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Abstract: As a subtask of sentiment analysis, aspect-based sentiment analysis (ABSA) refers to
identifying the sentiment polarity of the given aspect. The state-of-the-art ABSA models are developed
by using the graph neural networks to deal with the semantics and the syntax of the sentence. These
methods are challenged by two issues. For one thing, the semantic-based graph convolution networks
fail to capture the relation between aspect and its opinion word. For another, minor attention is
assigned to the aspect word within graph convolution, resulting in the introduction of contextual
noise. In this work, we propose a knowledge-enhanced dual-channel graph convolutional network.
On the task of ABSA, a semantic-based graph convolutional netwok (GCN) and a syntactic-based
GCN are established. With respect to semantic learning, the sentence semantics are enhanced by using
commonsense knowledge. The multi-head attention mechanism is taken to construct the semantic
graph and filter the noise, which facilitates the information aggregation of the aspect and the opinion
words. For syntactic information processing, the syntax dependency tree is pruned to remove the
irrelevant words, based on which more attention weights are given to the aspect words. Experiments
are carried out on four benchmark datasets to evaluate the working performance of the proposed
model. Our model significantly outperforms the baseline models and verifies its effectiveness in
ABSA tasks.

Keywords: aspect-based sentiment analysis; graph convolutional networks; commonsense knowledge graph

MSC: 18C50

1. Introduction

Aspect-based sentiment analysis (ABSA) is a sentiment classification task that aims
to identify the sentiment of given aspects [1]. Within ABSA, the sentiment of each aspect
is classified according to a predefined set of sentiment polarities, i.e., positive, neutral or
negative [2]. In recent years, ABSA yields very fine-grained sentiment information, which
is useful for applications in a variety of domains [3].

In the context of advancing deep neural networks, state-of-the-art ABSA methods
report high accuracy and strong robustness on benchmark datasets. During the progress-
ing stage in ABSA tasks, efforts are generally made in two directions: one is to enhance
significant information from the given text and the other is to filter the irrelevant informa-
tion and its impact. A major step toward the comprehension of semantic information is
the integration of attention mechanism with deep neural networks [4–6]. More attentive
weights are assigned to aspect-related words, based on which to classify the sentiment
polarity. Nevertheless, it can be challenging to capture syntax dependencies between the
aspect and its contexts for attention-based models. More recently, research on graph neural
networks (GNNs) has given rise to dealing with the syntactic information from dependency
trees, a manner in which to prevent the syntactically irrelevant contextual noise [7–9].
The widespread GNNs, such as graph convolutional networks (GCNs) and graph attention
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networks (GATs), are capable of encoding both the semantics and the syntax. This has
been an ongoing trend to incorporate syntactic information and semantic information into
GNN-based models [10–12].

In spite of the collaborative exploiting of syntax and semantics, two main limitations
can be observed :

(1) For one thing, GNNs are generally used for tackling global syntactic information,
while the mask operation is lastly performed to conceal the context words. Thereby,
the sentiment of the aspect is determined. In practical application, the contextual noise can
be introduced, which results in minor importance given to the aspect words.

(2) For another, the semantic-based GNNs are typically built up based on attention
weights. With respect to the delicate relationship between aspects and opinion words, more
attention is assigned to other words instead of the sentiment words. This can further confuse
the sentiment aggregation. As presented in Figure 1, in the sentence ‘Meal is very expensive for
what you get’, the aspect ‘meal’ and its opinion word ‘expensive’ are semantically insensitive.

Meal was very expensive for what you get.

The menu may be small, but everything on it is delicious. 

The menu may be small, but everything on it is delicious. 

Meal was very expensive for what you get.

Figure 1. Attention weights towards aspects. Words in black bold are aspects; words with a blue
background are predicted attention weights; words with a green background represent desirable
attention distribution. A word in the darker color indicates a greater weight and vice versa.

