω =

√
πωeS0(1 + 4ζ2

e)

2ζe
, (18)

where A ..
x1e(ω) is the acceleration transmissibility factor of linear equivalent system:

A ..
x1e(ω) =

√
4ζ2

eω
2
eω

2 +ω4
e

ω4 + 2(2ζ2
e − 1)ω2

eω
2 +ω4

e
(19)

The optimum value of damping ratio ζe, which minimizes the std value of sprung
mass acceleration is ζe = 0.5, and its minimum value is σ ..

x1min =
√

2πωeS0. Taking
S0 = 1 m2s−3 andωe = 2π rad/s, the optimum std value of acceleration is σ ..

x1min
∼= 6.28 ms−2.

For numerical integration, the input is a limited bandwidth white noise, and std value of
acceleration is calculated as

σ ..
x1e
∼=

√√√√√2
ωmax∫
ωmin

A2..
x1e

(ω ; ζe, ωe)dω ∼= 6.21 ms−2, (20)

where 0.2 ≤ ω ≤ 128 and ω is measured in rad/s, which is a good approximation of
optimum value σ ..

x1min, calculated over the whole range of angular frequency [0, ∞). The
results obtained by the proposed approach will be compared with those obtained by the
Gaussian equivalent linearization method.

6. The Response of PWL Systems to Stationary Gaussian Random Input with Rational
Spectral Density (Shape Filtered White Noise)

According to [28], the covariance function and spectral density of stationary Gaussian
random input p0(t) are

C0(τ) = σ2
0e−a|τ| cos bτ, a > 0, b ≥ 0,

S0(ω) =
σ2

0
π

a(ω2+a2+b2)
ω4+2(a2−b2)ω2+(a2+b2)

2 ,
(21)

where σ2
0 =

∞∫
−∞

S0(ω)dω = 2
∞∫
0

S0(ω)dω . The above expression of S0(ω) can be viewed

as the spectral density of the Gaussian stationary random process p0(t), obtained as the
output of a second order shape filter to a stationary Gaussian white noise process z(t) with
E[z(t)]= 0, E[z(t)z(t + τ)] = 2πS0δ(τ), where δ(τ) is the Dirac delta function. In order to
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determine the equations of the second order shape filter, the spectral density (21) is written
under the form

S0(ω) =
|P(iω)|2

|Q(iω)|2
=

|b0(iω) + b1|2∣∣∣a0(iω)2 + a1(iω) + a2

∣∣∣2 , (22)

where b0 = σ0
√ a
π , b1 = σ0

√
a(a2+b2)
π , a0 = 1, a1 = 2a, a2 = a2 + b2.

The output u1(t) of the following first order differential system with the white noise
excitation z(t) is a Gaussian stationary random process with spectral density S0(ω):

.
u = Au + gz, (23)

where

A =

[
0 1
−a2 −a1

]
, u =

[
u1
u2

]
, g =

[
g1
g2

]
g1 = σ0

√ a
π , g2 = σ0

√ a
π

(√
a2 + b2 − 2a

)
and p0(t) = u1(t).

(24)

In order to study the behavior of asymmetric PWL systems excited by stationary ran-
dom input with rational spectral density, a linear system of first order stochastic equations
is assessed such as the first component of its solution vector has the same transmissibility
factor as the chosen output of the considered piecewise linear system [23]. The statistical
parameters of obtained stochastic differential equations are determined by solving the
associated Lyapunov equation.

Since the mean value of PWL acceleration response system has zero mean, the trans-
missibility factors corresponding to standard deviation and root mean square values
are identical.

