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Abstract: Reversible data hiding (RDH) is a special class of steganography, in which the cover image
can be perfectly recovered upon the extraction of the secret data. However, most image-based RDH
schemes focus on improving capacity–distortion performance. In this paper, we propose a novel RDH
scheme which not only effectively conceals the traces left by HS but also improves capacity–distortion
performance. First, high-precision edge predictor LS-ET (Least Square predictor with Edge Type) is
proposed, and the predictor divides pixels into five types, i.e., weak edge, horizontal edge, vertical
edge, positive diagonal edge, and negative diagonal edge. Different types of target pixels utilize
different training pixels with stronger local consistency to improve accuracy. Then, a novel prediction-
based histogram-shifting (HS) framework is designed to conceal embedding traces in the stego images.
Finally, we improve both the data-coding method and the skipping embedding strategy to improve
the image quality. Experimental results demonstrate that the capacity–distortion performance of
the proposed scheme outperforms the other trace concealment schemes and is comparable to the
state-of-the-art schemes utilizing sorting technique, multiple histogram modification, and excellent
LS-based predictors. Moreover, it can conceal the embedding traces left by the traditional HS schemes
to a certain extent, reducing the risk of being steganalyzed.

Keywords: embedding trace concealment; LS-ET predictor; histogram shifting; skipping embedding;
reversible data hiding

MSC: 68

1. Introduction

Data hiding realizes copyright protection and content authentication by hiding secret
data into digital media covers, which is an important technique in the field of information
security. Due to the requirement of high fidelity of the media cover on some occasions,
any little distortion is intolerable, and reversible data hiding (RDH) technology comes into
being. RDH offers the ability of the exact recovery of both secret message and original
cover media without any distortion. Because of this feature of RDH, many algorithms have
been proposed in the last few decades. Existing RDH algorithms based on image space
domain mainly include lossless compression, difference extension (DE), and histogram
shifting (HS).

The RDH algorithm based on HS was originally proposed by Ni et al. [1], which
created embedding space by manipulating the image histograms. However, the embedding
capacity depended on the number of pixels belonging to the peak bin in the histogram. A
few years later, the idea of prediction was used in HS algorithms to increase the embedding
capacity. In this case, the prediction errors histogram is used, which is sharply distributed
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and peaks near zero. The algorithm in [2] used median edge detector (MED) and modified
prediction error values of 0 and −1 in order to embed data.

Generally, the accuracy of the predictor affects the embedding capacity and the quality
of the stego image, and many predictors have been proposed in recent years. Gradient
adjusted predictor (GAP) was designed by Fallahpour [3]; it used more neighboring pixels
to obtain the prediction values, so it was more suitable for images with complex textures.
An improvement over this algorithm was proposed by Coltuc [4]; a simplified GAP (SGAP)
was designed to reduce the time complexity. Sachnev et al. [5] designed a rhombus
predictor, calculating the average of the four neighboring pixels as the prediction values,
which showed the highest prediction accuracy among all fixed predictors.

However, the weights of the above-mentioned predictors are fixed. In recent years,
adaptive predictors have been proposed to improve the capacity–distortion performance
of HS algorithms. Dragoi and Coltuc [6] proposed an HS algorithm on the basis of local
prediction (LP). The prediction value was weighted on a square block centered on the target
pixel, and weights were adaptively calculated through the least square (LS) method. Hwang
et al. [7] proposed a predictor using least absolute shrinkage and selection operator (LASSO).
The LASSO predictor penalized and removed the pixels in the prediction context that did
not affect the target pixels. Wang et al. [8] used weighted prediction and watermarking
simulation (LP-WPWS) to improve LP. It increased the number of trained pixels in LP
predictor, divided the prediction context into watermarked region and original region, and
applied different weights on the pixels in the two regions to further improve the accuracy
of prediction, but it did not take into account the characteristics of the pixel itself in the
prediction process. Wang et al. [9] proposed the ridge regression predictor to solve the
overfitting problem of LS and was able to obtain smaller prediction error. However, it did
not investigate the selection of appropriate training pixels and prediction context.

In addition to designing high precision predictors, another way to improve the ability
of the HS algorithm is to investigate new embedding methods. Wang et al. [10] proposed
a novel RDH general framework using multiple histogram shifting (MH_RDH), which
formulated the rate allocation among multiple histograms as a rate distortion optimization
and solved it using an evolutionary algorithms. Experimental results showed that the
method could considerably increase the payload. Kim et al. [11] used a pair of extreme
predictions to generate two skewed histograms. Only the pixels from the peak and the short
tail were used for embedding in the skewed histogram, which decreased the distortion
from the lesser number of pixels being shifted. Choi et al. [12] proposed a novel HS
method by skipping some pixels between the peak and the zero, which decreased the
shifting distortion.

Recently, some algorithms have increased the occurrence of ‘0’ in the secret binary
stream by coding secret data, thereby improving the performance of HS algorithms.
Yang et al. [13] proposed a message sparse representation to decrease the embedding
distortion. It would decrease the number of ‘1’s in the binary stream. In 2020, Xie et al. [14]
proposed a signed-digit representation, and Peng et al. [15] proposed a remainder-storage-
based EMD (RSBEMD) method. Those representation methods would not cause message
expansion, viz., the size of the message was enlarged. However, the coded message
stream would appear as new bits, such as ‘−1’, ‘2’, etc., which would cause additional
shifting distortion.

However, these algorithms would leave quite obvious traces after embedding, suf-
fering the risks of exposing the data-hiding action. In particular, there is a steganalysis
algorithm [16] specifically designed for HS. Attackers can easily detect the existence of
secret data from stego images, then intercept those images and decipher secret data. Various
previous works have also noticed the detectability issue of RDH [17,18]. In 2020, Dong
et al. [19] proposed a method that could effectively conceal the traces left by HS. However,
it caused a serious loss of image quality.

