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Abstract: We derive a quantum master equation in the context of a polymerized open quantum
mechanical system for the scattering of a Brownian particle in an ideal gas environment. The model is
formulated in a top-down approach by choosing a Hamiltonian with a coupling between the system
and environment that is generally associated with spatial decoherence. We extend the existing work
on such models by using a non-standard representation of the canonical commutation relations,
inspired by the quantization procedure applied in loop quantum gravity, which yields a model in
which position operators are replaced by holonomies. The derivation of the master equation in
a top-down approach opens up the possibility to investigate in detail whether the assumptions,
usually used in such models in order to obtain a tractable form of the dissipator, hold also in the
polymerized case or whether they need to be dropped or modified. Furthermore, we discuss some
physical properties of the master equation associated to effective equations for the expectation
values of the fundamental operators and compare our results to the already existing models of
collisional decoherence.

Keywords: polymer quantum mechanics; open quantum systems; decoherence models

MSC: 81

1. Introduction

Decoherence and the quantum-to-classical transition are often discussed in terms of
open quantum systems and in consequence formulated as a master equation, often in the
form of the celebrated Lindblad equation [1-6]. In this framework, the system of interest
is usually coupled to an environment with a considerably higher number of degrees of
freedom, expressed in terms of an interaction Hamiltonian. Quantum mechanical models
require a choice of interaction Hamiltonian [7,8], whereas in the case of field theories,
the interaction Hamiltonian is often provided directly by the canonical formalism that
is required for quantization, see for instance [9-12]. The second-order (Born-Markov)
master equation is consequently derived by averaging over the environmental degrees of
freedom, which only enter the master equation in an effective manner via autocorrelation
functions. Next to the Lindblad equation, this is the most frequently used approach of a
time-local equation, which however is not necessarily trace-preserving nor automatically
completely positive for arbitrarily large time scales [13]. The Lindblad equation requires
the generator of the associated dynamical semigroup to be bounded [1,2], however, which
is rarely the case in physical applications. Whether a model exhibits a Lindblad-like
master equation depends on a multitude of assumptions as we will discuss in the course
of this work. Decoherence has been studied for a large variety of quantum mechanical
and quantum field theoretical models, from collisional decoherence of a Brownian particle
in an ideal quantum gas environment [14-18] to Quantum Brownian Motion (QBM) of
the quantum harmonic oscillator [7] in a bath of bosonic modes over the spin-boson
model [3,19,20] to an oscillator system coupled to a collection of two-level systems [8].
Field theoretical applications for example include decoherence through Bremsstrahlung
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in QED [9], decoherence of cosmological perturbations [21-25] and decoherence of matter
degrees of freedom due to the interaction with the gravitational field in both ADM and
Ashtekar variables [10-12]. Loop Quantum Gravity (LQG) as well as Loop Quantum
Cosmology (LQC) are known to use a so-called polymer representation for their elementary
variables [26-30]. This choice is strongly related to the underlying symmetries in LQC and
LQG respectively. The quantum mechanical version of this representation turns out to
be unitarily inequivalent to the ordinary Schrédinger representation. The vast majority
of decoherence models deals with the usual Fock quantization methods, and the effect
of polymer quantization on open quantum systems is yet to be fully explored. In the
context of gravitational decoherence, this seems to be of paramount importance, since
in the framework of General Relativity (GR) everything couples to gravity and hence it
can be seen as a reasonable choice for an environment of the remaining matter degrees of
freedom. There has been previous work on polymerized thermodynamics [31] and open
quantum (mechanical) systems [32]. The vast majority of canonical models in the existing
literature, such as collisional decoherence [14,15,17], Quantum Brownian Motion (QBM) [7]
and spin-boson applications [3,8,20] have not been formulated and investigated in the
context of polymerized quantum mechanics to the knowledge of the authors.

The derivation and analysis of master equations associated to (constrained) quantum
field theories already is a complicated task in the context of a Fock quantization scheme,
see for instance [10-12] for the formulation of concrete models. The complexity further
increases if, instead of the Fock representation, a non-standard representation such as
the polymer representation as in LQG is involved. In order to obtain a better knowledge
of how a given choice of representation affects a given decoherence model, we consider
such models in the context of polymerized quantum mechanics as a first step towards
formulating decoherence models inspired by LQC and LQG, respectively. In the case of
LQC, another interesting aspect regarding the quantum-to-classical transition arises. Most
already existing models in LQC are based upon the framework of closed quantum systems.
The classical singularity, present in for instance FLRW models, is resolved and replaced
by a bounce. It has been shown that if one starts with a semiclassical state representing a
classical FLRW universe today and evolves backwards, the evolution follows the classical
trajectory until a critical matter density is reached and then bounces, joining in the pre-
bounce era a trajectory which was classically headed towards the big crunch. This is in
stark contrast to the Wheeler-DeWitt theory that is based on a Schrédinger representation.
An interesting question is whether the decoherence formalism could provide additional
justification for the semiclassical quantum states used in LQC, see for instance the work
in [33], hence further supporting the robustness of the key features of LQC from an open
quantum systems perspective.