The discrete values of transmissibility factor corresponding to standard deviation of
acceleration

..
x1(t) is defined as:

Ã ..
x1
(ωi) =

σ ..
x1
(ωi)

σp0i

=

√
2σ ..

x1
(ωi)

P0
, i = 1, N (25)

These values are obtained by numerical integration of Equation (6), using Matlab
Simulink, for harmonic inputs with constant amplitude and different frequencies in the
twelfth octave band:

p0i(t) = P0 sinωit, ωi = 2π fi, f1 = 0.3 Hz, fN = 20.05 Hz, fi = 2
i−1
12 f1, i = 1, N (26)

where P0 = 1 m/s2, N =
[

log( fN / f1)
log( f2/ f1)

]
+ 2 = 114.

It should be mentioned that the transmissibility factors of PWL systems, with asym-
metry type (affine) [29], considered in this paper, do not depend on the amplitude P0 of
the applied harmonic input with variable frequency, as long as they are computed for the
stationary regime. The numerical values Ã ..

x1
(ωi), i = 1, N, can be fitted using the Least

Squares Method, by analytical expressions having the form

A ..
x1
(ω) =

√
P1ω2 + P2

ω4 + Q1ω2 + Q2
. (27)

The transmissibility factor A ..
x1
(ω) is written as:

A ..
x1
(ω) =

∣∣∣∣∣ b0(iω) + b1

(iω)2 + a1(iω) + a2

∣∣∣∣∣ =
√

b2
0ω

2 + b2
1

ω4 +
(
a2

1 − 2a2
)
ω2 + a2

2
(28)
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From relations (27) and (28), the following nonlinear algebraic systems of equations
for unknown coefficients b0, b1, a1, a2, are obtained{

b2
0 = P1

b2
1 = P2

,
{

a2
1 − 2a2 = Q1

a2
2 = Q2

(29)

The attached linear system corresponding to transmissibility factor (28) can be written as

.
u = Au + cp0 , (30)

where

A =

[
0 1
−a2 −a1

]
, u =

[
u1
u2

]
, c =

[
c1
c2

]
,
{

c1 = b0
c2 = b1 − a1c1

(31)

The transmissibility factor A ..
x1
(ω) ∼= Aσu1

(ω) =
√

2σu1 /P0, where u1 is the first
component of the solution vector u. The system (30) is asymptotically stable if a1, a2 > 0.
Therefore, from the sets of real solutions of (29), one must select only the solutions that
fulfill these conditions.

In what follows, the study is carried out for several asymmetric PWL systems for
which the stochastic equivalent linear system is the optimal one. The parameters of PWL
systems, given in Table 2, were obtained by using relations (16).

Table 2. The parameters of PWL systems.

Case ζ 1 f1 [Hz] γ β ζ 2 f2 [Hz]

1 0.05 0.25 5.57 79 0.71 1.39
2 0.1 0.5 2.65 19 0.72 1.33
3 0.1 0.7 1.76 13.31 0.76 1.23
4 0.2 0.4 3.39 11.5 0.68 1.36
5 0.3 0.6 2.13 4.55 0.64 1.28
6 0.7 1.1 0.81 0.3 0.26 0.89

In Figure 7, the transmissibility factor Ã ..
x1
(ωi) obtained by numerical integration for

the asymmetric PWL systems from Table 2 is compared with transmissibility factor of their
stochastic equivalent linear system (ζ 1 = ζ2 = 0.5, γ = β = 1, f1 = f2 = 1 Hz).

Figure 7. The transmissibility factors for linear and asymmetric PWL systems.
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Table 3 presents the standard deviation values of the acceleration obtained by using a
similar relation to (20), for the transmissibility factors of asymmetric PWL systems shown
in Figure 7.

Table 3. The transmissibility factors of asymmetric PWL systems.

Case ζ1 f1 [Hz] ζ2 f2 [Hz] σ ..
x1

[m/s2]

1 0.05 0.25 0.71 1.39 4.52
2 0.1 0.5 0.72 1.33 4.98
3 0.1 0.7 0.76 1.23 5.35
4 0.2 0.4 0.68 1.36 4.71
5 0.3 0.6 0.64 1.28 5.12
6 0.7 1.1 0.26 0.89 5.97

The above results show that the piecewise linear systems with asymmetrical damping
and stiffness characteristics can provide a better vibration isolation (lower force transmissi-
bility) than the optimum equivalent linear system (σ ..

x1
= 6.21 [m/s2]).