In this work, an embedding trace concealment histogram-shifting-based reversible
data-hiding algorithm is proposed. In addition, we propose a novel HS framework using
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the improved data-coding method and the improved skipping embedding strategy. The
histograms of the stego images maintain a shape similar to that of the original histograms.
Therefore, the embedding traces are concealing, to a certain extent. Moreover, we first
propose a LS-ET (Least Square predictor with Edge Type), in which the local texture
characteristic of the target pixel can be fully utilized. The predictor uses only half-context of
the target pixel for the flexibility of the embedding method and low computation, but the
prediction accuracy is comparable to the full-context predictors. Meanwhile, the algorithm
has a good capacity–distortion performance.

The main contributions of this paper are as follows:
(1) It proposes a novel HS framework, which combines the improved data coding

method and the improved skipping embedding method. It aims to conceal the embedding
traces, still enabling the stego image histograms to conform to the Laplacian distribution.

(2) In the framework, two distortions are considered in the HS-based data-hiding
algorithm: expanding distortion and shifting distortion, resulting in the algorithm’s good
capacity–distortion performance.

(3) It proposes LS-ET to improve prediction accuracy. Unlike traditional LS-based
predictors that use fixed neighbors as the training pixels, the proposed LS-ET predictor
utilizes unfixed pixels with stronger local consistency, with the target pixel as training pixels.

(4) It improves the message sparse representation method; the improved data-coding
method is contrary to the judgment condition of the original method, which can obtain
higher stego image quality when secret data is in image form.

(5) It improves the skipping embedding method to achieve the aim of concealing
the embedding traces by adaptively determining the embedding position and skipping
position on the basis of the prediction error histogram and the given payload.

The remainder of this paper is organized as follows. Section 2 analyzes the embedding
traces left by traditional histogram-shifting algorithms. In Section 3, the proposed LS-
ET predictor is described in detail. The framework of the proposed schemes is given in
Section 4. Section 5 presents the experimental results and comparisons, and Section 6
concludes this paper.

2. The Analysis of Embedding Traces Left by HS Algorithms

For prediction-based HS algorithms, the following steps achieve data hiding. First,
calculate the prediction value p(i,j) for each pixel x(i,j) of the original image using a predictor.
Then, compute the prediction error e(i,j) by

e(i, j) = x(i, j)− p(i, j) (1)

Finally, the prediction error is modified according to the secret data, and the modified
prediction error e’(i,j) is calculated by

e′(i, j) =


e(i, j) + a− 1 if e(i, j) < a
2× e(i, j)− data if a ≤ e(i, j) ≤ 0
2× e(i, j)− 1 + data if 0 < e(i, j) ≤ b
e(i, j) + b if b < e(i, j)

(2)

where data is 1 bit of data to be embedded in the secret binary stream. The prediction errors
that belong to [a,b] are called expandable errors, which will be expanded to embed 1 secret
data bit. The distortion produced is called expanding distortion. It can be seen that ‘1’s in
the secret binary stream are the cause of expanding distortion. Other prediction errors will
be shifted to the left or the right to make room for expansion, and the caused distortion is
called shifting distortion.
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As a known fact, the prediction error can be effectively modeled with a Laplacian
distribution with zero mean [20]. Assume that the length of the secret data is the same
as the number of expandable errors; Figure 1 gives an example of the HS method. As
shown in Figure 1, the original histogram conforms to a Laplacian distribution, while the
after-embedding histogram becomes irregular. There are some consecutive bins that are
lower in height than the bins on either side of them in the after-embedding histogram.
Such obvious embedding traces are easily noticed by attackers. In addition, the secret
data is usually encrypted before embedding, and bits ‘0’ and ‘1’ are equally distributed.
In this case, those adjacent bins with secret data have almost the same height, which is
considered to be an embedding trace (this phenomenon is termed ‘flat ground’). With this
trace, attackers can not only detect the existence of the secret data from the stego images
but also can even decipher the content of secret data. Wang et al. [16] designed an effective
steganalysis method for HS based on whether the histogram of the given image exhibits
the ‘flat ground’ phenomenon. The detection accuracy of the steganalysis method at the
payload = 0.1 bpp is up to 97.67%. In Section 4, we propose a novel HS framework to
conceal the embedding trace mentioned above.
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Figure 1. Histograms shifting: (a) Before embedding; (b) After embedding with expandable errors;
and (c) After embedding with expandable errors [−2,2].

3. Proposed LS-ET Predictor

The least square predictor (LS) is an adaptive prediction technique that exploits local
image patterns. The predictor employed an adapted linear combination of the prediction
coefficients on the basis of training set of causal neighbors in order to compute the prediction
value using

p = w(1)× p(i, j− 1) + w(2)× p(i− 1, j) + w(3)× p(i− 1, j− 1) + w(4)× p(i− 1, j + 1) (3)

where w(k) is the corresponding weights of neighbors. If we use the previous m causal
pixels for the adaptation of the k-th order predictor coefficients, the vector of adapted
coefficients w is calculated by solving the overdetermined linear system of equations using

w = (AT A)
−1

ATy (4)

where the size of the training matrix A is m × k, and y is an m × 1 vector containing the
previous m causal pixels.

Traditional LS-based predictors use fixed neighbors as the training pixels. Figure 2
shows the training pixels used by LP [6] and ridge regression predictor [9], and the shadow
pixels are the training pixels of the target pixel x(i,j). Training pixels are fixed, which means
that they are not fully utilizing the target pixel’s characteristics.
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According to the prediction rule of the LS predictor, the prediction accuracy depends
on the applicability of the trained prediction weights against the target pixel. Therefore,
the training pixel should have strong local consistency with the target pixel. The proposed
LS-ET predictor uses different training pixels based on the characteristic of the target pixel.

