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Abstract: Breast cancer subtype classification is a multi-class classification problem that can be
handled using computational methods. Three main challenges need to be addressed. Consider
first the high dimensionality of the available datasets relative to the extremely small number of
instances. Second, the integration of different levels of data makes the dimensionality problem even
more challenging. The third challenging issue is the ability to explain the predictions provided by
a machine learning model. Recently, several deep learning models have been proposed for feature
extraction and classification. However, due to the small size of the datasets, they were unable to
achieve satisfactory results, particularly in multi-class classification. Aside from that, explaining
the impact of features on classification has not been addressed in previous works. To cope with
these problems, we propose a multi-stage feature selection (FS) framework with two data integration
schemes. Using multi-omics data, four machine learning models, namely support vector machines,
random forest, extra trees, and XGBoost, were investigated at each level. The SHAP framework was
used to explain how specific features influenced classification. Experimental results demonstrated that
ensemble models with early integration and two stage feature selection improved results compared
to baseline experiments and to state-of-the art methods. Furthermore, more explanations regarding
the implications of the main relevant features in the predictions are provided, which could serve as a
baseline for future biological investigations.

Keywords: feature selection; multi-class classification; explainable AI; breast cancer sub-typing;
multi-omics data; SHAP plots

MSC: 68T09; 68T01

1. Introduction

Recent statistics from the World Health Organization (WHO) [1] show that breast
cancer (BC) is the most common cancer worldwide, with 2.3 million new cases and
685,000 deaths in 2020. A recent study in [2] estimated that there will have been 290,560
new cases and 2710 deaths in the United States in 2022. In every country, breast cancer can
strike women at any age after puberty, with rates increasing with age. The symptoms of
breast cancer vary greatly, and many cases have no obvious symptoms. Early detection
and treatment of the disease can help to reduce mortality by an order of magnitude. The
prevalence of the disease, as well as the availability of huge amounts of data, aids in
learning more about it. Despite significant advances in breast cancer management over the
last few decades, computational tools are more important than ever in assisting oncologists
in cancer diagnosis and prognosis, ensuring that patients receive the best standard of care
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based on their history, genetics, and biomarkers. Significant research is being conducted in
this context in the hope of opening up new avenues for improving breast cancer diagnosis
through an effective combination of experimentation and computational tools. Artificial
intelligence and advanced analytics have the potential to significantly aid in achieving
the desired progress by improving screening strategies [3], making effective use of the
vast amounts and types of data generated by various modalities and developing powerful
computational models.

There are various types of breast cancer data. Unstructured data, such as images
obtained from various modalities, for instance mammography, MRI, breast computed
tomography, ultrasound imaging, and others, have been widely used for breast cancer de-
tection and diagnosis via image processing and analysis tools and machine learning models.
In [4], a review of such applications is provided. On the other hand, recent advances in
omics approaches have revealed extremely promising options for unraveling the complex-
ity of biological systems and gaining a deeper understanding of cancer. Omics technologies
are principally intended for the exhaustive detection of genes (genomics), RNAs (tran-
scriptomics), proteins (proteomics), metabolites (metabolomics), and quantitative medical
imaging characteristics (radiomics) [5].

Recent, technological, advancements, have, enabled, the, population-level, high-
throughput, measurements of the human genome, epigenome, metabolome, transcriptome,
and proteome. Fundamentally, omics technologies are based either on sequencing (genome
sequencing, RNA sequencing, and so on) or mass spectrometry (proteomics, metabolomics).
In [6], a comprehensive review of technological advances in OMICS is provided. For in-
stance, advancements in genome sequencing technology from DNA microarray technology,
first generation Sanger sequencing, second generation massively parallel sequencing or
generation sequencing (NGS) to, eventually, third generation long read sequencing (TGS)
have allowed for the sequencing of the entire genome/exome [7].

As complex ecosystems, breast cancer tumors require a comprehensive understanding
of the molecular information flow and the molecular system’s interactivity [8]. Although
single omics data add to a better understanding of diseases, it is necessary to integrate
and analyze data at several levels to obtain a comprehensive understanding and capture
the complexity of such ecosystems [9]. Numerous studies emphasize the importance of
integrating multi-omics data in cancer research and evaluating clinically relevant results.
This is discussed in [5], which also investigates the underlying principles, issues, advances,
and clinical uses of various omics technologies. Breast cancer has a variety of clinical,
pathological, and molecular features. As a result, several types of breast cancer have been
identified based on the biological markers used [10], such as those for the estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2). Luminal
A, luminal B, triple negative (TNBC), and HER2 BC are all BC subtypes. The availability of
omics data has enabled the study of BC molecular typing. The consortium “The Cancer
Genome Atlas” (TCGA) includes an integrated omics analysis of over 11,000 tumors from
the 33 most common cancer types, including breast cancer [11]. With the available data,
predictive models for breast cancer subtyping can be developed. Accurate and useful omics
data-driven predictive models can help oncologists better understand the multifactorial
nature of the disease, as well as aid in diagnosis and prognosis.

In this work, we address the issue of breast cancer subtyping using TCGA multi-omics
data. The primary problem is the high dimensionality of the available datasets paired with
the considerably smaller sample size. Dimensionality reduction is required to develop
predictive models using such datasets. Moreover, an essential requirement is the models’
interpretability. Indeed, in addition to being able to identify relevant features, it should also
be possible to explain how features affect predictions. To the best of our knowledge, this
has not been addressed or has been only seldomly addressed in the literature. The majority
of the proposed works used deep learning models to address the problem of breast cancer
subtyping. Deep learning models, on the other hand, may not be an appropriate option
because, in addition to being black-box models, they necessarily require many instances.
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In this paper, we present a multistage feature selection approach that operates on in-
dependent omics datasets at first and then incorporates other modalities in an interpretable
framework with multiple integration schemes and levels to enhance classification perfor-
mance. For the integration of datasets, both early and late strategies have been adopted.
In addition, several predictive models, including support vector machine (SVM), random
forest (RF), extra trees (ET), and XGBoost, were investigated. Hence, multiple scenarios
have been evaluated and implemented. Furthermore, an investigation was conducted on
the impact of the features on the classification using an explainable artificial intelligence
framework. The results demonstrated the significance of the proposed framework in terms
of both dimension reduction and performance. The study also identified and discussed
the significance of the used modalities and related features on the multiclassification task
outcomes.

The main contributions of this work can be summarized as follows:

• A multi-stage feature selection with early and late integration schemes for improved
multi-class classification for breast cancer subtyping.

• A comprehensive investigation of various ML models within the proposed framework.
• Prediction interpretation and insights on features impact using an explainable AI (XAI)

framework called Shapley Additive Explanations.