In this work we derive a collisional decoherence model in the framework of poly-
merized quantum mechanics, that we denote as an open polymerized scattering model,
the latter notion based on the structure of the chosen total Hamiltonian and analyse its
physical properties. The main differences to the approaches in previous works on col-
lisional decoherence, that is the random scattering of a Brownian particle in a thermal
environment, see for instance [14-17], is on the one hand that we work on the polymerized
Hilbert space. For our choice of representation, the position operator does not exist but the
corresponding holonomies do and thus its analogue is expressed in terms of a difference
of holonomy operators. Additionally, we start with a given total Hamiltonian and derive
the corresponding master equation from it, whereas the derivation in [15,17,18] holds for
large system masses M > m as compared to the environment and follows an S-matrix
approach in the derivation of the master equation. In this context, the chosen basis for the
thermal density operator (the initial state) of the environment is crucial in the avoidance
of singularities within the environmental autocorrelation functions [15]. As we will show,
these singularities are circumvented in the model considered in this article by virtue of a
polymerization of the position operator. A comparison with the solutions obtained from
collisional decoherence using Schrodinger quantization shows that the solutions obtained
here differ in characteristic features. This is in a sense expected because the correspond-
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ing Schrodinger-like model, due to its singularities, cannot be derived in the same way.
The resulting effective differential equations for the expectation values of momentum and
(polymerized) position do not exhibit any divergencies either and can be solved analytically
in lowest order of the polymerization parameter. We further discuss the applicability of the
second Markov approximation, often implemented alongside a rotating-wave approxima-
tion [34] in order to retrieve a master equation of Lindblad-type. Interestingly, the Lindblad
operators in the final master equation in [15,17,18] looked similar to U (1) holonomies found
for example in the discussion of coherent states [35] or the quantization of the canonical
pair of angle and angular momentum [36,37], respectively. The Hilbert spaces in these
latter works exactly correspond to a superselection sector of the polymerized Hilbert space
encountered in LQC [38]. However, to the understanding of the authors, it seems to be not
straightforward to find a form of an underlying total Hamiltonian that yields the same final
Lindblad equations obtained in [15,17,18] in the course of the derivation of a Born-Markov
master equation.

The paper is structured as follows: For the benefit of the reader and to make the article
self-contained, we briefly review the Nakajima—Zwanzig formalism [39,40] in Section 2
and the associated projection-operator technique in Section 2.1. In Section 2.2, largely
following [4,41], the ensuing, and in principle exact, now time-local master equation
is then further simplified by a number of assumptions and/or approximations, most
prominently the Born- and Markov approximations, respectively. We are particularly
interested in understanding which specific assumptions enter into the individual steps of
the derivation and see whether those can be carried over to derivation of the polymerized
model. In Section 3 we derive the polymerized open scattering model using a top-down
approach, that requires an initial choice of a total Hamiltonian encoding the dynamics
of system and environment as well as their interaction. Again for the benefit of the
reader and in order to introduce our notation, we provide a concise discussion of the
different polymer representations, their properties and the role of superselection sectors in
Section 3.1. The individual steps of the detailed derivation of the model are presented in
Section 3.2. An investigation and discussion about the physical properties of the model
can be found in Section 3.3 where we point out the similarities and key differences in
regard to the established models of collisional decoherence. This is done in terms of
the differential equations for the expectation values of the canonical variables and their
associated solutions. These solutions are obtained after we truncate at a certain order in
the polymerization parameter and thus decouple the differential equations at lowest order.
Finally, in Section 4 we summarise our results, relate them to the already existing different
approaches for collisional decoherence and discuss possible generalisation of the open
polymerized scattering model in various directions.

2. Review of the Derivation of Quantum Master Equations

In the theory of open quantum systems one usually resorts to a statistical treatment
of the many degrees of freedom involved, often in terms of density operators. The main
difference to closed quantum systems is that one considers a coupling of the system
involving the relevant degrees of freedom under consideration to a chosen environment.
The goal in the context of quantum master equations is to derive an effective first-order
equation of motion for the relevant degrees of freedom without requiring prior knowledge
of the full dynamics of the environment, see for instance the textbooks [3,5]. Depending on
the level of complexity of the dynamics of the total system and different approximative
techniques, the resulting so-called master equations exhibit a variety of properties, the most
well-known being of the Lindblad type [1,2] which has the following (off-diagonal) form:

d N 1 A A A A
q;Ps(t) = —ilHs, ps(t)] + za,%zfaﬁ([smﬁs(t)szg] + [Saﬁs(t)fSED/ 1)

where Hs is the Hamiltonian of the system which represents the unitary part of the time
evolution, 7 is a model-dependent, most commonly finite index set, the [yp are time-
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indepent, real coefficients and S, S”é are time-independent operators on the Hilbert space of
the system of interest. Due to the positive semi-definiteness of I' we can bring the Lindblad
equation into a diagonal form via a unitary transformation, the A, are the corresponding
eigenvalues of T'.

d. o 1 A .
aps(t) = —i[Hg, ps(t)] + 5 ). Aa([LmPS(t)LZ] + [Laps(f),LM
ael

). @

with Lindblad operators Ly= X hap S p obtained via a change of basis  associated to the
diagonalization of I'. This equation guarantees a completely positive and trace-preserving
evolution of the system’s density operator, while in a more general setting, this is no longer
true. In cases where the interaction with the environment is not Markovian in nature or if
the initial condition is non-separable (that is, a non-vanishing initial entanglement entropy),
it might not be possible to reach a Lindblad form at all [42,43]. This does however not
mean that complete positivity or trace preservation is violated [20], these properties rather
need to be checked once the master equation for a given system of interest is derived. We
will make a clear distinction between and consecutively comment on the various types of
master equations from the more general perspective of projection superoperators in the
next sections.