Firstly, calculate four direction gradients of the target pixel x(i,j): horizontal gradient
dh, vertical gradient dv, positive diagonal gradient dpd, and negative diagonal gradient dnp
by Equations (5)–(8):

dh =
[|x(i, j− 2)− x(i, j− 1)|+ 0.5× (|x(i, j− 3)− x(i, j− 2)|+ |x(i− 1, j− 1)− x(i− 1, j)|+ |x(i− 1, j)− x(i− 1, j + 1)|+ |x(i− 1, j− 2)− x(i− 1, j− 1)|+ |x(i− 1, j + 1)− x(i, j + 2)|)]

(1 + 5× 0.5)
(5)

dv =
[|x(i− 2, j)− x(i− 1, j)|+ 0.5× (|x(i− 3, j)− x(i− 2, j)|+ |x(i− 1, j− 1)− x(i, j− 1)|+ |x(i− 2, j− 1)− x(i− 1, j− 1)|+ |x(i− 2, j + 1)− x(i− 1, j + 1)|)]

(1 + 4× 0.5)
(6)

dpd =
[|x(i− 2, j− 2)− x(i− 1, j− 1)|+ 0.5× (|x(i− 3, j− 3)− x(i− 2, j− 2)|+ |x(i− 2, j− 1)− x(i− 1, j)|+ |x(i− 1, j− 2)− x(i, j− 1)|)]
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(7)
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According to the four directional gradients of the target pixel x(i,j), the pixel is divided
into five types, namely weak edge, horizontal edge, vertical edge, positive diagonal edge,
and negative diagonal edge, by Equations (9) and (10), where Th is the threshold for
dividing types, which is discussed in Section 5.1.

weak edge, if max
(

dh, dv, dpd, dnd

)
−min

(
dh, dv, dpd, dnd

)
< Th (9)

horizontal edge, if min
(

dh, dv, dpd, dnd

)
= dh

vertical edge, if min
(

dh, dv, dpd, dnd

)
= dv

positive diagonal edge, if min
(

dh, dv, dpd, dnd

)
= dpd

negative diagonal edge, if min
(

dh, dv, dpd, dnd

)
= dnd

(10)

In LS-ET, different training pixels are selected according to the gradient values, which
have similar edge characteristics with the target pixel.

Consider a B × B block centered on the target pixel as the prediction block. The
optimal B will be determined by experiments, which will be presented in Section 5.1. In the
following, consider B = 7 as an example.

Type I: The target pixel belongs to the weak edge; then, in the B × B prediction block,
select the top left

⌊
B×B

2

⌋
neighboring pixels of the target pixel as the training pixels.
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Type II: The target pixel belongs to the horizontal edge; then, in the B × B prediction
block, select the left-side horizontal direction

⌊
B
2

⌋
neighboring pixels of the target pixel as

the training pixels.
Type III: The target pixel belongs to the vertical edge; then, in the B × B predic-

tion block, select
⌊

B
2

⌋
neighboring pixels located vertically above the target pixel as the

training pixels.
Type IV: The target pixel belongs to the positive diagonal edge; then, in the B × B

prediction block, select
⌊

B
2

⌋
neighboring pixels in the positive diagonal direction above the

target pixel as the training pixels.
Type V: The target pixel belongs to the negative diagonal edge; then, in the B × B

prediction block, select
⌊

B
2

⌋
neighboring pixels in the negative diagonal direction above

the target pixel as the training pixels.
Limited to the skipping embedding method used in this paper—which needs to

generate the entire image’s prediction error histogram first to determine the skipping
position and then perform the embedding operation—our scheme cannot embed in a
pixel immediately after predicting it, as in other schemes. This means that the prediction
context cannot contain pixels of embedded data in the prediction process. Similarly, in
the extraction and recovery process, the prediction context also needs to be the original
pixel, so as to ensure the complete extraction of the data and the lossless recovery of the
image. Therefore, the predictor uses only half-context as the prediction context, namely
x(i – 1,j – 1), x(i – 1,j), x(i – 1,j + 1), and x(i,j – 1), not 8 neighboring (full-context).

Figure 3a–e respectively illustrate the training pixel and prediction context of target
pixel which belongs to the weak edge, horizontal edge, vertical edge, positive diagonal
edge, and negative diagonal edge. The shadow pixels are the training pixels of the target
pixel, and the 4 neighboring pixels in the green border are the prediction context of the
target pixel.

Matrix Y is the training matrix composed of training pixels. Using Equation (11), the
predicted matrix PY of Y is obtained:

PY = CY ×W (11)

In Equation (11), CY is the prediction matrix, which is composed of the prediction
context of all training pixels, and W is the weight matrix.

For example, if the target pixel x(i,j) belongs to the horizontal edge, the training matrix
Y and the prediction matrix CY are as shown in Equations (12) and (13):

Y = [x(i, j− 3), x(i, j− 2), x(i, j− 1)]T (12)

CY =

 1, x(i− 1, j− 4), x(i− 1, j− 3), x(i− 1, j− 2), x(i, j− 4)
1, x(i− 1, j− 3), x(i− 1, j− 2), x(i− 1, j− 1), x(i, j− 3)
1, x(i− 1, j− 2), x(i− 1, j− 1), x(i− 1, j), x(i, j− 2)

 (13)

The optimized weight matrix W is obtained by least square approximation, and the
loss function of the least square method is shown in Equation (14):

loss(W) = argmin
W

4

∑
k=1

(
Y(k)− PY(k)

)2
(14)

Calculate the predicted value p(i,j) using the weight matrix W and the prediction
context matrix C, as shown in Equation (15):

p(i, j) = C×W (15)
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where the prediction context matrix C consists of 4 neighboring pixels and the constant 1,
as shown in Equation (16):

C = [1, x(i− 1, j− 1), x(i− 1, j), x(i− 1, j + 1), x(i, j− 1)] (16)
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fore, the predictor uses only half-context as the prediction context, namely x(i − 1,j − 1), x(i 
− 1,j), x(i − 1,j + 1), and x(i,j − 1), not 8 neighboring (full-context). 