The remainder of the paper is structured as follows: Section 2 provides a summary of
related work. The proposed work is fully described in Section 3. Section 4 describes the
experimental study, discusses the results, and explains how the selected features impact
the predictions. Finally, a conclusion is provided in which the key findings are summarized
and future work plans are outlined.

2. Related Work

Breast cancer is a heterogeneous disease with a wide and varied set of molecules.
Triple-negative breast cancer (TNCB) is divided into six subgroups that can be classified
using their gene expression repertoire. It is essential to look for cancer detection methods
that are as non-invasive as possible. Some cancers are more difficult to detect than others.
The high expression of primary receptors is required to increase the rate of early detection,
which can help patients receive personalized treatments and improve therapy [12]. The
most used markers for classifying breast cancer subtypes are ER, HER2, and PR. It is
possible to identify the characteristics of large patient samples using automated methods
quickly and effectively. The International Cancer Genome Consortium (ICGC), The Cancer
Genome Atlas (TCGA), and the Asian Cancer Research Group (ACRG) all have massive
amounts of cancer multi-omics data that are publicly available.

The primary challenge is determining the best data integration method to improve
cancer diagnosis [13]. In [14], authors presented DeepType, a deep learning model that
combines supervised and unsupervised learning for cancer subtype classification. The deep
neural network includes four hidden layers and is combined with a clustering algorithm
on the output of the fourth layer. This combined model optimizes network parameters by
minimizing an objective function that includes a classification loss term, a clustering loss
term, and a regularization term. The model’s inherent architecture allows the processing
of highly dimensional data. However, good performance was not achieved due to the
small number of available instances, indicating that dimensionality reduction is required.
Another obstacle was its application to cases with no well-defined molecular subtypes.

The integration of multiple patient data, such as RNA, gene copy number, somatic
DNA mutation, and methylation, is a method proposed in [14] to improve the prediction
of cancer subtypes using deep learning networks. Multi-omics data consist of numerous
omics datasets that generate voluminous, high-dimensional, and complicated data. This
information can be utilized to find biomarkers that can aid in the early identification and
prognosis of breast cancer subtypes. Using multi-omics data, the authors of [15] proposed
a deep learning method for classifying breast cancer molecular characteristics as luminal
A, luminal B, basal-like, or HER2-enriched. The study demonstrates that merging copy
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number alteration (CNA) and gene expression data enhances the prediction of breast cancer
subtypes. Each patient has 16,289 genes, and each gene is considered a feature, resulting
in a highly dimensional dataset. The suggested model architecture employs two deep
convolution neural networks (DCNNs). For each dataset, a DCNN network is produced.
The input layer contains all features, while the output layer has 250 dimensions and is fully
connected. Using a concatenation layer followed by many layers, the trained deep features
arising from the output of both networks are mixed. The output layer of the proposed
model generates the class prediction. Experiments demonstrated that gene expression data
can more accurately predict subtypes than CNA data. In addition, they demonstrated that
the suggested model, which is based on both datasets, outperforms models that rely just on
one dataset, particularly when the network weights are deleted during the concatenation
step. The misclassified instances were subsequently studied, and the study revealed that
most of them were HER2-enriched. The findings implies that HER2-enriched should be
subdivided into further subgroups because most HER2-enriched misclassified cases lack
HER2 gene copy number gain.

The authors of [16] proposed an approach to breast cancer subtyping using multi-
omics data and multiple kernel learning (MKL), where various kernels were investigated.
Following their work, the research described in [17] is another example of using the
same multi-omics data to predict breast cancer subtypes. This study makes use of The
Cancer Genome Atlas’s mRNA, DNA methylation and CNV datasets (TCGA). Data were
standardized as part of the preprocessing, and records with missing values were removed
from the study. The chi-squared test was used to identify the most significant characteristics
and eliminate the ones that were not. The chi-square test is used in feature selection to
test the independence of the target variable (class variable) and each of the descriptive
variables in the dataset. For each pair target feature-descriptive feature, the test statistic

χ2 = ∑ (O−E)2

E is calculated, where O and E refer to the observed and expected frequency
for a category in the contingency table, respectively. After that, the descriptive variables
are ranked in descending order of the χ2 values. As a result, the variables with the highest
values are selected [18]. Hence, in [17], the top 5000 characteristics were chosen for each
omics dataset. The proposed technique trains three type-specific encoding subnetworks to
learn the features of each omics type with 5000 chosen features as input and learned features
as output and combines features of each omics type. The consolidated and smoothed
features from each of the three networks are then fed into a new deep neural network
(DNN). The accuracy and area under the curve were used to assess the performance of the
proposed model for binary and multi-class classification.

Determining the primary site of cancer is one of the challenges of treating metastatic tu-
mors, and patients are usually diagnosed with cancer of unknown primary site (CUP). The
study in [19] employed RNA sequence data and a 1D inception convolution neural network
to determine the primary type of cancer (CNN). Combining the TCGA and ICGC datasets
produced records for 182,017 patients, each with 20,531 genes. The combined dataset con-
sists of 32 primary tumor types used to predict tumor location. In total, 817 features were
selected based on the differentially expressed genes (DEGs). To enhance generalization, the
model incorporates a large number of convolutional kernels with different configurations,
followed by intensive hyper-parameter optimization using max-pooling layers and dropout
settings. The suggested model achieved 98.45% accuracy using cross-validation, whereas
the test dataset achieved 96.70 %. The model was also evaluated on two separate datasets,
yielding 86.96 and 72.46 % accuracy, respectively. After defining the primary site of cancer,
random forest was used to predict molecular subtypes using a TCGA dataset containing
11 molecular subtypes. The authors recommend incorporating other features, such as so-
matic point mutation, to enhance the performance of the proposed model. Gene expression
and image data were used in other computational approaches. The reserch in [20] uses
1000 whole-slide images (WSIs) and multi-omics data to automatically measure and rank
tumor-infiltrating lymphocytes (TILs).
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A review [21] focuses on a study of the usefulness of clustering in cancer prediction
and previous work that incorporates multi-omics data of cluster cancer. The study also
contrasts single-omics data models with multi-omics data models. This review shows
several methods for clustering and integrating multiple datasets, including: 1—integrating
the data then clustering the resulted dataset; 2—clustering each omics dataset then integrat-
ing the clusters for another clustering step; 3—computing the similarities between omics
data then integrating the results before clustering; 4—reducing the dimensionality of the
features before clustering; and 5—using statistical methods for modeling the data prior to
clustering. The study also investigated deep learning models used in cancer prediction.
One limitation of deep learning mentioned in this study is that the cancer dataset typi-
cally contains few instances with a larger number of features, and deep learning works
best with few features. Previous research has used fewer network layers to overcome
this limitation. Experiments are conducted on ten forms of cancer using nine approaches,
including LRAcluster, k-means, and spectral clustering for early integration, SNF and
rMKL-LPP as similarity-based algorithms, MCCA and MultiNMF for dimension reduction,
and iClus-ter and PINS for late integration. The research gives benchmarks for cancer
clustering and reveals that no single strategy consistently outperformed all others on any
assessment criterion. The research also highlights the significance of feature selection in
cancer prognosis.