On the task of ABSA, this work focuses on establishing a Knowledge-Enhanced Dual-
Channel Graph Convolutional Network (KDGCN). Two GCN-based modules, referred
to as syntax-based GCN and semantic-based GCN, are developed to separately deal with
the syntax structure and the semantic information. On the one hand, the syntactical
dependency tree of the sentence is pruned to remove the connections of minor relevance
to the aspect. Hence, the aspect-oriented syntactic information is sent to the syntax-
based GCN. Besides, the position information and the attention mechanisms are taken
to highlight the importance of the aspect. On the other hand, the external knowledge is
introduced to enhance the semantic-based GCN. The word sentiment vectors, together
with the supplementary of the aspect, are obtained (derived) by using SenticNet (i.e.,
a commonsense knowledge base); see Figure 2. A multi-headed attention mechanism
is carried out to re-assign the attentive weights among words. The sentiment of the
opinion words can thus be aggregated to the aspect via the knowledge-enhanced semantic-
based GCN.

It has so much more speed and the screen is very sharp .

Senticnet

1

0

-1

it so …… sharpSentiment vectors：

Aspect expandings： velocity speedy ……

Figure 2. Sentiment vectors and aspect supplementary based on SenticNet. The different colors and
shades represent the emotional polarity score of the word in SenticNet, where −1 is negative and 1
is positive.

Notably, a certain number of studies leverage the commonsense knowledge to en-
hance the sentiment expression and classify the sentiment polarity of the aspect [13,14].
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Theoretically, the commonsense knowledge is involved with the background materials of
the entities under discussion. The commonsense knowledge is preserved in the common-
sense bases, such as ConceptNet [15], SenticNet [16] and WordNet [17], and recalled for
processing. In most cases, the integration of semantic-related commonsense knowledge
can generate noise from external information. Our model aims to exploit the sentence-
related external knowledge, not just the sentiment information of each word, but also the
relative knowledge of the aspect. In such a manner, the input of semantic-based GCN is
distilled. Accordingly, the more-related information is preserved with the noise removed.
The contributions of this paper are threefold and summarized as follows:

• Considering the deficiencies of the current ABSA methods, a dual-channel GCN based
model is proposed, which processes both the syntax structure and the semantic infor-
mation.

• The external knowledge is incorporated to enhance the semantics of the sentence,
while the multi-head attention mechanism is taken to further filter the noise.

• Experiments on a variety of datasets indicate the effectiveness of the proposed method.
Our model produces results considerably better than the baselines.

The paper is mainly divided into six sections. In the Introduction, we summarize
the content of the article in general and propose our solutions for the challenge of the
current ABSA task; in the Section 2, we will summarize the research related to our work;
in the Section 3, we will introduce our proposed model and each module in detail; in
the Section 4, we will conduct experiments on four public datasets and design ablation
experiments; in the Section 5, we will further analyze the general situation of the model
and the experimental results; in the Section 6, we summarize the full text.

2. Related Work
2.1. Aspect-Based Sentiment Analysis

As pointed out in the introduction, ABSA is a fine-grained sentiment classification task.
Rather than assigning an overall sentiment polarity to a sentence or a document, ABSA
aims at precisely determining the sentiment of a certain aspect. Early methods usually rely
on manual features when predicting, which cannnot model the dependency relationship
between the aspect and its context [18–20].

In recent years, advances in deep-learning algorithms significantly improved the
working performance of ABSA, while a more detailed analysis of the textual information
has risen [21,22]. The integrating of an attention mechanism into deep neural networks
highlights the contribution of opinion words towards the aspects. [4–6,23–25] The rela-
tionship between aspect and its opinion words are reliably modeled in attention-based
networks. Wang et al. [4] proposed an attention-long short-term memory (LSTM) method
to obtain more-related information about a given aspect. Chen et al. [5] devised a hierar-
chical multi-attention model to address the long-range dependency between aspect and
the opinion words. Whereas the attention mechanisms fails to cope with sentence syntax,
by contrast, the employment of GCN takes advantages of the syntactic dependencies of the
aspect and the opinion words. To be specific, an adjacency matrix is formed based on the
syntactic dependent tree, which is further modeled to aggregate the sentiment information
to the aspect by GCN [7,8]. Wang et al. [9] eliminated the noise from irrelevant contexts by
constructing an aspect-oriented syntactic dependency tree, and then encoded the syntax
relation by GNN. More recently, modules of multi-channel-GCNs have been carried out
to resolve the syntax and semantics of the given sentence, which effectively optimizes the
results of ABSA.