2.1. Brief Review of the Projection Operator Techniques

Exact projection superoperator techniques in conjunction with integral master equa-
tions in the context of open quantum systems were first applied by Nakajima and Zwanzig
in [40] and [39], respectively. In this chapter however, we will largely follow the more
pedagogical outline given in [3], where we fill in some additional steps that we deem
important for the uninitiated reader. The starting point is a system that can be split into a
system and environmental part that are labelled by S and ¢ respectively. The corresponding
total Hamiltonian for a given model Hiot = Hy + aHiy acts on the total Hilbert space
H = Hg ® He, where Hy = Hg ® 1. + 15 ® H, describes the free evolution of the system
and the environment, and H;,; accounts for the interaction between both. Here « is a (di-
mensionless) coupling constant without, at this point, any further assumptions regarding
its magnitude. Note that the coupling will not be dimensionless in the case of the model
considered here, however within the scope of this section it will make the derivation more
transparent, since we do not need to split the interaction Hamiltonian into the system
and environment, respectively. This split is performed at the level of the Born-Markov
master equation. The Banach space of density operators of the total system is given by
the linear, positive, self-adjoint and unit trace operators with trace norm on the combined
Hilbert space:

D(H) = {p:H — Hlinear: ||p|j; <1,Tr(p) =1,p>0,p" =p}, ©)
where ||p]|; := /Tr(p*p) is the trace norm. The time-evolution of the total density operator
in the interaction picture is encoded in the Liouville-von Neumann equation:

Lo0(1) = —ialBie(1), pO (1)) = L) (1), @

with the Liouville superoperator £(t) and the transformation given by the free evolution:

t
o = T (t10) plto) ot o), Loltito) = Teexp{ ~i [drio(m},

to
with 7. depicting the time-ordering meta-operator, the largest argument is ordered to the
left. In order to be able to obtain a closed differential equation for the evolution of the
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relevant degrees of freedom, we introduce projection superoperators acting on the space of
density operators of the total system

P D(H) = D(H), p - Pp = Trelp) @ pe = fs © f ©)
Q: D(H) = D(H), prs Qp = p—Pp = p—ps @ . %)

Here P, Q are constructed in a way that P projects on the relevant part and Q on
the irrelevant part of the total system, g5 and pg depict the relevant and irrelevant part,
respectively. The properties P + Q = ]lD( oy PZ="P,0%=Qand PQ = QP = 0 are
elementary given the definitions above. We would like to point out that g is not solely the
system’s density operator but already contains information about the correlation between
the system and its environment. This conceptual detail in notation is especially relevant in
the context of non-separable initial conditions as we will see in the course of this section.
Application of the individual operators to the Liouville-von Neumann Equation (4) and
taking into account the split of the identity operator in terms of Q and P yields:

P00 = SPp(0) = aPL(p (1) = a(PLPID (1) + PLOGD (), @

ar’
0 Zo1 (1) = £ (1) = QL (" (1) = «(QL(PP (1) + LNV (1) . ©)

Note the relative positions of the projectors with respect to £(t) and p{!) (t). These
are not equations in the variables Pp()(t) and Qp(!)(t), respectively, and hence need to
be treated slightly differently than the standard case of a time-ordered, exponentiated
Liouvillian. The strategy to obtain a closed form of the equation for Pp{)(t) is to formally
solve for Qp(!) (t) and reinsert the obtained expression into the equation for the relevant
part, after which appropriate approximations can be implemented. The solution for the
irrelevant part is given by:

t
0p 1 (1) = G(t,10)Qp " (t0) + [ dsG(t,5)QL ()P (s), (10)

to

where the propagator G (¢, tp) is given by

t
Q(t, to) = T<_ exp {Dé/d’f Q[,(T)}, g(fo, to) = ]lD(H)

to

and satisfies the differential equation

%g(t, to) = aQL(H)G(t o).

An explicit time derivative and the fact that G(t,t) = 1py) proves that this is the
unique solution. As a last step towards an exact master equation we insert the for-
mal solution of Qp()(t) in (10) into the equation for the relevant part (8) of the total
density operator:

%P@U)(t) = aPL(H)PPUY (1) + aPL(1)G(t t0) QP (to)

t
+a? / ds PL(H)G(t,s)QL(s)PpD (s) (11)
This is the celebrated Nakajima-Zwanzig equation, it is exact and was obtained without

the assumption of any approximations. However, the solution is equally difficult to obtain
as the dynamics for the total system. This is mostly due to the fact that the convolution in
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PL(H)..

the second line in (11) is non-local in the temporal coordinate because of non-Markovian
memory effects.

If we further assume that the interaction Hamiltonian is of the form ), S ® E, for
system’s and environmental operators S, E, respectively, the latter composed of linear
combinations of creation- and annihilation-like variables only, as is the case for the canonical
models [7,8], we can further simplify Equation (11) by a closer examination of the firs term.
Insertion of the definition of the projector P on contributions with an odd number of
Liouvillians yields:

L) PO (1) = PL() .. Lt (Te{p (1)} @ )

— (=) P [Hing(t1), [Aine(£2), - - -, [Fline(f2 1), T{ } ).
= (=02 VT [Aie(t1), -, [Fime(t2ns1), (Te{pD(0)} @ )] ...]} ® p. (12)

It is obvious that an uneven number of interaction Hamiltonians of the assumed
form leads to a vanishing contribution. Hence, the Nakajima—Zwanzig equation with a
non-Markovian memory kernel K(t,s) for a broad class of models can be rewritten as:

t
%Pp(”(t) =aPL(H)G(t 1) 0pD (o) + / ds K(t,s)PpD(s),

K(t,s) :=a®>PL(1E)G(t,5)QL(s).

While in principle exact, the Nakajima—Zwanzig equation is not a feasible way to
obtain the effective dynamics in a reasonable fashion due to its complicated convolution
structure. This is why we would rather prefer a time-local generator K(t), which indeed
can be obtained if we are willing to take more stringent assumptions regarding the model
considered here, all of which will be mentioned at the time they need to be imposed. To this
end, we consider the two propagators F(t,s) and G(t,s) such that

G(t,5)p(s) =p(t) and F(t,s)oG(t,s) = Lpgy),

then we have
d d
()0 GEs)p)(s) = (dt (t, s))p()(t)+aF(t,s)£(t)p(I)(t):0, (13)

which can be directly solved for the inverse propagator 5 F(t,s) = —aF(t,s) leading to:

F(t,s) =T exp { - (x/td'rﬁ(r)}. (14)