The authors of [22] raised the issue of the misdiagnosis of cancer and disagreement
among physicians regarding the type of cancer, especially when the form of cancer is rare.
Misdiagnosis can result in inappropriate treatment. The study employs four DNNs, each
of which is concerned with a specific task and transfers specific information to identify the
primary cancer tissue and its subtype more accurately. Each network is equipped with an
encoder and a decoder. To ensure resilience against missing data and noise, all networks in-
clude a Gaussian dropout before the input layer. Two of the networks employ a Variational
Autoencoder (VAE), while the remaining two employ a Contractive Autoencoder (CAE).
Every layer of one of the VAE and CAE networks contains dropouts. CAE encodes the
input as a single vector, while VAE encodes it as means and standard deviations, resulting
in two vectors. Deepathology, the proposed model, has a high detection accuracy rate
for cancer subtypes. Because the deep neural network is a black box, it is challenging to
decipher the model’s patterns and identify casual connections between the original dataset
and the outputs. Nonetheless, attempts were made to extract information from the trained
model using statistical methods.

Another study in [23] shows that integrating gene expression, miRNA expression
and DNA methylation omics data can enhance the results of cancer subtype prediction.
The proposed framework is based on hierarchical integrated deep flexible neural forest.
An encoder is built for each omics data generating three set of features. The results are
integrated and used as input to another encoder used for generating final classifications.
The dataset used includes three different types of cancer, including breast, glioblastoma
multiforme, and ovarian. Records with 20% missing values are eliminated. The missing
instances are imputed based on K-nearest neighbors. Additionally, values were normalized.
Particle swarm optimization was performed to optimize the parameters of the model. The
result of the integrated model was compared with using single omics data. It was also
compared with other dimensionality reduction methods and other classification methods.
The results showed that the proposed model outperforms other techniques. In a similar
context, the study in [24] provides a deep hierarchal learning approach, which utilizes a
stacked auto-encoder neural network to learn high-level features for every input data and
integrates gene expression and transcriptome alternative splicing to define subtypes.

As can be seen, diverse methods and data types were used in various studies to
improve cancer subtype prediction. Both traditional and deep learning models were imple-
mented. The integration of diverse omics data results in a challenging dimensionality issue.
In addition, when the number of samples is small in comparison to the number of features,
deep learning models may not be the best option. Moreover, as seen in the literature
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review, one lingering issue with the proposed solutions is the lack of an explanation for
the model’s behavior, as most research in this area interprets the model as a Blackbox
while attributing behavior to feature importance. In this work, our goal is to improve
classification performance while also increasing transparency of the results and making
strides in the interpretation of our experiments.

3. Methods and Materials

To address the aforementioned issues, we propose a multi-stage feature selection
framework for dimensionality reduction in a multi-omics context and then investigate the
impact of the selected features on breast cancer subtype prediction. Figure 1 illustrates
the proposed framework. This approach extends our previous study [25] by focusing
on improving the multiclass classification task which requires the accurate identification
of five subtypes and by taking an additional step toward interpretability, which aims to
provide greater insight into the data and the algorithms.
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As part of this framework, we consider the TCGA omics dataset, which, as previously
stated, contains many features and modalities. Another motivation is to establish a testing
benchmark against which we can compare our results to state-of-the art studies.

Considering this, we intend to develop a model that can accurately predict five cancer
subtypes while also remaining highly interpretable for future research. The study utilizes
three distinct data types, DNA methylation, CNV, and mRNA descriptors (for short, we
will refer to them as DNA, CNV, and RNA, respectively, in the rest of the paper), as well as a
two-stage feature selection approach with multiple data integration strategies. The process
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begins by establishing a benchmark against which we monitor the prediction progress.
This is achieved by integrating the data from the three sources into one dataset named as
HYBRID in Figure 1. After feeding the data to the machine learning fine-tuned models,
the results are computed using a cross-validation procedure. In the multi-step feature
selection process that follows, feature selection is applied, new datasets are generated, and
benchmark reports are compiled. At each stage, each set of features is individually and
collectively analyzed based on SHAP interpretation to determine the significance of each
feature, the impact of their fusion, and how their fusion technique affects the classification
task.

Figure 1, therefore, depicts four key informational elements: the datasets used, the
feature selection algorithm, the integration schemes, and the machine learning models. The
following will elaborate on these components.

3.1. Datasets and Integration Schemes

The datasets used in this study are from TCGA. Similar to [16,17], the datasets used
cover 3 types of modalities, including 13,195 mRNA features, 14,285 DNA methylation
features, and 15,186 unique CNV features. In total, 606 cases were recorded in the datasets
and were classified into 5 categories based on the ER, PR, and HER markers, as described
in the two aforementioned works: luminal A, luminal B, ERBB2 (HER2(+)), TNBC, and
Unclear, with 277, 40, 11, 70, and 208 instances, respectively.

Using feature selection and different integration schemes, the following datasets have
been generated from these three original datasets:

• HYBRID: this dataset is the result of combining the three original datasets, yielding a
46,666 × 606 dataset.

• S_DNA, S_RNA, and S_CNV: these datasets are obtained by individually selecting
features from each dataset.

• S1_HYBRID_T1 (S1HT1): this dataset is derived using selected features from HYRID
dataset.

• S1_HYBRID_T2(S1HT2): this dataset is derived by combining the S_DNA, S_RNA,
and S_CNV datasets.

• S2_HYBRID_T1(S2HT1): this dataset is derived from S1_HYBRID_T1 using the se-
lected features.

• S2_HYBRID_T2(S2HT2): this dataset is derived from S1_HYBRID_T2 using the se-
lected features.

3.2. Feature Selection Algorithm

As a means of reducing dimensionality and improving our model’s efficiency even
further, we resorted to feature selection. Feature selection (FS) is considered one of the most
important pre-processing tasks in a machine learning life cycle as it enables the process to
cope with the curse of dimensionality and properly handle the so-called large p, small n
problems.

This process enables us to reduce computational complexity and, in some instances,
filtering irrelevant and redundant features while maintaining the overall integrity of the
dataset, which consequently, in certain situations, enhances the classification performance.