2.2. Graph Convolutional Networks

As a classical variant of GNN, GCN was originally proposed by Kipf et al. [26] in 2017. So
far, GCN has shown its superiority in diversified NLP tasks, such as text classification [27,28],
relation extraction [29,30], knowledge distillation [31] and machine translation [32].
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Most studies [7,8] take GCNs to capture the syntactic information of a sentence where
the nodes represent the words and the edges indicate the dependencies, which can in-
duce representation vectors of nodes based on their neighborhoods’ features. Likewise,
the semantic relation within the sentence can also be obtained using GCN. In [10,11], the se-
mantic graph was constructed with edges standing for the attention weights. Therefore,
both semantic features and syntactic features can be extracted via GCN-based modules.

Considering a graph as structured data, the multilayers of GCN are responsible for
information delivery. As such, every single node within the graph can learn the global
information. Let G = (V, E) , where V = {vi, v2, . . . , vn} is a set of N = |V| nodes and E is
the set of edges, and it represents an n−node graph with an adjacency matrix of A ∈ Rk×k.
In a graph, let vi ∈ V to denote a node and eij = (vi, vj) ∈ E to denote an edge between vi
and vj.

GCN can only capture information about neighbors with a layer. However, informa-
tion about more neighborhoods can be integrated when multilayers of GCN are stacked.
We define hl

i as the output of node i on the l − th layer and h0
i as the initial state of node i.

The graph convolution of node i can be written as:

hl
i = σ(

k

∑
j=1

AijW lhl−1
j + bl) (1)

where W l is the weight of linear transformation, bl is the bias and σ is a nonlinear function
such as Relu.

2.3. Commonsense Knowledge

The commonsense knowledge for NLP is typically obtained through large-scale corpus
training and saved in commonsense bases. The commonsense is taken as prior knowledge
for the pre-training of knowledge-enhanced approaches. SenticNet [16] is one such com-
monsense knowledge base, which contains 100k concepts related to sentiment expression.
(e.g., mood, polarity, semantics and so on). Additionally, these affective properties provide
concept-level representation and semantic connections to the words.

To facilitate access to corresponding knowledge, SenticNet provides an application
programming interface. A series of sentiment scores of the word and its related concepts
can be obtained from the interface (as shown in Figure 2), which can expand the semantics
of the sentence.

The application of SenticNet into ABSA shows its distinctiveness in sentiment rep-
resentation learning [13,33]. Ma et al. [13] utilized the commonsense from SenticNet to
generate essays more closely surrounding the semantics of the input topics. Zhou et al. [14]
enlarged the sentence semantics using SenticNet 5, and then jointly modeled the syntactic
dependency trees and commonsense graph. Regardless of additional key information,
the filter of the noise during the external knowledge introducing remains unsettled.

3. Methodology

The architecture of KDGCN is presented in Figure 3. Our model consists of five
key components, i.e., a sentence encoder, a knowledge enhancement module, a semantic
learning module, a syntax aware module and a sentiment classifier. Firstly, each word of
the sentence is encoded as a vector by the sentence encoder. At the same time, the sentence
is input into the knowledge enhancement module, and the sentiment vector of each word
and the expanding words of aspect are obtained from SenticNet; secondly, the hidden state
vector of the sentence is sent into a semantic learning module and a syntax aware module,
respectively, to obtain the syntactic and semantic representation. Finally, we can obtain the
sentiment polarity of the aspect from the sentiment classifier.
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Figure 3. Overall architecture of the proposed Knowledge-Enhanced Dual-Channel Graph Convolu-
tional Network.

3.1. Sentence Encoder

Glove embedding. For a sentence c = {w1, w2, . . . , wn}with the aspects a = {wa1, wa2,
. . . , wan}, we take the pre-trained embedding matrix E ∈ R|V|×de to map each word into a
low-dimensional vector, where |V| represents the lexicon size and de is the dimension of
the word vector [34].