Figure 3a–e respectively illustrate the training pixel and prediction context of target pixel which 
belongs to the weak edge, horizontal edge, vertical edge, positive diagonal edge, and negative di-
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Figure 3. Training pixels and prediction context of the target pixel x(i,j): (a) Weak edge; (b) Hori-
zontal edge; (c) Vertical edge; (d) Positive diagonal edge; and (e) Negative diagonal edge. 

Matrix Y is the training matrix composed of training pixels. Using Equation (11), the 
predicted matrix PY of Y is obtained: 

= ×Y YP C W . (11)

In Equation (11), CY is the prediction matrix, which is composed of the prediction 
context of all training pixels, and W is the weight matrix. 

For example, if the target pixel x(i,j) belongs to the horizontal edge, the training ma-
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1, ( 1, 3), ( 1, 2), ( 1, 1), ( , 3)
1, ( 1, 2), ( 1, 1), ( 1, ), ( , 2)

x i j x i j x i j x i j
x i j x i j x i j x i j
x i j x i j x i j x i j

− − − − − − − 
 = − − − − − − − 
 − − − − − − 

YC . (13)

The optimized weight matrix W is obtained by least square approximation, and the 
loss function of the least square method is shown in Equation (14): 

( ) ( )
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1
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k
loss k k

=

= − Y

W
W Y P . (14)

Calculate the predicted value p(i,j) using the weight matrix W and the prediction 
context matrix C, as shown in Equation (15): 
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the after-embedding histogram. Thus, we propose an HS framework toward concealing 
the embedding traces by keeping the after-embedding histogram in a similar shape to the 
original histogram. The framework combines the improved data-coding method and the 
improved skipping embedding strategy. It can flexibly select the predictors and encoding 

Figure 3. Training pixels and prediction context of the target pixel x(i,j): (a) Weak edge; (b) Horizontal
edge; (c) Vertical edge; (d) Positive diagonal edge; and (e) Negative diagonal edge.

4. Proposed Framework for Concealing Embedding Traces

Almost all state-of-the-art prediction-based HS algorithms focus only on improving
the capacity–distortion performance. However, the obvious embedding traces are left in
the after-embedding histogram. Thus, we propose an HS framework toward concealing
the embedding traces by keeping the after-embedding histogram in a similar shape to the
original histogram. The framework combines the improved data-coding method and the
improved skipping embedding strategy. It can flexibly select the predictors and encoding
methods to obtain the high quality stego images, while reducing the risk of being detected
by attackers. The detailed process is as follows.

4.1. Data Hiding

The data-hiding process consists of three parts: (1) prediction based on proposed
LS-ET; (2) improved data coding; and (3) improved histogram-shifting embedding with
skipping. Figure 4 illustrates the data-hiding process of the framework.
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4.1.1. Prediction

Scan the pixels in a raster scan order and calculate the predicted value p by the
proposed LS-ET predictor. Any prediction method can be used in this section. We use the
proposed LS-ET predictor in the subsequent experiments to improve prediction accuracy.

Compute the prediction error by:

e(i, j) = x(i, j)− p(i, j) (17)

Then, generate a prediction error histogram of the original image.

4.1.2. Improved Data Coding

Yang et al. [13] proposed a message sparse representation method to reduce the
number of ‘1’s in the secret data, which will lead to the expanding distortion. We make a
simple improvement to the sparse representation for higher image quality. The detailed
procedure for encoding the data is as follows.

Set the parameter r (r ≥ 0) to represent the sparse rate. The coding rate is defined as

R =
L

CL
(18)

where L is the length of the original data, CL is the length of the sparse representation data,
i.e., coded data. Experimental results show that the parameter r is inversely proportional to
coding rate R.

Initialize pos1 = 0 and pos2 = 0. pos1 is used to record the last cover symbol that has
been coded, and pos2 is used to record the number of message bits that have been coded.

Read the secret data (Data) for the (pos2 + 1)-th bit, i.e., the Data(pos2 + 1). There are
two coding cases according to the value of Data(pos2 + 1).

Case 1. If Data(pos2 + 1) = 1, set pos1= pos1 + 2r and pos2 = pos2 + 1, and one-bit
Data(pos2 + 1) is coded. The coded data (CData) are as follows:

CData(pos1− 2r + 1 : pos1) = 0 (19)

Case 2. If Data(pos2 + 1) = 0, read the next r bits Data(pos2 + 2:pos2 + r + 1), which can be rep-
resented by a decimal integer belonging to [0, 2r−1], denoted by (Data(pos2 + 2:pos2 + r+1))dec.
Set pos1 = pos1 + (Data(pos2 + 2:pos2 + r + 1))dec + 1, pos2 = pos2 + r + 1, and flip CData(pos1)
from ‘0′ to ‘1′. Thus, r + 1 bits Data(pos2 + 2:pos2 + r + 1) are coded. The coded data CData
are as follows:{

CData(pos1− (Data(pos2− r + 1 : pos2))dec : pos1− 1) = 0
CData(pos1) = 1

(20)

Repeat the above judgment until all the secret data Data is coded as CData.
It is observed that secret data may be in the form of images, with a high probability of

a consecutive ‘0’ or ‘1’ in the data. If the content of Data(pos2 + 2:pos2 + r + 1) contains more
‘0’s in Case 2, it means that the value of (Data(pos2 + 2:pos2 + r + 1))dec is smaller, that is, the
length of the coded data is shorter, and fewer pixels will be used for embedding data in
the embedding process. If that happens, it is more likely that the value of Data(pos2 + 1) is
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0. Therefore, we set the condition for Case2 to Data(pos2 + 1) = 0, which is contrary to the
condition in the original coding method of [13]. In Yang’s method [13], if Data(pos2 + 1) = 0,
execute the above Case 1; and if Data(pos2 + 1) = 1, execute Case 2. The experimental results
in Section 5 demonstrate the effectiveness of this change. The improvement in this paper
can obtain higher stego image quality where secret data is in image form. In addition, it
does not affect the experimental results where the ‘1’s and ‘0’s are randomly distributed in
the secret data.