7. Attached Linear System for Different Outputs of PWL Systems Excited by a Second
Order Shape Filtered White Noise

In order to estimate the statistical characteristics for the output of asymmetric PWL
systems, the corresponding attached linear systems will be determined in the next sections.
The stochastic equations of attached linear system for the piecewise linear system (6), with
shape filtered white noise excitation, is obtained by combining Equations (23) and (30):

.
u = Au + gz, (32)

where

A =


0 1 c1 0
−a2 −a1 c2 0

0 0 0 1
0 0 −a4 −a3

 , u =


u1
u2
u3
u4

 , g =


0
0
g1
g2


u1(t) =

..
x1(t), u3(t) = p0(t)

a3 = 2a, a4 = a2 + b2,g1 = σ0
√ a
π , g2 = σ0

√ a
π

(√
a2 + b2 − 2a

)
(33)

The covariance matrix C =
(
cij
)
, cij = cji = lim

t→∞
E
[
ui(t)uj(t)

]
, i, j = 1, 4 of the steady

state stationary solution of stochastic linear system (32) satisfies [30] the Lyapunov Equation:

AC + CAT + 2πS0ggT = 0 (34)

The standard deviation of the acceleration is estimated by σ ..
x1
∼= σu 1 where σu 1 =

√
c11.

The values of σ ..
x1

obtained by using Lyapunov equation will be compared with those
determined for linear equivalent system (10) where ζe = 0.5 andωe = 2π rad/s.

The values of transmissibility factors Ãxrms(ωi) = Ψx(ωi)
σp0i

=
√

2 Ψx(ωi)
P0

, i = 1, N ,

and Ãxstd(ωi) = σx(ωi)
σp0i

=
√

2σx(ωi)
P0

, i = 1, N corresponding to rms Ψx and std σx of

relative displacement x(t) are obtained by numerical integrations. These values can be
approximated by rational expressions having the form

Ax(ω) =

√
P1ω4 + P2ω2 + P3

ω6 + Q1ω4 + Q2ω2 + Q3
(35)

The transmissibility factor is written as
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Ax(ω) =

∣∣∣∣∣ b0(iω)2 + b1(iω) + b2

(iω)3 + a1(iω)2 + a2(iω) + a3

∣∣∣∣∣ =
√

b2
0ω

4 +
(
b2

1 − 2b0b2
)
ω2 + b2

2
ω6 +

(
a2

1 − 2a2
)
ω4 + (a2 − 2a1a3)ω2 + a2

3
(36)

From relations (35) and (36) one can obtain the following algebraic systems of equations
for unknown coefficients b0, b1, b2, a1, a2, a3:

b2
0 = P1

b2
1 − 2b0b2 = P2

b2
2 = P3

,


a2

1 − 2a2 = Q1
a2

2 − 2a1a3 = Q2
a2

3 = Q3

(37)

The equations of the attached linear system having the same transmissibility factor
(35) can be written as

.
u = Au + cp0 (38)

where

u1(t) = x(t),

A =

 0 1 0
0 0 1
−a3 −a2 −a1

 , u =

u1
u2
u3

 , c =

c1
c2
c3

,


c1 = b0
c2 = b1 − a1c1
c3 = b2 − a2c1 − a1c2

(39)

The system (38) is asymptotically stable if ai > 0, for i = 1, 2, 3. The covariance
function and spectral density of system input p0(t) are given by (21). The attached system
of stochastic differential equations with white noise excitation is given by

.
u = Au + gz (40)

where

u1(t) = x, u2(t) =
.
x(t), u4 = p0(t), A =


0 1 0 c1 0
0 0 1 c2 0
−a3 −a2 −a1 c3 0

0 0 0 0 1
0 0 0 −a5 −a4

 , u =


u1
u2
u3
u4
u5

 , g =


0
0
0
g1
g2


a4 = 2a, a5 = a2 + b2 , g1 = σ0

√ a
π , g2 = σ0

√ a
π

(√
a2 + b2 − 2a

)
(41)