This stage is required in our study as we want to identify the most essential features
and use that subset to increase the classification performance of the models while also
being able to explain the logic behind the outcomes. Thus, in this research we enforced the
interpretability aspect by relying on feature selection techniques.

Several techniques of feature selection exist, which can be grouped into 3 main cate-
gories: filter, wrapper, and embedded methods, each with its advantages and disadvan-
tages.

Filter methods [26,27] are based on the principle of rank and pruning. They make use
of heuristic rules to evaluate features’ predictiveness based on intrinsic data properties.
The wrapper approach [26,27] evaluates the subset of features as a potential indicator of
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the model’s performance. This method requires a predetermined learning algorithm and
uses the performance of the learning algorithm to determine which features are selected.
The embedded approach [27], which is a compromise between rank and wrapper and
incorporates feature selection into the learning method. Therefore, it can inherit the
advantages of filter and wrapper approaches.

As the goal is to improve model performance rather than computation efficiency, we
chose recursive feature elimination [28] as the FS technique. Despite its greedy nature, it is
widely used for feature selection as it is relatively effective and efficient in reducing model
complexity by removing irrelevant features.

As the name suggests, RFE works by removing features recursively and then build-
ing a model on the features that remain. It is a wrapper method that internally employs
filter-based feature selection. RFE ranks features by importance and calculates accuracy
by evaluating smaller subsets of features recursively. Such a method requires a rank-
ing algorithm for features. Model accuracy is used to determine which features (and
combinations of features) contribute the most to accurately predicting the target class.
This technique starts by creating a model with all of the features in a given set and
assigning an importance score to each feature. Then, one by one, the least important
feature(s) are removed from the current set of features and importance scores are com-
puted again, until we are eventually left with the desired subset of features. To score
features, the provided machine learning model is used. To estimate the importance of
features, bagged decision trees such as random forest and extra trees can be used. After
several attempts to optimize the process, we resorted to the random forest algorithm.
This allowed us to have a more complete overview of the subsets of features. More
formally, a simplified version of RFE can be described as shown in Algorithm 1 below:

Algorithm 1 Recursive Feature Elimination (RFE)

Inputs:
A set of features S = {f i, i = 1 . . . n}
A classifier model M (random forest or extra trees)
A training dataset X
A target variable y
The desired number of features Nbest

1: while (size(S) > Nbest) do
2: Fit the model M on the dataset restricted to good features S:
3: Ms = train_model (X(S), y)
4: Rank the features in S according to their importance using the model Ms
5: Sranked = rank (S, features_importance(Ms))
6: Remove the least important feature f i:
7: S = Sranked − {f i}
8: end while
9: Sbest = S

Output: the selected subset of features Sbest

3.3. Machine Learning Models

We initially investigated a variety of traditional and ensemble algorithms in prelimi-
nary experiments, all of which were fine-tuned accordingly using Grid Search. The most
performant and consistent algorithms were chosen based on our findings and those of
the literature. In addition, for further interpretability, we selected algorithms with differ-
ent approaches to a classification task. The following will briefly describe the selected
algorithms.

3.3.1. Support Vector Machine

The support vector machine (SVM) is a well-known machine learning algorithm that
was originally developed to solve supervised learning problems by Vapnick et al. [29]. SVM
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has grown in popularity as a result of its superior generalization ability and successful
applications. A comprehensive survey on SVM models is given in [30]. Despite the
widespread adoption of deep learning models, SVM remains a viable option for many
issues where deep learning cannot be successfully applied, especially when sufficiently
big datasets are unavailable [31]. SVM is primarily based on the class separation principle.
It seeks to identify support vector instances that lie along the margin extents in order
to find the largest margin between classes. The decision boundaries for the classes are
defined by the support vectors, which are critical instances. As a result, training a support
vector machine for linearly separable instances looks specifically for the best separating
hyper-plane with the greatest margin between the different data points. SVM, on the other
hand, maps non-linearly separated data instances into higher dimensional space where the
data can be separated linearly. Kernels are similarity functions that support dot products
with special properties that allow a function to be substituted for a higher dimension space.
Many kernel functions are supported by SVM, including linear kernel, polynomial kernel,
and radial basis kernel. SVM has also been extended to handle unsupervised learning
problems.

Formally, training a SVM model is performed by solving the following quadratic and
convex problem optimizing the following quadratic objective function:

minw,b,ξ
1
2
||w2||+ C∑

i

ξi

subject to
yi(〈w, ϕ(xi)〉+ b) ≥ 1− ξi and ξi ≥ 0

where:

ϕ(·) is the feature map corresponding to some kernels;
(w, b) are the parameters of the separating hyperplane with w ∈ Rn and b ∈ R;
xi refers to the data point;
yi ∈ {−1, 1} is the data point label;
ξi is a slack variable that represents the impact of the misclassified data;
C is a penalty term.

3.3.2. Ensemble Learning

It is well known that there is no algorithm that is always the most accurate, according to
the no free lunch theorem. Rather than relying on a single model, combining the advantages
of multiple models has the potential to mitigate the weaknesses of each individual model.
The resulting combined model ought to be more robust and less error-prone than any
individual model. This is called ensemble learning, which is prevalent in machine learning
and statistics. Multiple machine learning models’ decisions are combined to minimize
errors and achieve aggregated decisions that enhance prediction. Each classifier is weak but
the ensemble is strong. Ensemble learning systems have proven to be highly effective and
extremely versatile across a variety of problem domains and real-world applications [32].

Ensembles can be created in a variety of ways. Simple ensembles use voting or
averaging predictions of multiple pre-trained models. Another approach of ensembles
consists in training the same model multiple times on different datasets and combine these
different models rather than training different models on same data. Simple (weak) models
can be used as the base models. Bagging (parallel ensemble) [33,34] and boosting [34–36]
(sequential ensemble) are two methods for performing ensemble learning. Representatives
from each class have been considered in our work.

Bagging entails taking repeated bootstrap samples from the training dataset and
training a different classifier on each sample in parallel. Bootstrapping is the first step in
the bagging process flow, in which the data is divided into randomized samples. Following
that, classifiers are trained in parallel with these randomized samples. Bagging makes
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predictions based on the majority vote or the average. Random forest and extra trees are
two examples of bagging ensembles.

Random forests [37] are ensemble learning methods designed specifically for decision
tree classifiers. They are based on two randomness sources: bagging and subspace sampling.
The process of growing each tree using a bootstrap sample of training is referred to as
bagging. The latter only uses a randomly selected subset of the descriptive features in the
dataset, which is referred to as subspace sampling. Random forest makes predictions by
returning majority vote or median value.