Consider Data = [0,0,1,0,1,0,1] as a simple example to show the sparse representation
process. Set the parameter r = 2. Initialize pos1 = 0 and pos2 = 0.

Firstly, read the secret data bit Data(1) = 0 and the next r bits Data(2:3) = [0,1], which is
interpreted as a decimal integer (0,1)dec = 1. Set pos1 = 0 + (01)dec + 1=2 and pos2 = 0 + 2 + 1
= 3. Calculate the CData(1:2) = [0,1] by Equation (20).

Next, read the secret data bit Data(4) = 0 and the next r bits Data(5:6) = [1,0], which
is interpreted as a decimal integer (1,0)dec = 2. Set pos1 = 2 + (10)dec + 1=5 and pos2 = 6.
Calculate the CData(3:5) = [0,0,1] by Equation (20).

Then, read the secret data bit Data(7) = 1. Set pos1 = 5 + 4 = 9 and pos2 = 6 + 1 = 7.
Calculate the CData(6:9) = [0,0,0,0] by Equation (19).

Finally, get the coded data CData = [0,1,0,0,1,0,0,0,0]. The coded data CData is the
to-be-embedded data in the subsequent embedding process.

4.1.3. Improved Skipping Embedding

Skipping embedding is a novel HS method that decreases the shifting distortion to
improve image quality. The embedding process for Choi’s method [12] is outlined as
follows. Firstly, set the peak and minimum (zero) histogram indices as the (IdxP, IdxZ).
Then, set the skipping index as the IdxSkip, shifting the pixels between [IdxP + IdxSkip + 1,
IdxZ – 1]. Finally, modify the pixels of the IdxP position for the data hiding. If it embeds
a 0, the pixel does not change; if it embeds a 1, the pixel of the IdxP is increased to IdxP +
IdxSkip + 1.

Choi’s method [12] considered the skipping position to obtain higher image quality,
but it did not focus on the deformation of the histogram. In this paper, we improve the
skipping embedding method with the aim of concealing the embedding traces of existing
HS methods.

First, the embedding position and skipping position are determined in the prediction
error histogram of the original image.

Search the embedding position ee starting from the sides and progressing to the middle
of the histogram; stop searching when the following is satisfied:

h(ee) ≥ length(CData ) (21)

where h(x) denotes the number of pixels whose prediction errors value is x, ee denotes
embedding position, i.e., the value of expandable error, and length (CData) is the length of
the given payload.

Because the prediction error histogram conforms to the Laplacian distribution, that is,
the number of prediction errors near both sides of the histogram is small, the number of
prediction errors near the middle of the histogram will be large. The embedding position is
searched from both sides to the middle of the histogram to shorten the distance between
the embedding position and the skipping position and to decrease the expanding distortion
in the subsequent embedding process.

Search the skipping position es starting from the embedding position ee and progress-
ing to one side of the histogram. If ee is negative, search to the left side of the histogram,
otherwise, to the right side. Stop searching when the following is satisfied

h(es) ≤ length(CData_1) (22)

where length (CData_1) is the number of ‘1’s in the given payload.
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Then, modify the prediction error according to the coded data cdata by

e′(i, j) =



ee if e(i, j) = ee & cdata = 0
es if e(i, j) = ee & cdata = 1
e(i, j) + 1 if e(i, j) ≥ es & ee < es

e(i, j)− 1 if e(i, j) ≤ es & ee > es

e(i, j) else

(23)

For the prediction errors which fulfill e(i,j) = ee, if the cdata is ‘0’, no shifting; otherwise,
shift errors to the skipping position. For the prediction errors that fulfill e(i,j) ≥ es > ee or
e(i,j) ≤ es < ee, shift errors to the left or the right to make room. Repeat the above until the
secret data is fully embedded.

Compared with the original skipping embedding method [12], which uses only the
peak bin for embedding and the skipping position is fixed, the improved skipping embed-
ding method carefully designs the embedding position and the skipping position selection.
The embedding position and skipping position are determined adaptively according to
the prediction error histogram and the given payload to achieve the aim of concealing the
embedding traces, ensuring that the after-embedding histogram still maintains the general
shape as the original histogram, avoiding the ‘flat ground’ phenomenon and, thus, being
able to resist steganalysis to a certain extent, especially for those that are HS-based, while
also focusing on reducing the distortion generated in the embedding process to improve
image quality.

Figure 5 demonstrates the comparison of the traditional HS methods with the im-
proved HS method that combines the improved data-coding method and the improved
skipping embedding strategy. Compared with traditional HS schemes where all prediction
errors between the embedding position and the zero bin need to be shifted, the predic-
tion errors in the proposed scheme between the embedding position and the skipping
position are not modified. Hence, the proposed scheme causes less shifting distortion.
Because of the improved data coding, the number of prediction errors that are skipped
is increased, which further highlights the advantage of skipping embedding in reduce
shifting distortion. Meanwhile, the after-embedding histogram maintains a similar shape
to the original histogram.
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With the predicted value p and the modified prediction error e′, the stego pixel x′ can
be obtained by:

x′(i, j) = p(i, j) + e′(i, j) (24)

It is worth mentioning that there are several rows and columns outside the image as
reference pixels in the prediction process, which are excluded from secret data embedding.
In order to ensure blind extraction, side information is embedded into the first row by LSB
replacement, and the least significant bits in the first few pixels are reserved and appended
to the secret binary stream. Since overflows or underflows may occur after embedding, we
use location map LM to record those overflow and underflow locations and process the
image by:

x′(i, j) =


255− (x′(i, j)− 255) if x′(i, j) > 255
−x′(i, j) if x′(i, j) < 0
x′(i, j) else

(25)

If one pixel is modified to 0 or 255, we label it with ‘1’; otherwise, we label it with ‘0’.
In addition, LM is losslessly compressed into CLM using the algorithm in [21] to reduce its
size. In this paper, side information includes:

1. The length of side information: Lside.
2. The number of embedding times: ET.
3. All embedding positions {ee} and skipping positions {es}.
4. Size of the original secret data.
5. The length of CLM: LCLM.
6. The compressed location map: CLM.