The rms and std values of relative displacements of PWL system, Ψx and σx, can
be approximated as Ψx ∼=

√
c11 rms and σx ∼=

√
c11 std. The values of c11 rms and c11 std

are the first elements of covariance matrices Crms
(
cijrms

)
, Cstd

(
cijstd

)
, i, j = 1, 4, obtained

by solving the Lyapunov Equation (34), corresponding to attached linear systems for the
transmissibility factors Axrms(ω) and Axstd(ω), respectively. The mean displacement of
asymmetric PWL system is approximated by

mxLyap ∼=
√

c11 rms − c11 stdsgn(S(γ,β, ζ1)) (42)

8. Numerical Results

In this section, the statistical characteristics of simulated output are compared with those
calculated by solving the Lyapunov Equation (34) for corresponding attached linear systems.
The length and sampling interval of simulated filtered white noise input p0(t) were T = 100 s
and ∆t = 0.001 s. The results obtained for the study cases, given in Table 2 for PWL
asymmetric systems and for their linear equivalent system (ζe = 0.5, ωe = 2π rad/s), are
presented in Tables 4–6.
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Table 4. The std values and relative errors for absolute accelerations.

Case
σ ..

x1sim
[m/s2]

σ ..
x1Lyap
[m/s2]

Relative
Error (%)

σ ..
x1LinEq
[m/s2]

Relative
Error (%)

1 0.537 0.516 3.9 0.742 38
2 0.597 0.559 6.4 0.742 24
3 0.665 0.618 7.1 0.742 11
4 0.564 0.536 5 0.742 31
5 0.634 0.587 7.4 0.742 17
6 0.720 0.709 1.5 0.742 3

Table 5. The rms values and relative errors for relative displacements.

Case
rmsxsim

[m]
rmsxLyap

[m]
Relative
Error (%)

rmsLinEq
[m]

Relative
Error (%)

1 0.181 0.185 0.022 0.013 0.928
2 0.0488 0.048 0.016 0.013 0.737
3 0.0277 0.026 0.061 0.013 0.535
4 0.0658 0.067 0.018 0.013 0.804
5 0.0285 0.028 0.018 0.013 0.546
6 0.0174 0.017 0.023 0.013 0.257

Table 6. The mean values and relative errors for relative displacements.

Case
mxsim
[m]

c11rms
[m2]

c11std
[m2]

mxLyap
[m]

Relative
Error (%)

mx
[m]

1 −0.167 0.0343 0.0019 −0.18 7.8 −0.168
2 −0.039 0.0023 0.0005 −0.042 7.7 −0.04
3 −0.02 0.0007 0.0002 −0.022 10 −0.02
4 −0.055 0.0045 0.0007 −0.062 12.7 −0.056
5 −0.02 0.0008 0.0003 −0.022 10 −0.021
6 0.009 0.0003 0.0002 0.01 11.1 0.009

The last column of Table 6 shows the mean values of displacement, evaluated by
using in (8) the values m|x|, m| .

x| obtained by numerical integration of PWL equation of
motion (6). It worth noting that the optimum value of damping ratio for a linear system
with undamped eigenfrequency ω1 = 2π rad/s and considered random input p0(t), is
ζopt = 0.55. The value of standard deviation of simulated acceleration output obtained in
this case is σ ..

x1 opt = 0.741 m/s2.
Table 4 shows that the simulated values σ ..

x1sim are better approximated by using
the proposed method than the Gaussian equivalent linearization method. Therefore, in
all case studies the asymmetric PWL systems provide better vibration isolation than the
optimum linear system, for both considered random inputs (band limited and shape filtered
white noise).