Here we used 7, for anti-time-ordering. Note that G(t,s) # G(t,s), as the latter
is the total propagator of the combined system, i.e., the time-ordered exponential of the
integrated Liouvillian £(t). Now p()(s) = F(t,s)(P + Q)p'!)(t), which can be inserted
into the solution for the irrelevant part in (10):

t
Qp (1) = G(t,t0) Qo (o) + / ds G(t,5)QL(s)PE(t,s)(P + Q)p'! (1)
fo

= G(t, 1) Q9D (tg) + Z(t, to) (P + Q)p D (¢). (15)
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d
dt

aPL(t)

aPL(t)

with the corresponding definition for %(¢, f) that can be read of from the second line.
A simple rearrangement of terms reveals that

(Lpy — Z(t 1)) 2V (1) = Gt t0) QW (to) + (1, to) PPV (1), (16)

The strategy to obtain an explicit expression for Qp(!)(t) from the equation above is
to solve for Qp'!)(t) by subsequently inverting the superoperator Lpy) — X(t, o), after
which we proceed to insert the obtained expression into our formal solution for the relevant
projection in (10). We know by definition X(ty, fp) = 0 and X(¢,ty)|s—0 = 0, hence one
can show [12] that 1p(3;) — Z(t, o) is invertible for sufficiently small time scales ¢ — t and
appropriate, that is weak to intermediate coupling constant «. The larger the coupling, the
smaller is in general the time-scale for which X(t,ty) can be inverted. The time-local and
convolutionless (TCL) generator obtained in this way can then be expanded in a perturbative
series in terms of powers of the coupling constant. We obtain

0p () = (Lppyy — 2t 1)) " G (t,10) QP (t0) + (Lpzg) — Z(t t0)) ~ Z(t, 1) PAD ().

The ansatz for the inverse superoperator is given by a geometric expansion, which
reproduces the properties mentioned above and allows for the possibility to rediscover
the standard form of the master equation one obtains by simply tracing out the irrelevant
degrees of freedom in the Liouville-von Neumann equation. Concretely, one uses the
following expansion:

(Ipze) — Z(tt0)) Z (L))", Z(tto) = Y a"Zu(t to). (17)

m=1

The fact that the second sum starts at m = 1 is simply because at lowest order in &,
the expression for X(t, ty) is linear. The contributions X, (¢, to) label the individual orders
in this ansatz. The particular choice of notation will be readdressed once we give an
explicit example. This result combined with the Nakajima—Zwanzig equation (11) yields
the final equation for the relevant part also known as the time-convolutionless (TCL) master
equation in the literature:

5P (1) = wPLEPAD(E) + P LI (Ip) — Z(t10)) ™ (902 10) Q9D (1) + Z(t, 1) PR (1)

(«PLE)P +aPL(H) (Lpy) — Z(t t))  Z(t, 1)) PED (1) + I (1, 1) QpD (to)

(aPL(t)P +aPL(t i (2(tt0))" P (1) + (1, t0) Q6D (k)
Y (2(tt0))"PpD (1) + (1, 1) 26D (to)
n=0

"L, (t,to>)n7>p“)(t) +Z(t, 1) 9pD (to)

Mg
Ma

(

0 "m=1

3
Il

L K(t, 1) PR (1) + Z(t, 1) QpD (1), (18)

where the definition of Z(t, ty) can be read of from the second equality. Given the assump-
tions in order to perform all the necessary steps, this form of the master equation is much
more tractable than the Nakajima-Zwanzig equation itself with the involved convolution
kernel. Note, that furthermore, albeit the time-local nature of Equation (18), the underlying
processes can be non-Markovian in nature. The TCL master equation admits an expansion
of the homogeneous and inhomogeneous contributions in terms of ordered cumulants due
to a result of van Kampen [44,45]. This perturbative expansion is a valid possibility to
tackle non-Markovian dynamics of open quantum systems in a time-local form at any order
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d

dt

of the coupling parameter and is hence used in field theory applications of decoherence
theory [9] alongside the phase influence functional approach [4,41]. For the purpose of this
work it is sufficient to consider the lowest non-vanishing order of this expansion which
corresponds to an idealized Markov process. This will be made more clear in the next
subsection alongside with the Born approximation of an exactly separable system.

2.2. Brief Review of the Born Approximation and the Markov Processes in the Context of
Master Equations

In order to arrive at a tractable master equation for the total system in Section 3.1, we
impose separability for all times and a perfect Markov process. By virtue of the definition
of the irrelevant projector Q, see Equation (7), it is elementary that the inhomogeneous
part vanishes if the initial condition is separable, that is p{!) (0) = pg” (0)® pé” (0) and
consequently Pp(D(0) = p(1)(0). If we furthermore assume that the environment is in a

thermal state, that is the environmental density operator commutes with its associated
Hamiltonian, [He, 0¢(t)] = 0 for all times it is clear that within a reasonable approximation,

we can write the total density operator as p(!) (t) = ﬁg) (H® pé” (0). In this case, the second-
order TCL master equation can be rewritten in terms of integrals involving environmental
correlation functions alongside with the interaction picture’s system operators. According
to (18) the form of the TCL master equation up to second order reads:

t
PO =a? [ de PLHQLEPH (1) + O)

t
= —a? / dt Tr, ([Hmta), [Aine(7), Tre (61 (1)) © pe] ]) ® pe + O(at)
fo

t
S / dt Tr, ([Hmt(t), [Aine(7), 08 (1) ® ps]]) ® pe + O(a). (19)

to

In the first line we used that @ = 1 — P and the fact that contributions with an
odd number of Liouvillians (12) vanish based on the assumed form of our interaction
Hamiltonian. The second step was to insert the definition of the relevant projector (6),

after which we used that per definition Tr, (90 (t)) = pg) (t). An important detail to

notice here is that the inner commutator bracket is evaluated with ﬁg) (t) ® p¢ rather than
()