Finally, the stego image I′ is generated.

4.2. Data Extraction and Image Recovery

For a received stego image I’, the LSBs of the first Laux pixels are extracted to retrieve
the side information. According to the side information, LM is decompressed to restore the
pixels. Figure 6 illustrates the data extraction and image recovery process.
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Figure 6. The data extraction and image recovery process.

The predicted value p for each pixel is obtained by using the proposed LS-ET predictor
as in the hiding process.

The prediction error e′(i,j) is obtained by Equation (26):

e′(i, j) = x′(i, j)− p(i, j). (26)

According to the received embedding position ee and the skipping position es, a bit of
data cdata that was hidden in the pixel can be extracted by

cdata =

{
0 if e′(i, j) = ee

1 if e′(i, j) = es
(27)
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The original prediction error e(i,j) is obtained by

e(i, j) =


ee if e′(i, j) = es

e′(i, j)− 1 if e′(i, j) > es & ee < es

e′(i, j) + 1 if e′(i, j) < es & ee > es

e′(i, j) else

(28)

The original pixel x(i,j) can be recovered by

x(i, j) = p(i, j) + e(i, j) (29)

After performing the above processes for all pixels in the stego image, the data CData
hidden in the image is extracted and the original image I is recovered.

Decode the extracted data CData to obtain the original secret data Data. The detailed
procedure for decoding is as follows.

Initialize pos1′ = 0 and pos2′ = 0. pos1′ is used to record the last cover symbol that
has been decoded, and pos2′ is used to record the number of message bits that have
been decoded.

Read the secret data bits CData(pos2′ + 1:pos2′ + 2r), and obtain the decoded data in
two cases:

Case 1. If Cdata(pos2′ + 1:pos2′ + 2r) = 0, set pos1′ = pos1′ + 1, pos2′ = pos2′ + 2r. The
decoded data Data are obtained by

Data(pos1′) = 0. (30)

Case 2. If there is a ‘1’ in the CData(pos2 + 1:pos2′ + 2r), count the number of consecutive
‘0’s until finding the first ‘1’, regarded as i. Then set pos1′ = pos1′ + r + 1 and pos2′ = pos2′ + i
+ 1, and the decoded data Data are obtained by{

Data(pos1′ − r : pos1− length((i)bin)) = 0
Data(pos1′ − length((i)bin) + 1 : pos1′) = (i)bin

(31)

where (·)bin is a function that converts decimal to binary. All original secret data Data are
decoded by repeating above procedure.

The original image I and the original data Data are recovered completely losslessly.

5. Experimental Results and Analysis
5.1. Determination of Parameters
5.1.1. Parameters for LS-ET Prediction

Parameters involved in the proposed LS-ET include the prediction block size B and
the threshold Th for dividing pixel types.

We set prediction block size ranges to be B ∈ {5,7,9,13} and Th ∈ [15,25] respectively,
which are sufficient in practice.

Figure 7 lists the PSNR (peak-signal-to-noise ratio) under different parameters for
image ‘Lena’ with embedding rates of 0.1 bpp to 0.6 bpp. It is observed that a 9 × 9 size
block best exploits the local characteristics with as few reference pixels as possible. It is
shown that the block size of B = 9 and threshold Th = 21 achieve the desirable performance.
Such results can be similarly observed for other test images. Therefore, B = 9 and Th = 21
are adopted as preferable parameters in our scheme, which will be demonstrated in the
next experiments.
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Figure 7. PSNR of different parameters for Lena: (a) PSNR under 0.1 bpp; (b) PSNR under 0.2 bpp;
(c) PSNR under 0.3 bpp; (d) PSNR under 0.4 bpp; (e) PSNR under 0.5 bpp; and (f) PSNR under
0.6 bpp.

It is known that Th is an important threshold for pixel classification, so the value of
Th can affect prediction accuracy, and the prediction accuracy should vary slowly with
Th. When Th takes different values, the shape of the prediction error histogram changes
accordingly, and it may change the embedding or skipping position in the embedding
process, which is adaptively selected according to the shape of the histogram. However, if
there is a slight difference in the choice of two positions, even if only a bin difference, it
may have a great impact on the stego image quality. Thus, some of the sharp changes in
PSNR in Figure 7 are caused by changes in the embedding position or skipping position.

5.1.2. Parameter r for Data Coding

The parameter r represents the sparse rate, which will directly affect the coding rate
and coding effect. Figure 8 shows the effect of r on the capacity–distortion performance of
the algorithm, where r ∈ [1,5]. As can be seen from Figure 8, the algorithm performance is
acceptable when r values are 1, 2, or 3. If the value of r is too large, the coded data is too
long. Although the number of ‘1’s in the coding data is small, it produces a large amount of
shifting distortion and loses great image quality, even the data cannot be fully embedded
in the image.

At r = 1 and r = 2, the algorithm performance is similar in the ‘Lena’, ‘Airplane’, and
‘Boat’ images. However, the image quality of the complex image ‘Baboon’ is deteriorated at
r = 2; the reason is that the prediction error histogram of the complex image is flatter (the
number of pixels per bin is relatively small). If the coding data is too long, it will require a
lot of bins as the expandable bin, resulting in a lot of shifting distortion. Thus, the image
quality of complex images is more sensitive to the change of r. Moreover, the smaller the r,
the better the capacity–distortion performance of the algorithm.
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Figure 8. The effect of r on the capacity–distortion performance: (a) Lena; (b) Baboon; (c) Airplane;
and (d) Boat.