The results presented in Tables 4 and 6 show that the relative errors of approximation
between the results obtained by numerical integration of asymmetric PWL systems and
those calculated by using the Lyapunov equation for linear attached systems are less
than 7.5% for standard deviation of acceleration and less than 13% for mean value of
displacement. As one can see, from Tables 2 and 6, as nonlinearity increases, the mean
value displacement is better approximated. It should be mentioned that the Gaussian
equivalent linearization method cannot provide any information about the drift of sprung
mass average position in dynamic regime, as it is shown in Table 5.

In order to illustrate the application of presented method, the case 1 from Table 2,
which display the strongest nonlinearity, has been chosen. In Figures 8 and 9 are plotted
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the transmissibility factors, simulated and fitted for this case, as well as the values of
parameters from fitting the curves given by the expressions (27) and (35).

Figure 8. Simulated and fitted transmissibility factors for acceleration.

Figure 9. Simulated and fitted transmissibility factors for std and rms displacement.

In Tables 7 and 8 are given the coefficients of attached linear systems corresponding to
acceleration and displacement, obtained by solving the algebraic Equations (29), (31), (37)
and (39) for parameters shown in Figures 8 and 9.

Table 7. Coefficients of attached linear system for std acceleration.

a1
[s−1]

a2
[s−2]

c1
c2

[s−1]
c11

[m2s−4]

13.07 37.35 6.96 −130.4 0.265

Table 8. Coefficients of attached linear system for std and rms displacement.

a1
[s−1]

a2
[s−2]

a3
[s−3]

c1
c2

[s−1]
c2

[s−2]
c11

[m2]
|mx|Lyap

[m]

Coefficients for std disp 6.45 5.05 2.82 0.0158 −1.036 7.236 0.0019
0.18Coefficients for rms disp 6.8 6.19 3.41 2.13 −17.5 106.8 0.0343

In the last column of these tables are given the values of elements c11 from
covariance matrices obtained by solving the Lyapunov Equation (34), for the corresp-
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onding attached linear systems. Using these coefficients, are obtained the values of
std acceleration σ ..

x1Lyap =
√

c11 = 0.515 ms−2 and the mean value of displacement
mxLyap ∼= −

√
c11 rms − c11 std= −0.18 m, according to (8). Figure 10 shows the first 30 s

from the simulated time histories of input, acceleration and displacements outputs for
PWL, attached linear (rms for displacement) and linear equivalent systems, obtained for
case study 1.

Figure 10. Acceleration output of PWL, equivalent linear and attached linear systems for case 1.

In Figure 11 are plotted the spectral densities of acceleration output, determined by
1/3 octave band-pass filtering for PWL, linear equivalent and the attached linear systems.

Figure 11. Spectral densities of acceleration for PWL, linear equivalent and attached linear systems.

The relative errors between the areas under spectral densities that represent the
variances of acceleration, given in Table 9, advocate the efficiency of the proposed method.
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Table 9. Variances of acceleration for PWL, LinEq and LinAtt systems.

System Area Gacc [m2/s4] Relative Error %

PWL 0.254 -
LinEq 0.503 98
LinAtt 0.23 9.4

9. Conclusions

The dynamic response of piecewise linear systems with asymmetric damping and
stiffness for random inputs is approximated by a method based on transmissibility factors.
The application of this method does not require the numerical simulation of input and
output time histories, except for obtaining the transmissibility factors by using harmonic
inputs. Using these frequency characteristics, a stochastic linear system is attached for
each variable of interest. The statistical parameters of the studied output corresponding
to random excitations having rational spectral densities are determined by solving the
associated Lyapunov equation.

The obtained results are compared with those determined by the numerical integration
of asymmetric PWL response. The relative errors show the efficiency and applicability of
this method for PWL systems. In addition, this approach allows the realization of vibration
isolation systems with better performance than those with linear characteristics. Using the
attached linear systems for rms and std displacement, the shift of sprung mass average
position in dynamic regime, due to damping or stiffness asymmetry, can be predicted with
a good accuracy for stationary random input.
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