Ps’ (T) ® pe as it would be the case if we directly evaluate the second-order expansion of
the full Nakajima-Zwanzig equation from (11). Both equations are of second order and
are expected to describe the dynamics of the total system with a comparable accuracy [3].
However one of them is time-local while the other one is not. In the framework of the
Markov approximation, that is a memory-less environment, the transition from the time
convolution to the second-order TCL form is often done by hand [46], showing that the
difference p(D)(t) — p(D (1) is of at least second order in &. In other words, non-Markovian
corrections occur in the order a* and higher, where the full expansion to infinite order
yields the exact dynamics for both the non-local Nakajima—Zwanzig equation and the TCL
master equation, respectively. The exactness of the latter is only limited by the invertibility
of (1 —X(t,ty)) given by Equation (16) from the previous section, which in turn depends
on the coupling strength. Intuitively speaking, the truncation after second order in « is
justified whenever the correlation times of the environment are much shorter than the
ones of the system, e.g., in the case of a high-temperature thermal bath [20]. Given that
the interaction Hamiltonian has the previously assumed form Hin(t) = ¥, Sa(t) @ E(t)
we can reformulate the second-order TCL master equation as, where we choose to neglect
terms of order O (a*) from now on:
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to w,BeT
t
— 2 / dr Y [$0)3p(0ps (0 Tre (Ea()Bp(0pe)
i a,BEL

+ Caa( = 1) (08 (186(1)8a (1) = 51 (D3p()) | @ . (20)

In the last step we have defined the environmental correlation functions given by

Cap(t — T) 1= Tre (Ea () Ep(0)p") = (Eult — T)E4(0)) . (21)

The homogeneity in the temporal argument of these functions in (21) comes from the
vanishing commutator between H, and p(t) and the cyclicity of the trace. The latter needs
to be checked explicitly depending on the type of operators in the interaction Hamiltonian.
In the context of the canonical decoherence models [3,8,20] this assumption still holds
although the environmental part of the interaction Hamiltonian is unbounded. For all of
our purposes in this work we can assume that the trace is cyclic since all relevant operators
will be shown to be either trace-class or bounded. Consequently, we can condense the
master equation into a form involving two commutators and substitute { = t — 7 for
later convenience:

Bel

a7)@(1)(1}) = —a2/dT Z ([ﬁa(t), Z Cop(t — T)SAﬁ(T)ng)(t)}

+ [ﬁg)(f) Y CpalT = 1)5p(7), Sﬂx(t)D ® Pe
BeT

== [t T ([80) T Copl@)$pte - 03]
0 acT Bel
[0 T 0850 - 0, 8] ) 0 22

pez

At this point it is feasible to transform back into the Schrodinger picture, which
essentially amounts to eliminating the time argument ¢ in the previous expressions and
explicitly add the standard commutator contribution for the unitary part of the dynamics.
On top of that we further abbreviate the system’s operators involving the environmental
correlation functions in the commutators. This yields the so-called Born—Redfield equation:

S50 = =il ps(0] = T[S0 Bult)ps0)] + [ps1Cattr0) 8] ), 2

ael
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where the still explicitly time-dependent operators B, (t,tg) and Cy (1, t) are given by:

t—tg
Bultyto) i=a? [ d2 ¥ Copl@)3p(-0), @)
3 BeT
t—tg
Caltrto) = [ d ¥ Cpa(~8)3p(~0). 25)
0 Bel

If we take the Markov property seriously, we can further simplify Equation (23) in
order to eliminate the explicit time dependence of the environmental operators By (, )
and C, (t,tg) in (24) and (25), respectively. Assuming that the environment has no mem-
ory effects we can conclude that the correlation functions C,g(&) are sharply peaked (or
distributional, in the exact Markovian case), which lets us extend the initial time ¢; to past
infinity. Given that this limit exists for the model at hand, we end up with the Born-Markov
master equation:

S0 = =il p5(0] = T ([S0 Bubs(0)] + [ps0C0 &), @9)

LSA
with the now time independent operators B, and C, given by:

By = tolirfloo Bu(t,to), Co = toli@oo Cul(t, to).

It is worth noting that, even if the limit exists, this does not guarantee that the asso-
ciated master equation is of Lindblad form and hence completely positive. The explicit
outcome of these integrations crucially depends on the properties of the environmental
correlation functions and the complexity of the interaction picture transformation of the
system’s part of the interaction Hamiltonian. Hence it is conceivable that the resulting
master equation needs to be extended to achieve complete positivity, such as the Caldeira—
Leggett master equation [7] in the low-temperature regime [3] in the context of quantum
Brownian motion. The minimal spin-boson model, however is naturally of Lindblad
type [3,20] and hence completely positive. We will evaluate the peakedness properties and
comment on the validity of the corresponding simplifications for our proposed model in
the following sections.

3. An Open Polymerized Scattering Model

In this section we will consider an open quantum system describing scattering in the
framework of polymerized quantum mechanics. For this purpose we will in Section 3.1
introduce the notation and techniques to formulate quantum mechanics on the group U(1)
corresponding to the situation of quantum mechanics on the unit circle. Afterwards in
Section 3.1 we will derive the master equation of this model.

3.1. Brief Review of Polymer Quantization and Quantum Mechanics on U(1)

In ordinary quantum mechanics, any representation of the fundamental commutation
relation of position and momentum leads to identical physical predictions by virtue of the
Stone—von Neumann uniqueness result [47]. This property relies on the (weak) continuity
of the so-called Weyl elements, that is the one-parameter unitary groups associated to the
position and momentum operators, which in the Schrodinger case are given by U (a) = ¢/
and V(B) = ¢/PP. The Weyl elements satisfy the following properties

A A

U)o U(p) =U(a+p), V(a)oV(p)=V(a+p), Ula)oV(p)=e"PV(p)ol(a).