The extra tree, also known as the extremely randomized tree [38], is a model similar
to decision trees and random forests, but it uses additional data information to enhance
predictive accuracy. It is very similar to random forest but it uses a different method
to construct the decision trees. Random forest uses bootstrap replicas (bootstrapping),
whereas extra tree uses the entire original dataset. Another distinction is the choice of cut
points for splitting nodes. Random forest selects the best split, whereas extra tree selects it
at random. However, once the split points are determined, the two algorithms determine
the best one among all the feature subsets. As a result, extra trees introduces randomization
while maintaining optimization.

Boosting is a sequential ensemble learning technique for improving the accuracy of a
model by transforming a weak hypothesis or weak learners into strong learners. Boosting
trains classifiers sequentially (e.g., decision trees). A new classifier should focus on those
cases, which were misclassified in the previous round. It combines the classifiers by letting
them vote on the final prediction (like bagging).

The boosting algorithm generates new weak learners (models) and combines their
predictions sequentially to enhance the model’s overall performance. It performs by
assigning larger weights to misclassified samples and lower weights to correctly classified
samples. Weak learner models with higher performance are given more weight in the final
ensemble model. AdaBoost was the first boosting implementation (adaptive boosting).
Gradient boosting is a type of boosting algorithm in which errors are minimized using a
gradient descent algorithm and a model in the form of weak prediction models, such as
decision trees, is produced. Gradient boosting has been improved in terms of computational
speed and model performance and scaled to extreme gradient boosting (XGBoost) [39],
which is the most widely used public domain software for boosting.

3.4. Shapley Additives Explanations Framework

Explainable Artificial Intelligence, or XAI, is the process of understanding the reason-
ing behind the model’s results and why and how inquiries are related to those outcomes,
while also allowing visibility into how these algorithms function at each stage of their
problem-solving approach [40].

Considering the tradeoff between performance and interpretability, we considered
a popular XAI framework based on game-theory known as SHAP (Shapley additive
explanations). This framework can be used to explain the outcomes of different AI models
and different forms of datasets by figuring out the best way to give out credit to local
explanations using the traditional Shapley values and extensions of game theory [41].
SHAP itself assigns a significance value, or SHAP Value, to each characteristic in each
prediction. Each value describes how to get from an expected base value to an observed
output if we had no information about the current output [41]. These values provide a
one-of-a-kind additive feature significance measure that satisfies all three properties of local
accuracy, missingness, and consistency while defining simplified inputs using conditional
expectations [41]. The SHAP method approximates these values utilizing six alternative
methods, two of which are model-agnostic while the other four are model-type-specific. An
in-depth and exact explanation by which the values are calculated can be quite lengthy and
is out of scope of this work, therefore we recommend reviewing the proposed framework
on the original paper [41].
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4. Experimental Study and Results

A comprehensive experimental study was carried out. For the sake of clarity and to
provide a concise and precise description of the experimental results, their interpretation,
and the experimental conclusions that can be drawn, we organize this section as follows:

First, we describe the test environment, including the hardware and software used for
implementation, and then we discuss the performance metrics we used to benchmark our
results. The results are then presented and discussed.

4.1. Implementation Environment

The experimental environment’s hardware consists of a 3.4 GHz 16-core Ryzen 9
5950X processor, 32 GB of RAM, and an Nvidia RTX 3080 TI. In terms of software, and in
efforts to adhere to the FAIR Guiding Principles of reusability and data management [34],
we implemented the classification models using Python 3.8 with the scikit learn package
version 0.23.2 and fine-tuned the models using Grid Search. More details concerning the
parameters’ settings can be found on GitHub [42]. Later, the SHAP package version 0.40.0
was used for classification interpretation. The code can be found on GitHub [42].

4.2. Performance Metrics

As mentioned earlier, the target feature has five levels: luminal A, luminal B, ERBB2(HER2(+)),
TNBC, and Unclear. Therefore, the confusion matrix corresponding to the multiclass clas-
sification is a 5 × 5 matrix. Based on the one-versus-rest strategy, true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) are defined. The following
performance metrics are used to assess the performance of the various proposed models
using the selected features and integration schemes. These measures are derived from the
confusion matrix as follows:

Accuracy: This measure gives the rate of instances correctly classified (ICC) among
all test instances (TI). Let us denote through NICC and NTI, the numbers of ICC and TI,
respectively. The accuracy can be defined as:

Accuracy =
NICC

NTI

Precision: Precision refers to the proportion of predicted positive instances that are
in fact positive. Therefore, for each of the five previously mentioned classes, precision
represents the classifier’s ability to predict the type of BC in a patient with that type of BC,
i.e., luminal A. Increasing precision decreases false positives and increases true positives.
For each level or class, precision is defined as:

Precison(i) =
TP(i)

TP(i) + FP(i)
i = 1 . . . 5

The overall precision is the average over all classes.
Recall: This metric, also known as sensitivity, measures the proportion of actual

positive instances that are predicted as positive. Therefore, for each of the five classes
previously mentioned, the recall metric indicates the classifier’s ability to find all instances
with that class. Improving recall reduces false negatives and increases true positives. For
each level or class, recall is defined as:

Recall(i) =
TP(i)

TP(i) + FN(i)
i = 1 . . . 5

The overall recall is the average over all classes.
F1-score: In case of class imbalance, F1-measure (or F1 score) is a more reliable measure

to assess the performance of the classification. It concentrates on minimizing both false
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positives and false negatives. It is the harmonic mean of precision and recall and can be
defined as follows:

F1 score = 2
Precision ∗ Recall
Precision + Recall

where Precision and Recall are the average over the precision and recall for each class.

Precision =

i=5

∑
i=1

Precision(i) and Recall =

i=5

∑
i=1

Recall(i) (1)

ROC_AUC: The receiver operating characteristics (ROC) curve is a probability curve
that is used to evaluate the performance of classification models with varying threshold
settings. It demonstrates the model’s ability to distinguish between classes. The area under
the curve (AUC) is used to quantify this separability ability. The greater the AUC (close to
1), the better the performance and ability to differentiate between classes. When the AUC is
close to 0.5, it indicates an inability to differentiate between classes. When AUC is close to
0, the model tends to invert the classes.

4.3. Experiments and Results

The experimental results will be presented according to the workflow depicted in
Figure 1. First, we will describe the experiments that were carried out using the baseline
datasets and the hybrid datasets obtained during the early integration. The first-level
feature selection experiments’ results will then be discussed and different integration
schemes will be evaluated. After that, the results of the second level feature selection
experiments will be presented and discussed with further interpretation. The obtained
results will be compared to those of other techniques described in the literature. The impact
of the features on classification will also be discussed.