Figure 9 shows the prediction error distributions for ‘Lena’ at r = 1, 2, and 3 under
different embedding rates (ER) of 0.1 bpp, 0.4 bpp, and 0.7 bpp, respectively. As can
be seen, the three prediction error histograms all conform to the Laplacian distribution.
Furthermore, the larger the r, the better the performance of concealing the embedding traces.
When r = 3, since the number of ‘1’s in the coded data is very small, there is no significant
change in either bin in the embedding process, so the after-embedding histogram maintains
a similar shape to the original histogram, even if the embedding capacity is very large.
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Considering all of the above, the algorithm uses r = 2 as the preferable parameter and
will be demonstrated in the next experiments.

5.2. Analysis of the Simple Improvement on Data Coding

Table 1 shows the comparisons of the proportion of the original data and the coded
data. Herein, the original data are generated randomly, resulting in a uniform distribution
of ‘1’s and ‘0’s. For the original data, the proportions of ‘0’s and ‘1’s are each approximately
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50%. After coding, the proportion of ‘0’s is up to approximately 84.6%, and the proportion
of ‘1’s is reduced to approximately 15.4%. The proportion of ‘1’s after coding decreased by
34.6% compared with that before coding. The decrease in the number of ‘1’s will result in
the improvement in image quality with the decrease of embedding distortion.

Table 1. Comparison between the original data and the coded data.

Original Data Coded Data Reduction in the
Number of ‘1’sNumber of Bits Proportion of ‘0’s Proportion of ‘1’s Number of Bits Proportion of ‘0’s Proportion of ‘1’s

100,000 49.79% 50.22% 162,293 84.57% 15.43% 25,178
200,000 49.97% 50.04% 325,984 84.68% 15.32% 50,139
300,000 49.94% 50.06% 487,393 84.61% 15.39% 75,170
400,000 50.04% 49.96% 646,512 84.49% 15.51% 99,566
500,000 50.01% 49.99% 811,958 84.60% 15.40% 124,908

Figure 10 shows the comparisons of the bpp-PSNR performance between the sparse
coding in [13] and the improved sparse coding. Figure 10a,b are the bpp-PSNR performance
comparisons when the secret data is image and pseudo random number, respectively.
The secret image uses the classic watermark image ‘flower’, as shown in Figure 10c, and
the original image uses ‘Lena’. It is observed that the proposed algorithm with simple
improvement on the sparse representation has better PSNR performance than that of [13].
The PSNR of the proposed algorithm is increased by approximately 4dB. This is because the
probability of consecutive ‘0’s in the image data is too high, so that the length of the data
coded by the original sparse representation is too long. When the secret data is a randomly
distributed in a ‘0’ and ‘1’ binary stream, the bpp-PSNR performances of the two algorithms
are basically the same, as shown in Figure 10b.
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5.3. Anti-Steganalysis of the Proposed Framework

In order to demonstrate the trace concealment performance of our proposed frame-
work, it is compared with the traditional HS algorithm and skipping HS. The experiments
are conducted on the Bossbase1.01 database. Consider the widely used test image Lena
and Baboon as examples; Figure 11 illustrates the results with different embedding rates
(ER) of 0.1 bpp, 0.4 bpp, and 0.7 bpp, respectively.

As can be seen from Figure 11, the blue line shows the hypothesis Laplacian model.
The prediction error histogram of the original image is smooth, and the distribution of the
prediction error can be well-fitted with Laplacian model. However, the prediction error
histograms of the traditional HS algorithm and the skipping HS algorithm become more
irregular, with greatly deviation from the hypothesis Laplacian model. At low embedding
rates, the histograms can barely maintain a shape similar to the original histogram. How-
ever, at higher embedding rates, the middle of the histogram, which should exhibit an
obvious peak, becomes a large area of flatness (‘flat ground’). The embedding traces can be
obviously identified, so it is difficult to ensure the security of the data hidden in the image.
Instead, the prediction error histogram of our proposed trace concealment algorithm is
relatively smooth, which resembles the original histogram. Even though the prediction
error histogram inevitably becomes flatter after data embedding, it still preserves the bell-
shape resembling the Laplacian distribution, thus achieving the purpose of concealing
the embedding traces. The trace concealment effect in Baboon is not as good as that in
Lena because the number of adjacent prediction errors in the prediction error histograms
for such complex textured images is not much different; thus, it is more difficult to keep
the histogram smooth after hiding data, but the proposed trace concealment algorithm is
relatively better than the other two algorithms.

Next, demonstrate the performance of the proposed framework against steganalysis
for the HS-based method.

Wang et al. [16] designed an effective steganalysis method for HS, which shows
excellent steganalysis ability when ‘flat ground’ phenomenon occurs in the after-embedding
histogram and when the histogram conforms to the Laplacian distribution.