The task of quantization is to find a representation of the ensuing Weyl algebra on
some suitable Hilbert space. The conventional choice is simply L?(R, dq) with the standard
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inner product. In this representation, both Weyl elements are weakly continuous and
thus the derivatives of the Weyl elements with respect to their parameters and hence the
associated infinitesimal generators exist as operators on this Hilbert space. In recent years,
the so-called polymer representation has gained attention due to its inevitable presence in
Loop Quantum Gravity (LQG), see for instance [26,27,48,49], and hence possible connection
with Planck-scale physics. Especially in the context of Loop Quantum Cosmology (LQC),
as exemplarily treated in [28-30,50-53], the polymer representation offers a variety of
interesting aspects that are not included in the Wheeler-de Witt approach. The crucial
difference lies in the discontinuity of at least one of the Weyl elements. The polymer
representation in one dimension can be also formulated in terms of an L? space but no
longer over R but instead involves the so-called Bohr compactification. In order to see this
one considers the additive group G := (R, +) and uses that the corresponding characters
¢+ hy(c) = e of (R, +) labelled by p € R form an isomorphic group that we denote by
G. Note that a locally compact Abelian group G is compact if and only if G is discrete, so
we equip G with the discrete topology, where this brief introduction closely follows the
notation in [54]. Consequently, the dual of G, more precisely its set of characters, is the
afore-mentioned Bohr compactification G, of the original group G, which carries a natural
probability measure in terms of the Haar measure dpp [38,54,55]. The polymer Hilbert
space Hpoly and its most convenient orthonormal basis are then given by

Hpoty = L*(Ry, dpinr), eulq) := €™ with peR,

where the basis is given in g-polarization. In this representation, that we call the A-type
representation following the notation from [38], the fundamental operators act upon the
basis elements according to

U(w)|u) = [p+a) and  plp) = plp). (27)

The inner product is defined via the Haar measure on Ry:

<6V’ ev>p0]y = / d]/lH é}‘(q)ev( - 11_1;1:0 i / dq e V ﬂ)q = 5}!,1/'
Ry

Due to the uncountably infinite number of basis elements, H.,, is non-separable.

poly
Furthermore, in constrast to the Schrodinger representation the Weyl element U («) is not
weakly continuous at & = 0 since any two states |j), i + €) are orthogonal for all e € R
with |e| > 0. Hence, the position operator as the generator of U(«) does not exist on Hply-
The momentum operator p, however, exists based on the weak continuity of V(8). By
means of an Application of the Fourier-Bohr transform of the basis elements denoted by
Fleu](p) we obtain the dual basis of the Hilbert space L*(Ry, djic) with Ry denoting the

real numbers with discrete topology and dy, the associated counting measure

P):/dVHéu( “P = lim */dq@ P = 5, =1 Eu(p).

L—o0 2

The dual basis ¢, (p) = Jy,p is orthonormal with respect to the counting measure,
that is

(88 pety = [ e 8uP)E(p) = 1 Gypbip = S
R, peR
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Likewise, the basis §,, , is uncountable and L%(Ry, duc) non-separable as a consequence.
It can be shown that he polymer Hilbert space H,,}, decomposes into a direct sum of
separable Hilbert spaces [55]. We have

poly 20 P
6€0,1 —7T i

Uy
5 d
Hpoly = [ ),H}()(:))ly’ <e£l‘5)/e£’f)>(5) - ae 6—(5)6(5) = Sum, (28)

where H}(ai)ly are so called superselection Hilbert spaces and their basis elements egf) are

obtained by realizing that the basis label # € R can be decomposed into an integer 7 and a
superselection parameter ¢ in the following manner. Different aspects on how this parame-
ter arises from representation theory on L?(S',d¢/27) and the physical implications of
different values of J in the context of various physical phenomena are briefly reviewed in
Appendix A.

eu(q) = e = el 0)a = esf)(q), neZ, 6€[0,1)CR, (29)

The term superselection refers to the fact that the fundamental operators U(a) and p
that generate the algebra of observables do not map between individual superselection
sectors if « is constrained to integer values. These superselection Hilbert spaces carry an
inner product akin to the ordinary choice for the square-integrable functions on a unit
circle, L?(S',d¢/2m, ), where § is associated to the quasi-periodicity of basis functions.
This freedom in the choice of representation is also briefly discussed in Appendix A. At this
point we adopt the conventional notation also used in [35,36] in terms of ¢ as the angle
variable and p,, as its associated (angular) momentum. A connection to the notation often
used in the literature for polymerized quantum systems can be established by rescaling

n npy, O+ upd =:pp and q|—>y51q,

and a corresponding rescaling of the limits in the inner product. In this case g can
be associated to some fundamental length scale g originating from a more profound
theory, providing the lattice spacing of the discrete momentum variable. If we were to
polymerize the translation generator V, this fundamental discreteness would be found
in the eigenvalues of the position operator, analogous to, but much simpler than, the
occurrence of an area gap in LQG [26,27] and the upper bound on matter density in
LQC [29,33] respectively. However, the rescaling in terms of integer multiples of y( does
not add any additional insights and can be shown to lead to the same qualitative results in
terms of the structural properties of the master equation. Note however, that the polymer
scale explicitly enters the master equation in terms of the eigenvalues of the momentum
operator, hence we do not observe scale invariance in the model. The elementary holonomy
and momentum operators in the model considered here act on the basis elements given
in (29):

U(A) )y = |n+ Ay, U |nys = n—A); and  pyln); = (n+0)[n),.

For the holonomy operators we directly see that A ¢ Z would map out of a given
superselection sector. All further calculations will be performed in the e,(fs) basis states
shown in (29), which are the momentum eigenstates. In the next subsection we will use the
individual superselection sectors in order to derive a quantum master equation for an open

U(1) scattering model for which we will specify the corresponding interaction Hamiltonian.