BERT embedding. BERT [35] is a commonly used sentence encoder in recent years.
Each sentence is pre-processed by adding [CLS] at the beginning and [SEP] at the end,
respectively, to obtain c′ = {w0, w1, . . . , wn+1}, where w0 and wn+1 denote the two special
tokens inserted. Then, c′ is fed into BERT to obtain the textual feature representation
X = {x0, x1, . . . , xn+1}, where xi ∈ Rdbert .

A Bidrectional LSTM (Bi-LSTM) is employed for sentence encoding. The given
sentence embedding is sent to Bi-LSTM to generate the hidden state vector HLSTM =
{h1, h2, . . . , hn}. Specifically, the vector HLSTM ∈ R2dh is the hidden state at a time step and
is the hidden state vector dimension of LSTM.

3.2. Knowledge Enhancement Module

Word sentiment enhancement: For the given sentence c, the sentiment vector of each
word can be obtained based on the commonsense from SenticNet. A 23-dimensional
sentiment vector HLSTM ∈ R23 hat represents the sentence that is derived. Besides, for the
words that do not appear in SenticNet, the zero-vector is used instead. Then, HLSTM and
Hsen are fused to obtain the sentence representation, which is:

Hc = [HLSTM; Hsen] (2)

with Hc ∈ R2dh+23.
Aspect knowledge enhancement: In terms of the aspects a, the relative words of each

word within a is collected from SenticNet, i.e., {wex1, wex2, . . . , wexn}. For the purpose of
word supplementary, the first five words in relation to the aspect are used. All the relative
words are also mapped to word embeddings and encoded with the Bi-LSTM encoder.

Hex = [HLSTM
ex ; Hsen

ex ] (3)



Mathematics 2022, 10, 4273 6 of 15

where HLSTM
ex stands for the hidden state vector of Bi-LSTM, and Hsen

ex is the corresponding
sentiment vector. The aspect expanding vector is denoted as Hex ∈ R2dh+23.

Notably, since the word co-occurrence in the corpus has an impact on the word
embedding of glove, to prevent the noise fusion, the aspect relative words are not pre-
trained by glove. We take a 〈unk〉 for relative words that are absent from the given texts.
Similarly, the absent-words of SenticNet are taken in place of zero.

3.3. Semantic Learning Module

Motivated by [10], most short sentences are of confused syntactic structure. That
is, the rigid extraction of syntactic information can lead to the misinterpretation of the
sentiment information. For this reason, a semantic learning module based on GCN is
proposed to capture the semantic information among words. Both the enhanced sentiment
vector and the aspect expanding vector are sent to the semantic learning module, which
aims to further enrich the semantic information.

Node construction: Each word wi from the sentence, together with each aspect relative
word wexi, is taken as a node. All nodes constitute a node set V.

Edge construction: The edge indicates the relationship between word nodes. Con-
cretely, two semantic-related nodes are connected with an edge and vice versa. To capture
the semantic relation of each word, we employ K− heads multi-head self-attention mecha-
nism to compute the attention weight, i.e.,

Attn =
(HseWse,k)(HseWse,q)T

√
dhead

(4)

where
H(0)

se = Hc (5)

dhead =
dlstm

k
(6)

where H(0)
se ∈ R2dh+23 is the commonsense-enhanced hidden layer output; K is the head

number of multi-head attention mechanism; Wse,k and Wse,q ∈ R(2dh+23)×dhead are trainable
matrices. Subsequently, based on the top-k selecting approach, the largest k values of
each dimension are selected and set to 1, while others are set to 0. Hence, the adjacency
matrix Ase is obtained; see Equation (7). Corresponding to the edge construction principle,
the adjacency matrix with value 1 denotes the semantic relevance between nodes. Notably,
the Ase remains symmetric with the application of the top-k selector.