Table 2 illustrates the identification error rates of the steganalysis method [16] for
traditional HS algorithm, skipping HS algorithm, and proposed algorithm with different
embedding rates. The general Bossbase1.01 database is employed in the experiment, and
1000 images with size 512 × 512 are randomly selected from an amount of 10,000 images.
The identification error rate is the proportion of stego images that cannot be identified as
hidden by the steganalysis method after hiding the data in all the test images. A high iden-
tification error rate indicates that the proposed algorithm is well resistant to steganalysis.
As one can see from Table 2, the resisting steganalysis performance of proposed trace con-
cealment algorithm is superior to the traditional HS algorithm and skipping HS algorithm.
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Figure 11. Comparison of the after-embedding prediction error histograms with proposed trace
concealment algorithm, traditional HS algorithm, and the skipping HS algorithm: (a1) Original image;
(b1) Stego images by the proposed (ER = 0.1 bpp, PSNR = 51.33 dB); (c1) Stego images by the proposed
(ER = 0.4 bpp, PSNR = 45.26 dB); (d1) Stego images by the proposed (ER = 0.7 bpp, PSNR = 39.29 dB);
(a2) Histogram of (a1); (b2) Histogram of (b1); (c2) Histogram of (c1); (d2) Histogram of (d1);
(a3) Original image; (b3) Stego images by traditional HS (ER = 0.1 bpp, PSNR = 52.38 dB);
(c3) Stego images by traditional HS (ER = 0.4 bpp, PSNR = 45.80 dB); (d3) Stego images by tra-
ditional HS (ER = 0.7 bpp, PSNR = 39.09 dB); (a4) Histogram of (a3); (b4) Histogram of (b3);
(c4) Histogram of (c3); (d4) Histogram of (d3); (a5) Original image; (b5) Stego images by skip-
ping HS (ER = 0.1 bpp, PSNR = 51.44 dB); (c5) Stego images by skipping HS (ER = 0.4 bpp, PSNR
= 43.67 dB); (d5) Stego images by skipping HS (ER = 0.7 bpp, PSNR = 40.17 dB); (a6) Histogram
of (a5); (b6) Histogram of (b5); (c6) Histogram of (c5); (d6) Histogram of (d5); (a7) Original image;
(b7) Stego images by the proposed (ER = 0.1 bpp, PSNR = 41.25 dB); (c7) Stego images by the pro-
posed (ER = 0.4 bpp, PSNR = 33.43 dB); (d7) Stego images by the proposed (ER = 0.7 bpp, PSNR =
27.50 dB); (a8) Histogram of (a7); (b8) Histogram of (b7); (c8) Histogram of (c7); (d8) Histogram of (d7);
(a9) Original image; (b9) Stego images by traditional HS (ER = 0.1 bpp, PSNR = 45.62 dB); (c9) Stego
images by traditional HS (ER = 0.4 bpp, PSNR = 36.71 dB); (d9) Stego images by traditional HS
(ER = 0.7 bpp, PSNR = 29.04 dB); (a10) Histogram of (a9); (b10) Histogram of (b9); (c10) Histogram of
(c9); (d10) Histogram of (d9); (a11) Original image; (b11) Stego images by skipping HS (ER = 0.1 bpp,
PSNR = 43.35 dB); (c11) Stego images by skipping HS (ER = 0.4 bpp, PSNR = 35.49 dB); (d11) Stego
images by skipping HS (ER = 0.7 bpp, PSNR = 29.38 dB); (a12) Histogram of (a11); (b12) Histogram
of (b11); (c12) Histogram of (c11); and (d12) Histogram of (d11).
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Table 2. Performance of resisting steganalysis for HS algorithms.

Algorithms Embedding Rates (bpp) Identification Error Rates

Traditional HS algorithm

0.01 13.5%
0.05 12.4%
0.1 10.7%
0.2 8.8%

Skipping HS algorithm

0.01 15.5%
0.05 11.1%
0.1 11.5%
0.2 20.4%

Proposed algorithm

0.01 21.2%
0.05 20.4%
0.1 19.7%
0.2 13.4%

5.4. Capacity–Distortion Performance Comparison

The proposed RDH scheme focuses on not only improving anti-steganalysis ability
but also on capacity-distortion performance. The proposed scheme considers two embed-
ding distortions that lead to the decreasing image quality of the HS algorithms: reducing
the expanding distortion by the improved data coding method and reducing the shifting
distortion by the improved skipping embedding strategy. Moreover, due to the application
of the improved data-coding method, the skipping distance is increased, which further
highlights the advantages of skipping embedding in reducing shifting distortion. Figure 12
shows the capacity–distortion performance comparison results, including the rhombus
predictor with sorting technique (Sachnev et al.) [5], LP (Dragoi et al.) [6], ridge regression
predictor (Wang et al. (Ridge)) [9], multiple histogram algorithm (Wang et al. (MH)) [10],
and trace concealment algorithm (Dong et al.) [19]. The slightly worse capacity–distortion
performance of proposed algorithm at 0.1 bpp in the Figure 12 is due to the fact that, at
low embedding rates, there is no expandable bin in the prediction error histogram similar
to length of the payload. Therefore, the embedding position selected may be closer to
the middle of the histogram, resulting in more unnecessary shifting distortion. Thus, the
worse capacity–distortion performance at the low embedding rate that does not occur in all
images, but usually in smooth images, is unexpected. As can be seen from Figure 12, com-
pared with the state-of-the-art algorithms that focus only on improving capacity–distortion
performance, our proposed algorithm achieves similar capacity–distortion performance
and superior anti-steganalysis ability. Moreover, compared with the trace concealment
algorithm in [19] that loses too much image quality, our algorithm also achieves superior
image quality.
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6. Conclusions

In this paper, we design a LS-ET predictor that innovatively uses the edge character-
istics of a target pixel to select training pixels. Then, we propose a novel HS framework
to conceal the embedding trace, which adaptively determines the embedding position
and skipping position according to the prediction error histogram and the given payload,
so that the stego image histogram still conforms to the Laplacian distribution. Moreover,
we improve both the data-coding method and the skipping embedding strategy in the
framework. Furthermore, to improve the image quality, both shifting distortion and ex-
panding distortion are considered. There is less research presented regarding concealing
the embedding traces left by a hiding process in the HS field. This work makes up for the
lack of the invisibility of traditional HS algorithms on the histogram level. Several methods
in the paper, including LS-ET predictor, improved data-coding method, and improved
skipping embedding method, are highly portable and suitable for popularization. In the
future, we would like to investigate the use of neural networks to conceal the embedding
traces that are left by histogram-shifting algorithms.
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