3.2. Derivation of the Master Equation of an Open U (1) Scattering Model

A minimal decoherence model unarguably consists of free particles in system and
environment with a given interaction Hamiltonian bilinear in the combined variables. In
our case, the analogue of the position operator is unitary and hence bounded, contrary to
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standard quantization procedures, a fact which at some points during the derivation of the
master equation will turn out to be beneficial regarding the appearance of singularities in a
straightforward approach, as was already briefly discussed in [15]. In order to feature a
common thread in the several steps of the derivation of a master equation, we would like
to give the reader a concise overview in the form of the following flowchart in Figure 1:

[Step I: Derive (or choose) a total Hamﬂtonian.}

[Step II: Transform H;,; into the interaction picture.}

[Step III: Fix an initial environmental state ﬁg.}

A

[Step IV: Compute environmental correlation functions.}

Y

[Step V: Formulate Born-Redfield or Born-Markov master equation.}

Figure 1. Illustration of the major steps in the derivation of a master equation.

In terms of the A-representation in which U(A) is discontinuous and the position (or
angle) operator does hence not exist, we associate a coupling constant g, to each individual
particle in the environment. This is a technicality related to the physical dimension of
the coupling constant. In this model, the coupling constant is not dimensionless, since
the interaction Hamiltonian has a fixed dimension by definition. In the course of the
perturbative expansion, the strategy is completely analogous to the dimensionless case.
At the level of the master equation, this choice of interaction enables us in principle to
introduce a spectral density in order to emulate a continuum of (effective) particle masses
in the environment, which in some cases is a crucial ingredient in the derivation of a
Lindblad-type master equation. An interaction Hamiltonian associated to a dynamic
position monitoring [3,20] or localization includes a coupling of the position variables of
system and environment, respectively, hence our choice of total Hamiltonian is given by:

N
Aot = Hs @ 1o+ Is @ He + Hiy,  with  Hini= Y. S® Fy, (30)
a=1
B aey O p (- i) e ¥ S (0l - @)"). ey
Tomg S = 2mg 24\ A h= A ! |

where the index a corresponds to the individual particles in the (thermal) environment,
S« is the respective coupling and N >> 1 is the particle number. The assumption that N
is large is based on a technicality that relates to the thermodynamic limit, more precisely
to the replacement of the sum over couplings by an integral over a spectral density. This
will become clear in the process of deriving and discussing the final master equation.

Furthermore, the notation Hf\“) := U, ()) was adopted to keep distinguishability between
the Schrodinger- and the interaction picture operators. The prefactors of (2iA)~! for every
such combination of holonomies ensure that the Hamiltonian has an appropriate limit for
vanishing A. The connection to similar models in a Schrédinger-like representation [3,7,20]
is given by the replacement:

3 Lo o) o v 8o (@ oyt
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In this sense, A describes a lattice spacing where A = 1 is the non-rescaled case de-
scribed in Appendix A. However intermediate values are not meaningful in the sense that
they would map out of the chosen superselection sector. This procedure of emulating
operators via differences of holonomies is well-known in the literature, see for example [55],
but has never been applied to the canonical open quantum mechanical decoherence mod-
els [3,7,8] to the knowledge of the authors. On top of this, for the model considered here,
the continuum limit might not be well-defined in the midst of our calculations. This is not
surprising since there are divergences associated to the fact that momentum eigenstates
are non-normalizable in Schrodinger quantum mechanics, see for instance the discussion
in [15]. This can however be in principle dealt with in the framework of rigged Hilbert
spaces [56]. In the model considered here these kind of divergencies are absent because we
work in the polymer but not in the Schrodinger representation and as a consequence the
position variable g needs to be expressed in terms of holonomies, often referred to as the
polymerization of the position variable. The total Hilbert space has the following structure:

Hiot = Hs @ He = LZ(Sl, g“” )

®L2(Sl dq’” 5)] (33)

Note that the superselection parameter ¢ agrees for all environmental degrees of
freedom, since adding a particle label to the parameter does add notational complexity
while leaving the results largely unchanged. Considering the continuum limit in terms of a
spectral density would be a more complicated affair, however. Given a total Hamiltonian,
the next step towards a master equation of the form (23) is to transform the interaction
Hamiltonian into the interaction picture. The most straightforward route is to solve the
Heisenberg equations of motion for the operators involved in the interaction:

0L = [ 0a(0)] + (;’Cw) (@), (34)

where an explicit time argument denotes the interaction picture quantity, with U, =: U, (0)
being the Schrodinger picture operator. Due to the same structure of Hg and H, respec-
tively, it is sufficient to investigate the interaction picture of either part of the interaction
Hamiltonian, the other one follows immediately. The fact that [U), Pol = —AU, and
[at, Pol = AU together with the time-independence of U, and U lets us conclude:

s (g2 g et _ gy MY A (AL
A

m
I afran ~d1 i) iA A Al iA Al
_ 7ezCHs [pforu;ﬂe i¢Hs _ WTO j{(é‘)( p¢’+ > ) = _<P<p+ )U)\(g)

Hence we can directly give a closed-form expression in terms of an exponential:

00 = O ep] 55 (pe+ 5 ) | mexe{ 55 (r0- ) b0, 9

ai(e) = Ui (o) exp{ 25(—%4' );Il)} = exp{ n/:;: (qu+ 5 )}UA(O) (36)