Ase = topk
k

∑
i=0

Attn (7)

Thereby, a graph Gsem = (Ase, Hc) that concerns the node representations and the
adjacency matrix is constructed. The graph is fed into the N-layer GCN to obtain the hidden
layer state Hse :

H(l+1)
se = GCN(Ase, H(l)

se , W(l)
se ) (8)

where H(l)
se ∈ R(2dh+23)×dgcn stands for the parametric matrix of GCN. The mask operation

is conducted on non-aspect words, following with the average pooling to compute semantic
hidden layer output hse, which is written as:

mask =

{
0 1 ≤ t < τ + 1, τ + m < t < n
1 τ + 1 ≤ t ≤ τ + m

(9)

hse = f (mask(Hse)) (10)

where τ + 1 ≤ t ≤ τ + m indicates the aspect index and f (·) is the average pooling function.
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3.4. Syntax Aware Module

The syntax aware module is devised by modifying the method proposed by
Zhang et al. [7]. The sentence syntax is characterized by the syntax dependency tree.
Note that not all context words are syntactically related to the aspect—an aspect-related
selection approach is taken to reshape the syntax dependency tree. Only if a context word
reaches the aspect within n hops can the dependency edge between nodes be kept. We
can thus revise the adjacency matrix A0 to Asy. In this way, the revised graph is written as
Gsy = (Asy, HLSTM), where HLSTM is the current node representation. Before sending Gsy
to GCN, the position-aware transformation is performed [7]:

qi =


1− τ+1−i

n 1 ≤ i ≤ i + 1
0 τ + 1 ≤ i ≤ τ + m
1− τ+1−i

n τ + m < i ≤ n

(11)

with
F (hi) = qihi (12)

where qi ∈ R the position weight of the i-th token and F (·) is the function for position
weight assignment. The syntactic information is learned by using graph convolution.
The syntactic hidden layer output is expressed as:

H(l)
sy = F (H(l−1)

sy ) (13)

H(l+1)
sy = GCN(Asy, H(l)

sy , W(l)
sy ) (14)

H(0)
sy = F (HLSTM) (15)

where H(l) ∈ R2dh×dgcn is a trainable parametric matrix. Similar to the semantic-based
GCN, the syntactic hidden state representation Wsy is revised via masking (Equation (16)).
The

Ht = mask(Hsy) (16)

where Ht = {ht
1, ht

2, . . . , ht
j}. The outcome hidden layer state from Equation (16) concen-

trates more on the aspect words. In addition, to further detect the significant semantic
feature concealed within the syntax structure, the attention weight of each context word is
assigned. The dot product of ht

i and hi are obtained to denote the syntactic representation, i.e.,

hsy =
n

∑
j=1

ajht
j (17)

aj =
exp(β j)

∑n
i=1 exp(β j)

(18)

βt =
n

∑
i=1

ht
jhi =

τ+m

∑
i=τ+1

ht
jhi (19)

3.5. Sentiment Classifier

Both the semantic representation and the syntactic representation are so far computed.
We shall thus concatenate hse and hsy to obtain the final representation ha (Equation (20)).
The sentiment polarity of the given aspect is classified by sending ha to the Softmax classifier,
which is:

Ha = [Hse; Hsy] (20)

y = so f tmax(ha) (21)
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3.6. Model Training

The training process is performed by using the categorical cross entropy and L2
regularization as the loss function:

Loss = −∑
i

∑
j

yj
i log(pj

i) (22)

where i is the index of the ABSA sample and j is the corresponding sentiment polarity.

4. Experiment

In this section, we designed the main experiment and attention visualization to verify
the effectiveness of our model on the ABSA task. Specifically, we first introduce the
benchmark datasets used in our experiment, and then briefly introduce the details of the
experiment and the selected baseline. Then, we carried out the main experiment and
analyzed the experimental results. In addition, in order to explore the contribution of each
module to the model, we designed ablation experiments and analyzed the mechanism of
knowledge enhancement in attention visualization.

4.1. Dataset

To verify the working performance of the proposed model, experiments were carried
out on four publicly available benchmark datasets, i.e., Rest14 and Lap14 from SemEval
2014 [36], Rest15 from SemEval 2015 [37] and Rest16 from SemEval 2016 [1], containing
reviews of restaurant and laptop domains.

Every single sentence from the datasets contains at least one aspect. The sentiment
polarity of each aspect is given as well, including: positive, negative and neutral. For ex-
ample, in the sentence “Great food but the service was dreamful!”, there are two aspect terms,
‘food’ and ‘service’, and their sentiment polarity are positive and negative, respectively. The
details of each dataset are presented in Table 1.