4.3.1. Baseline Experiments

Initial experiments consist of benchmarking our fine-tuned models on the three origi-
nal datasets and the HYBRID dataset. During the preparation process, labels were encoded,
and the dataset was transformed into a format compatible with our fine-tuned models.
Tables 1–3 show the results, while Figure 2 provides a summary.

Table 1. DNA Raw Experimental Results.

Classifiers Accuracy Precision Recall F1-Score ROC_AUC

Random Forest 74.112 68.416 74.112 70.542 86.209
Extra Trees 74.604 68.753 74.604 71.069 85.046

SVM 56.940 44.975 56.940 49.753 80.191
XGBoost 76.913 73.695 76.913 74.502 88.683

AVG 70.6420765 66.467

Table 2. RNA Raw Experimental Results.

Classifiers Accuracy Precision Recall F1-Score ROC_AUC

Random Forest 61.249 58.381 61.249 58.512 80.589
Extra Trees 61.243 59.426 61.243 57.936 81.821

SVM 56.273 52.602 56.273 51.138 81.975
XGBoost 63.227 61.740 63.227 61.647 82.565

AVG 60.49795082 57.308
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Table 3. CNV Raw Experimental Results.

Classifiers Accuracy Precision Recall F1-Score ROC_AUC

Random Forest 61.907 58.049 61.907 58.734 81.741
Extra Trees 58.451 55.331 58.451 55.235 81.473

SVM 56.273 52.602 56.273 51.138 81.975
XGBoost 63.227 61.740 63.227 61.647 82.565

AVG 59.96448087 56.689
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Analyzing these tables reveals a substantial disparity in classification results based
on modality. This raises the question of whether certain modalities are more suited to this
classification task than others, and if so, which modalities are more suited to this task. In
addition, which set of features is most important for each modality?

Based on these baseline results, a significantly higher classification rate has been
achieved by relying solely on DNA features, as we observed an increase in approximately
10% in both f1-score and accuracy results when compared to other modalities. Moreover,
while the focus of this research study is on the data rather than presenting a novel machine
learning model, evaluating the models enables us to fine-tune the subsequent iterations
and to understand how the data influences the model’s overall efficiency. Consequently,
we can see that ensemble learners are consistently able to attain the highest scores.

In addition, we conducted a second baseline test with the HYBRID dataset, which was
obtained by integrating the original three datasets early on. The objective is to confirm or
refute the hypothesis that combining diverse data sources can significantly improve the
overall performance of the model in this particular case, as has been explored in [24,43].
The results are presented in Table 4 and Figure 2.
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Table 4. HYBRID Raw Experimental Results.

Classifiers Accuracy Precision Recall F1 ROC_AUC

Random Forest 77.577 76.305 77.577 75.531 92.313
Extra Trees 78.066 74.444 78.066 75.128 92.280

SVM 56.590 51.747 56.590 47.161 88.830
XGBoost 79.885 80.101 79.885 79.194 92.438

AVG 71.35063752 69.254

As expected, by combining all features, we were able to increase the classification
rate against mRNA and CNV datasets by approximately 15% and by approximately 3%
compared to the previous best models. To gain a deeper understanding of this behavior,
we will interpret the classification process using information gain based on the best model,
XGBoost in this case. As can be seen on Figure 3, we found 48% DNA features, 46% mRNA
features, and only 6% CNV features among the top 50 important XGBoost features. With
cumulative weights of 0.47, 0.48, and 0.04, respectively, across the entire dataset. This was
expected, given that models employing DNA features solely had higher detection rates,
and thus a greater contribution to the hybrid set was expected.
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This behavior can be interpreted in greater detail using the normalized confusion
matrix (Figure 4) according to the true labels and SHAP summary plots (Figure 5) which
will help us understand the nature of the contribution made by each set of features. SHAP
plots make it easier to see how the features affect the model’s predictions. Specifically,
we can extract the most influential features based on mean SHAP values, as well as the
magnitude of each feature to the classification process, using the summary plot.
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As shown in the normalized confusion matrix in Figure 4, the best performing model
using the Hybrid dataset performs better at classifying luminal A and Unclear instances.
Some TNBC instances were wrongly classified as luminal A and Unclear. Additionally,
most of luminal B instances were classified as luminal A and all ERBB2 instances in the test
set were classified as luminal B.

The SHAP summary plot of the classification process using the Hybrid dataset and
the XGBoost classifier is shown in Figure 5. This graph ranks the features in descending
order based on their influence on the model’s predictions by computing the mean SHAP
values for each variable. Because we are dealing with a multiclass classification task in our
scenario, the summary plot ranks the features based on their overall contribution to all
classes and color codes the magnitude for each class. The mean threshold in our example
was determined programmatically, allowing us to identify the top 50 most influential
features.

In Figure 5, we can see at a glance that RNA and DNA features have a significant
impact on the classification process, as depicted in the SHAP summary plot displayed
below. RNA and DNA features have the greatest influence on luminal A, luminal B and
ERBB2 (HER2 (+)) and TNBC subtypes, whereas CNV has a greater impact on luminal
B and TNBC classification instances. The Unclear class, on the other hand, is primarily
influenced by RNA and DNA features.

Before delving further into the interpretation of the results, we preferred to enhance
accuracy rates and address concerns regarding the high feature dimensionality and limited
sample presence. Consequently, the subsequent experiments will elaborate on the selection
of the most useful feature subsets as well as strategies to improve classification rates and,
ultimately, a more accurate interpretation.

4.3.2. Level 1 Experiments

This stage’s objective is to reduce the dimensionality of the baseline datasets as much
as possible, while simultaneously improving performance and preserving the integrity and
interpretability of our data. As previously described, RFE was used to classify features into
subsets belonging to classes ranging from 1 to n, with class 1 being the most significant.
As depicted in Figure 1, the resulting subsets are constructed from class 1 features and
subsequently fused into a hybrid dataset using two distinct strategies.

In the first approach “T1”, the subset is derived directly from the original hybrid
dataset, where we achieved the highest scores, whereas in the second approach “T2”,
we take a late integration approach in which we extract the optimal subsets from each
individual descriptor and then combine them into a single dataset. The subsequent fine-
tuned models performed as shown in the Tables 5–9 below.

Table 5. Experimental Results using S_DNA with 1085 features.