Table 1. Statistics of datasets.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Rest14 2164 728 637 196 807 196

Lap14 994 341 464 169 870 128

Rest15 1178 439 1c50 35 382 328

Rest16 1620 597 88 38 709 190

4.2. Implementation Details

The best test result of each method was taken for evaluation. For the proposed model,
the initialization of word embeddings was conducted using Glove [38] and uncased BERT
[35], respectively. The pretrained Glove provides a 300-dimensional word vector, with a
learning rate of 0.001 and a batch size of 64. Moreover, the dimension of Bert-based word
embeddings was 768, with a learning rate of 0.00002 and a batch size of 32. The head number
of multi-head attention network was set to 1. The value of top-k selection was 2. Besides,
the Adam optimizer was employed. The L2 regularization weight was 0.0001. The value of
dropout was determined within the interval of [0.4, 0.6] using grid searching. With respect
to the GCN in our model, the number of layers and the dimension of hidden layers ranged
within [1,4] and [100, 200], respectively, which were also selected via grid searching.

4.3. Baseline

For the purpose of validating the effectiveness of our model, twelve state-of-the-art
methods were taken for comparison, which are presented as follows:
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• CDT [8]: GCN is taken to deal with the syntax dependency tree, which aims to
learn the sentence syntactic information. Specifically, it exploits a GCN to model the
structure of a sentence through its dependency tree, where node (word) embeddings
of the tree are initialized by means of a Bi-LSTM network.

• ASGCN [7]: On the task of ABSA, GCN is applied to learn the aspect-specific rep-
resentation for the first time. Specifically, it starts with a LSTM layer to encode the
sentence, and a multi-layered graph convolution structure is implemented on top of
the LSTM output to obtain aspect-specific features.

• SK-GCN [14]: A syntax-based GCN and a knowledge-based GCN are designed to
model the syntax dependency tree and knowledge graph, respectively. Specifically, it
obtains the sentiment information from the SenticNet to enrich the representation of a
sentence toward a given aspect.

• R-GAT [4]: It reshapes and prunes an ordinary dependency parse tree to obtain an
aspect-oriented dependency tree structure rooted at a target aspect. Then, a relational
graph attention network (R-GAT) is introduced to encode the new tree structure for
sentiment prediction.

• DualGCN [5]: Considering the complementarity of syntax structures and semantic
correlations, a dual graph convolutional network is proposed to tackle both the
syntactic information and semantic information.

• DMGCN [11]: A multi-channel GCN-based method is developed to exploit not
only the syntax and the semantics, but also the correlated information from the
generated graph.

• BERT [35]: The basic BERT model is established based on a bidirectional transformer.
With the concatenation of sentence and the corresponding aspect, BERT can be applied
to ABSA.

• SK-GCN+BERT [14], R-GAT+BERT [9],DualGCN+BERT [10], DMGCN+BERT [11]
: The pre-trained BERT is integrated with SK-GCN, R-GAT, DualGCN and DMGCN,
respectively, where BERT is used for sentence encoding.

• TGCN+BERT [39]: The dependency type is identified with type-aware graph con-
volutional networks, while the relation is distinguished with attention mechanism.
The pre-trained BERT is used for sentence encoding.

4.4. Experimental Results

Experimental results on all datasets are exhibited in Table 2. In this experiment,
we took accuracy and macro-F1 as the method evaluation metrics. Comparing with the
baseline models, KDGCN generally obtained the best and most consistent results in all
evaluation settings. However, our model with the Bert encoder was less competitive
than DMGCN+BERT on the dataset of Rest14. A possible explanation is that the pre-
trained Bert contains a wealth of semantic information. The semantic enhancement via
SenticNet is not that distinctive. With respect to the Glove-based word embeddings,
the performance of KDGCN was 0.93% and 2.89% higher than DMGCN in accuracy and
Macro-F1, respectively.

Comprehensively, current GCN-based models focus on encoding either the syntactic
information (e.g., ASGCN, CDT, R-GAT and TGCN+BERT) or the semantic-integrated
syntactic information (e.g., DualGCN and DMGCN ). The performance of these methods
largely depends on their fitting capabilities. By contrast, the proposed model adopted
the aspect-related selection approach to prune the edges of the syntax dependency tree,
based on which the unrelated information to the aspect was eliminated. On the other hand,
the commonsense knowledge was introduced to enhance the semantic information and the
sentiment of the aspect. In this way, the results of ABSA can be improved.

Furthermore, SK-GCN also uses the external knowledge derived from SenticNet to
construct the syntax-based GCN and semantic-based GCN. In comparison with SKGCN,
our model performs significantly better on all datasets. Clearly, KDGCN is capable of
exploiting the commonsense knowledge in ABSA tasks. As such, it is rational to expect the
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integration of external knowledge into the given sentence and thus improved sentiment
classification results.

Table 2. Experimental results on four public datasets. The results of R-GAT and R-GAT+BERT are
retrieved from [40], and others are retrieved from the original papers.

Models
Rest14 Lap14 Rest15 Rest16

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

CDT [8] 74.66 73.66 77.19 72.99 - - 85.58 69.93
ASGCN [7] 80.77 72.02 75.55 71.05 79.89 61.89 88.99 67.48

SK-GCN [14] 80.36 70.43 73.20 69.18 80.12 60.70 85.17 68.08
R-GAT [9] 83.30 76.08 77.42 73.76 80.83 64.17 88.92 70.89

DualGCN [10] 84.27 78.08 78.48 74.74 - - - -
DMGCN [11] 83.98 75.59 78.48 74.90 - - - -

Our KDGCN 84.91 78.48 79.00 75.03 82.10 67.13 90.74 73.46

BERT [35] 85.62 78.28 77.58 72.38 83.48 66.18 90.10 74.16
SK-GCN+BERT [14] 83.48 75.19 79.00 75.57 83.20 66.78 87.19 72.02

R-GAT+BERT [9] 86.60 81.35 78.21 74.07 83.22 69.73 89.71 76.62
DualGCN+BERT [10] 87.13 81.16 81.80 78.10 - - - -
DMGCN+BERT [11] 87.66 82.79 80.22 77.28 - - - -

TGCN+BERT [39] 86.16 79.95 80.88 77.03 85.26 71.69 92.32 77.29
Our KDGCN+BERT 87.23 81.69 82.60 79.55 85.98 72.40 93.66 82.49

4.5. Ablation Study

An ablation study was conducted to quantitively investigate the importance of differ-
ent modules in the proposed model. The results of the ablation study are given in Table 3
and Figure 4. We took the basic KDGCN as the baseline and ablated the knowledge en-
hancement module, semantic learning module, syntax aware module and the aspect-related
select procedure. According to Table 3, the most important component for the proposed
model is the syntax aware module. The accuracy drop on four datasets were 6.78%, 6.12%,
4.61% and 3.08%, which are significant. Obviously, the use of syntactic information plays
a pivotal role in ABSA. Moreover, the contributions of the semantic learning module and
the knowledge enhancement module are comparable. The integration of commonsense
knowledge into the semantic learning process gives an improvement of the sentiment
classification performance. Lastly, withdrawal of the aspect-related selection also caused a
minor decrease of the working performance.

Table 3. Results of the ablation study.

Model
Rest14 Lap14 Rest15 Rest16

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

KDGCN w/o aspect-related select 84.11 77.02 76.96 73.14 80.10 66.48 89.61 70.94
KDGCN w/o syntax aware module 78.13 68.34 72.88 68.13 77.49 52.19 87.66 66.74

KDGCN w/o knowleage enhancement 83.13 76.01 76.49 72.38 81.55 58.71 89.61 72.01
KDGCN w/o semantic learning module 83.22 75.35 76.33 73.27 79.89 60.87 89.28 71.96

KDGCN 84.91 78.48 79.00 75.03 82.10 67.13 90.74 73.46
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Figure 4. Results of the ablation study. Different columns show the performance of different models
on different datasets.