Classifiers Accuracy Precision Recall F1 ROC_AUC

Random Forest 76.751 71.156 76.751 73.254 91.258
Extra Trees 76.743 71.149 76.743 73.261 90.298

SVM 63.544 58.916 63.544 58.919 85.704
XGBoost 78.402 75.862 78.402 76.303 90.996

AVG 73.860

After such extensive reshaping, not only were we able to preserve the dataset’s in-
tegrity, but we were also able to outperform the baseline scores in terms of accuracy by
approximately 3%, while utilizing roughly 10% of the original datasets. We also achieved
the highest scores using the hybrid dataset at this stage. By extracting directly from the
original hybrid set, we were able to achieve significantly higher scores. As shown in the
graph below (Figure 6), we observed a 5% increase in accuracy rates and a 4% increase in
F1 scores compared to a late integration strategy.
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Table 6. Experimental Results using S_RNA with 1586 features.

Classifiers Accuracy Precision Recall F1 ROC_AUC

Random Forest 63.874 61.690 63.874 61.908 84.850
Extra Trees 65.691 64.618 65.691 63.549 85.153

SVM 61.574 60.500 61.574 58.893 84.716
XGBoost 63.391 61.709 63.391 61.581 83.699

AVG 63.633

Table 7. Experimental Results using S_CNV 486 features.

Classifiers Accuracy Precision Recall F1 ROC_AUC

Random Forest 66.189 65.329 66.189 64.490 86.606
Extra Trees 67.516 66.496 67.516 65.746 86.318

SVM 61.577 60.379 61.577 58.163 84.291
XGBoost 64.880 64.244 64.880 63.438 84.707

AVG 65.040

Table 8. Experimental Results using S1HT1 with 166 features.

Classifiers Accuracy Precision Recall F1 ROC_AUC

Random Forest 83.669 84.029 83.669 83.338 95.346
Extra Trees 83.667 84.152 83.667 83.279 95.142

SVM 71.13934 68.01747 71.13934 67.24732 91.40257
XGBoost 83.003 83.737 83.003 82.742 94.097

AVG 79.270 78.594 79.270 77.776 93.615

Table 9. Experimental Results using S1HT2 with 3157 features.

Classifiers Accuracy Precision Recall F1 ROC_AUC

Random Forest 80.036 78.747 80.036 78.886 94.127
Extra Trees 80.858 79.940 80.858 79.798 93.459

SVM 63.844 62.392 63.844 61.173 86.633
XGBoost 79.041 79.613 79.041 78.594 93.051

AVG 74.307

Starting with individual descriptors, using our strategy we were able to reduce the
number of features in each dataset as seen in Table 10 below.

Table 10. Shapes of produced datasets.

Reduction

Descriptor Original Number of Features New Set of Features Reduction Percentage

DNA 14,285 1085 92%
RNA 13,195 1586 88%
CNV 15,186 486 97%

One way to interpret these results is to study composition of these datasets. As shown
in Table 11, each percentage represents the proportion of features from the corresponding
baseline dataset that contribute to the hybrid set under consideration. In S1HT1, for
example, 36% of features are DNA features, 54% are RNA features, and 10% are CNV
features.
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Table 11. Composition of datasets.

S1HT1

Descriptor Number of Features Percentage

DNA 60 36%
RNA 89 54%
CNV 17 10%
Total 166

S1HT2

DNA 1085 34%
RNA 1586 50%
CNV 486 15%
Total 3157

Most features now originate from mRNA features, followed by DNA features, and
finally a small subset of CNV features, as compared to the baseline set. According to our
previous hypothesis, we would have expected DNA features to be more significant in
accordance with the results obtained from individual datasets. However, the presence of
more mRNA features indicates that these features had the greatest impact on classification
and integration. To further analyze this behavior, a second level of feature extraction was
considered for T1 and T2. Results revealed that features alone were unable to achieve high
scores, but when combined, they did.

4.3.3. Level 2 Experiments

In this set, a second level of feature selection was conducted using RFE. The Tables 12 and 13
below depict the results obtained in both T1 and T2 classification tasks.

Table 12. Experimental Results using S2HT1 with 118 features.

Classifiers Accuracy Precision Recall F1 ROC_AUC

Random Forest 84.000 84.361 84.000 83.624 95.032
Extra Trees 84.500 84.756 84.500 84.021 95.313

SVM 71.309 68.137 71.309 67.452 91.508
XGBoost 83.516 83.885 83.516 83.095 94.359

AVG 79.775
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Table 13. Experimental Results using S2HT2 with 2388 features.

Classifiers Accuracy Precision Recall F1 ROC_AUC

Random Forest 80.533 79.280 80.533 79.502 93.929
Extra Trees 81.189 80.550 81.189 80.190 94.122

SVM 64.508 62.917 64.508 61.783 86.714
XGBoost 81.519 81.442 81.519 80.967 93.329

AVG 75.7386

In this second stage, the feature selection procedure iterated through each feature
one at a time. We reduced 48 features from the T1 dataset and 769 from the T2 dataset,
which is significantly less than the initial reduction rate. This indicates that, of the original
42,666 features, this dataset contains only the most influential and relevant features. We
can also see that better performance has been achieved with S2HT1 dataset and extra trees
model. In general, ensemble models perform better than SVM in all experiments.

A comparative study has been conducted using related works from the literature. Our
results have been compared to those reported in [17] where the same datasets have been
used. As we can see on Figure 7, we have in fact reached higher performance rates, not
only in our experiments but also compared to the literature. We achieved an increase of
6.5% from the previous works in [17] in multiclass classification in terms of accuracy. As
was achieved by our ensemble methods XGBoost and extra trees with a two-level feature
extraction and an early integration approach to our different modalities.
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Now, in an effort to improve interpretability, SHAP summary plots and the confusion
matrix will be used. Both will be applied to the S2HT1 dataset, as we were able to obtain
significantly higher classification rates using this set with the extra trees classifier.

The S2HT1 is composed of 45 DNA features, 60 mRNA features, and 13 CNV features,
which only represent 0.27% of the original Hybrid dataset. The top 50 features (Figure 8)
consist of 14 DNA features, 30 RNA features, and 6 CNV features with a global importance
of 0.359 for DNA features, 0.528 for RNA features, and 0.113 for CNV features.
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The graph (Figure 9) depicting the contribution of each feature to each class classifi-
cation demonstrates a more balanced impact on all classes or subtypes. They influence
the classification of every class to some extent, contrary to what has been observed in base
experiments.
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Besides confirming the high impact of the RNA features seen in the Figure 7, we can
hardly understand the influence of each set features on the classification process. Hence, we
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breakdown this summary plot into individual plots per class accompanied by the confusion
matrix as seen in Figure 10 below.
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Figure 11 illustrates the impact of the features on the classification process in greater
detail. This graph looks at the classification one class at a time. As a result, the important
features on the Y-axis are ranked in descending order based on their impact on classification.
The impact is depicted on the X-axis by the calculated SHAP value for each instance. If
the SHAP value for an instance is positive (negative), it means that the corresponding
feature has a positive (negative) impact on the classification for that instance. Each point
on the summary plot is an instance, color-coded by a red-to-blue gradient representing
the original value of the feature and positioned based on its distribution. The color red
represents high values of the feature, while the color blue represents low values [44].
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Figure 11 below shows that luminal A prediction is primarily influenced by DNA and
RNA features. With ESR1, CA12, and CAPN10 as the top RNA features and CBX4.1 as
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the top DNA feature for this classification, we can observe that an increase in the values
of RNA features indicates that the observed instance has a greater likelihood of being a
luminal A subtype, while a decrease in the values of DNA features predicts the opposite.