4.6. Attention Visualization

To investigate the effectiveness of the knowledge enhancement, we visualized the
attention matrix. In our model, the semantics enhancement is carried out by using the
commonsense from SenticNet. The connection between the aspect and its opinion word is
established and enhanced. The syntax-based GCN also removes the irrelevant information
by encoding the syntax dependency tree. Cases are presented to demonstrate the attention
weight distribution. In the first line of Figure 5 , the attentive weights are assigned based
on a basic multi-head attention mechanism. One can easily see that the minor attention was
given to the opinion word ‘excellent’ of the aspect ‘food’. Likewise, the attention weight
of ‘food’ toward ‘excellent’ was also weakened. With the integration of commonsense
knowledge, the relationships of both ‘food’ and ‘excellent’ to the context word ‘meal’ were
established. That is, the ‘food-meal’ edge and the ‘excellent-meal’ edge can be constructed
by using a top-k selection. As a result, the sentiment information of ‘excellent’ can be
aggregated on the aspect word ‘food’ with the encoding of GCN. Besides, the syntactic-
based GCN, which deals with the syntactic relation among words, also facilitates the
determination of aspect sentiment polarity.

Similarly, from the two figures in the second line, we can see that the aspect word
‘waiter’ established a direct connection with the opinion word ‘helpful’ after knowledge
enhancement. Additionally, from the two figures in the last line, the aspect word ‘sauce’
and the opinion word ‘flavorful’ are connected through the path ‘sauce-dough-flavorful’
after knowledge enhancement, so that the sentiment polarity of the aspect words can be
better predicted after the subsequent network structure.
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Figure 5. An illustration on knowledge-enhancement. (a) Basic attention matrix of the sentence.
(b) Knowledge-enhanced attention matrix of the sentence. The red words are aspect words, the blue
words are opinion words and the black bold words are aspect-expansion words.
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5. Discussion

Through a series of experiments, we can see that our KDGCN performs well on
the ABSA task. Specifically, in the main experiment part (Section 4.4), the accuracy and
F1-score of our model on the four datasets are generally higher than baselines, especially
compared with SK-GCN [14], which also uses SenticNet for knowledge enhancement;
our improvement was 2–5%. In the ablation study, we removed the semantic learning
module, the syntax aware module and so on, which proves that semantics and syntax are
both important for ABSA tasks. In addition, after removing the knowledge enhancement
module, the model performance also decreased significantly on the four datasets, indicating
that our knowledge enhancement facilitates ABSA tasks.

Moreover, we also found the limitations of our model. Take DMGCN [11] and the
use of the glove encoder as an example—KDGCN’s improvement on Lap14 was not as big
as that on rest14 (0.52% and 0.93%, respectively). This may be because most of the Lap14
datasets are proper nouns (such as Windows 7 and Microsoft), and they do not have obvious
emotional clues. Different from it, most of the words in Rest14 are daily words, so the
sentiment information is rich and can be further enhanced through SenticNet. In order to
obtain more semantic information and deeper connections, large-scale knowledge graphs
can be introduced into the ABSA task in future work.

6. Conclusions

In this work, we propose a knowledge-enhanced dual-channel graph convolutional
network to deal with the ABSA tasks. A semantic-based GCN and a syntactic-based
GCN are devised to encode both the sentence semantics and the syntax. On the one
hand, the external commonsense knowledge is introduced to enhance the semantics, based
on which more attention is assigned to the aspect and its relevant words. On the other
hand, the syntactic-based GCN processing on the syntax dependency tree further filters
the low-dependency words. We demonstrate the effectiveness of our method on four
benchmark datasets, obtaining state-of-the-art results on both accuracy and macro-F1.
Comparing with the baseline models, the proposed method is the best alternative that
produces results considerably better than the widely-applied approaches in ABSA. In the
ablation experiment, we tested the contribution of each module to the model and verified
that our innovation is effective. In addition, we also carried out a case analysis to further
intuitively demonstrate the role of knowledge enhancement in promoting our task.

However, SenticNet is a small-scale knowledge base with shallow and limited se-
mantics, which limits the performance of the model. Therefore, future work can consider
exploring the use of a larger scale knowledge graph (such as Wikipedia) to enhance the
knowledge of ABSA tasks, which can provide more clues to predict the sentiment polarity
of the aspect.
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