On the other hand, as depicted on Figure 12, CNV features have a significant impact
on the prediction of luminal B cases. These characteristics include IKZF3, PPP1R1B, and
GRB7 as the most prominent for this subtype, with the likelihood of luminal B classification
increasing as the value increases.
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Regarding TNBC predictions, we can observe that only the most prominent mRNA
characteristics, such as ESR1, CA12, MLPH, TBC1D9, and THSD4, have an impact on this
classification. As the likelihood of a positive classification rises, the values of these features
must decrease for a TNBC instance to be classified as such. As shown by the scatterplot in
Figure 13, greater values of these characteristics are associated with a negative classification
of this subtype.
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As shown in Figure 14, the main features regarding ERBB2 predictions are RNA and
CNV features. TCAP, PPP1R1B, and PGAP are CNV features that positively influence this
class prediction. RNA features, such as ESR1, GATA3, and CLSTN2, have a negative impact
on this classification, however.
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4.4. Results Summary

The best results obtained throughout the three steps of the proposed framework, as
shown in Figure 1, are summarized in Table 14. We can clearly see the benefit of performing
several levels of feature integration and selection as results improve while progressing
from one step to the next. The best results were achieved using the extra trees classifier
with two levels of feature selection.

Table 14. Results summary.

Integration–Selection
Level Best Model Dataset Results

Step 1: Baseline
experiments with
early integration.

XG-Boost
HYBRID

(All features DNA,
RNA and CNV)

Accuracy: 79.885%
Precision: 80.101%

Recall: 79.885%
F1-score: 79.194%

ROC-AUC: 92.438%

Step 2: First level
feature selection with

late integration.
Extra Trees

S1-HYBRID-T2
(Combining selected

features from the
three baseline

datasets)

Accuracy: 80.858%
Precision: 79.940%

Recall: 80.858%
F1-score: 79.798%

ROC-AUC: 93.459%

Step 3: Second
level selection

Extra Trees

S2-HYBRID-T1
(Features from

HYBRID dataset
after two level

selection)

Accuracy: 84.500%
Precision: 84.756%

Recall: 84.500%
F1-score: 84.021%

ROC-AUC: 95.313%

In our case, explaining why a model makes a particular prediction is just as important
as the performance itself (in terms of the considered metrics). We used XAI methods,
most notably SHAP, in this study to investigate the precise manner in which genomic data
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influence machine learning models in the classification of breast cancer subtypes. The main
insights are summarized as follows:

- First, by combining data with an early integration technique, the essential information
for classification in the datasets was preserved, and the feature selection process was
better optimized, resulting in an improve of the predictions. Additionally, ensem-
ble methods were the most effective ML models for this type of classification with
several classes, high dimension, a small number of instances, and imbalance in class
distribution.

- Using SHAP, we identified the most significant features according to their classification
influence.

n Top DNA features include: NCL.3, CBX4.1, STK35, TMSB10, C17orf79, RNF10,
FRAT1.2, PPP1R11, LRRC58.2, MPPE1.4.

n Top RNA features include: ESR1, CAPN10, NACA2, SNRNP70, CA12, C19orf6,
PPP1R12C, TMBIM6, ANXA9, PPIAL4G, MAFK.

n Top CNV features include: PGAP3, GRB7, ERBB2, PNMT, NEUROD2, ZBP2,
IKZF3, TCAP, ORMDL3, STARD3.

- Furthermore, within the context of breast cancer subtyping, DNA and RNA character-
istics were by far the most influential features. We observed that:

n Luminal A instances can be accurately identified when lower values of DNA
features (including: CBX4.1, TMSB10, STK35), and Higher values of RNA
features (including ESR1, CA12, GATA3) are measured.

n Luminal B may be correlated with an increase in the values of selected CNV
characteristics, such as IKZF3, PPP1R1B, and GRB7, or with a similar pattern
in RNA features, including PSMD3, MED1, and STARD3.

n mRNA features (including ESR1, CA12, MLPH, and TBC1D9) can be a leading
sign of the presence of TNBC. We observed that a decrease in the values of
specific RNA characteristics suggests the presence of the TNBC subtype, while
the opposite is also true.

n On the other hand, ML models predominantly based on these three modalities DNA,
RNA, and CNV struggle heavily in identifying ERBB2 instances. This can be
related to the shortage in the ERBB2 instances.

Ultimately, we believe that in order to enhance further on this study, other modalities
should be investigated or substituted (in the case of CNV features) or more instances
regarding the minority classes should be provided.

5. Conclusions

The goal of this study was to improve the multiclassification performance of applied
machine learning models for cancer subtyping. We used machine learning and data
optimization techniques to approach this problem methodically. Our approach to data
optimization is novel in that it combines a multi-stage feature selection with various data
integration techniques all within an interpretable framework that can be used for future
developments. We started by establishing a baseline benchmark against which we could
achieve comparable results in the most recent state-of-the-art studies. The results obtained
using individual and combined features were then analyzed. Later, we expanded on
this foundation by concurrently interpreting the behavior of our proposed solutions and
comprehending the impact of each set of features on the classification process. Using
the SHAP interpretation, we explained the behavior of the machine learning classifiers.
This is, to the best of our knowledge, the most comprehensive feature analysis of this
dataset to date. In our interpretation, we looked at how different modalities, such as DNA,
mRNA, and CNV features, contribute to the identification of a specific subset, which, to
our knowledge, has not been investigated before. We were eventually able to identify the
key features that influence the identification of each subset. Furthermore, several data
integration methodologies were investigated, including early and late integration. Early
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integration with two levels feature selection using extra trees, on the other hand, achieved
the highest classification rates. By the end of this study, the best model, extra trees with
S2HT1 outperformed the results obtained in the literature when compared to DeepMO
and MKL, with a 6.5% improvement. Moreover, this study further contributes to the
interpretation of the investigated models and data while using a small subset of the original
features.

As a result, we believe that this study can serve as a model for future datasets and
cancer studies using machine learning approaches. The biological interpretation of the key
findings is also planned for future work.
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