The fact that the above forms of (35) and (36) are the correct solutions can be explicitly
checked by direct computation of the derivative or by virtue of "traditionally” evaluating
the iterated commutator bracket, see Appendix B. The next step consists of the computation
of the environmental two-point correlation functions, where we have chosen a thermal
state for the environment, which is the most convenient choice and has the benefit of
time-homogeneous correlation functions, that is Cop(f, T) = Cap(t — 7). Thus we need

to evaluate Cop(8) = (Ex(§)Ep(0)),, where (- )_denotes the environmental expectation
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value with an N-particle thermal environment g, = &); ﬁt(}fl). For this purpose we use the
framework introduced in Section 3.1 where we can construct a thermal state that can act
as an N-particle environment for our single system degree of freedom. As usual, we start
out with a thermally weighted exponential of the respective free particle Hamiltonian e PH
with B = (kgT)~! where kp is the Boltzmann constant and T is the temperature parameter.
Consider a single particle in a thermal state, which we can then easily extend to N identical
particles for the environment and hence skip the particle label « for now. First expand the
Hamiltonian in the basis of (angular) momentum eigenstates:

NEDI e PH _ 1 { p 2}
= — = — Yexps ——(n+0)" p|n);® (n
pth Tr{e‘ﬁH} Zth = p Zm( ) ‘ >(5 < ‘5
e 2 B
= exps —on“ —2ond ¢ |n); ® (n|;, o:= .
Zth n;z p{ }' >§ < |§ 2m

Zi 1= Tr{eiﬁH} =) exp{—an2 —20nd — 052}(m|n>5<n|m>5

mneZ

=) exp{—aéz} exp{—(m2 — 2(711(5}

nez

= exp{—a(52} ) exp{inn% + 27tinz}

nez

: exp{ —0(52}19(2; T),

where 9(z; T) (or often 9yy(z; T) if considered in the context of auxiliary theta functions)
is the Jacobi theta function, z = icd/m and T = ic/m for brevity. Note that d(z; T) is
non-vanishing and real for all ¢ regardless of the temperature parameter, hence the density
operator for a single free particle on a circle in a thermal state with temperature T is given
by the expression:

NCONE| o2
Py = 1) Zexp{ on 20n(5}|n>5®<n|5. (37)

nez

In the limit of T — 0 or Jm(7T) — oo, respectively, we can easily see that 9(z;7) — 1

1
and the density operator reduces to the vacuum state, that is ﬁt(}“? ) |0); ® (0|5 as in

standard quantum mechanics. Since any given U)(L“) (note that we have omitted the subspace
index in the previous calculations for a better overview) only acts on the a-subspace of the
environmental Hilbert space and maps to a state orthogonal to the previous one, we can
directly conclude that C,5(&) ~ d4p- This of course is nothing but another justification of
one of the steps we took in the course of the derivation of the master equation. It amounts
to the statement that PL(t;) ... L(ty,11)PpP(t) = 0, in particular for the case n = 0,
since operators with different indices act on different environmental subspaces. Thus it
is sufficient to find Cys (&) according to the following, where contributions including two
instances of lAl)(\“) or (H)(L“)f can be dropped due to orthogonality of the |m) = |m) ®...®
|my) basis states:
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Caa(&) = Y (my,...my|Ea(& [ Y ® S exp{ - . n2 —20,m,6}

|n,)s @ (nils||m,...mn)
{le} {Yl[}l 1 (ZL,Tl) e l i|

<”zx|Ea(€Tv)EAzx(0) 1a) 5

1Za N exp { —ont —20mn,} Z exp { — oun2 — 20,145}

=211

{n } 1 1 (erTz) = 19(2,;(,1’“)
_ N eXP{ - (71711 2(71111(5} exp { — oung — Z(T,xn,xé} . .
- "1221 19(21'7'—1) o n,XZeZ Hza, Ta) (14| Ea(€) Ea(0)[11a)5
— 20,16 i » "
ngiexp{ ﬁ(za,rfx) = } | A (C)( )(\))++( )(L))+(§)u§)|”>(s
= ZZC" [QXP{ - %()‘2 —2A(n+06)) } +exp { - zi()\%z/\(nw))}}
ne (14 o

2A2 ch [cos <§:’;2)—isin (gr/r\lz)]cos <§1A(n+5)>
nes @ & &
= va(§) — ia(§),

where in the first step, we decomposed the N-particle Hilbert space scalar product into its
individual contributions. In the second step we isolated the only non-trivial contribution to
this product, note that £, (&)E,(0) only acts on the respective subspace, all other elements
can be pulled through, where we then use orthonormality of the single-particle basis
states. This gives the definitive proof that only correlation functions with « = B give
a non-vanishing contribution, (1 |Eq()|na)s ~ (na|na +A)s + (na|ne — A); = 0. Each
individual non-« instance of the contributions including the Jacobi theta function sum up
to unity, simply due to the form of the partition function, see Equation (37). Consequently,
we abbreviated the normalization factor as C,(1'X) and renamed the summation index from
n, to n but kept this label on the coefficients, as for example B, explicitly contains the
mass 11,. This parameter, which we did not yet a priori fix among the environmental
degrees of freedom, exhibits an important aspect and will be brought up again later in

this work. In the last step we just applied the very definitions of l:l/(\'x) (¢) and (l:l/(\“))Jr
respectively and abbreviated the result in terms of the so-called noise- and dissipation
kernel functions v, (&) and 7,(&) respectively. The origin of this nomenclature will be
discussed in the next section, where we will shed light onto the fact that this straightforward
interpretation breaks down amidst the polymerization of the configuration variable. Note
that Cao(—8) = (Ex(0)Ex(€)), = (Ea(—£)E4(0)), can be checked to hold explicitly for
our particular correlation functions. The fact that there is only a single system’s degree of
freedom and C,p(—¢) ~ J,p eases our way towards the final result.

At this stage we can directly insert the correlation functions Cya (—¢) into the Born—
Redfield master Equation (23). We intend to keep the explicit time-dependence from the
upper limit of integration as long as possible, taking the limit ¢y — oo is generally non-trivial
and only possible for certain models and spectral densities, the latter will be discussed
in more detail in Section 3.3. Given the concrete form of the environmental correlation
functions and depending on the temperature of the environment, it might be reasonable
to introduce another aspect of the Markov approximation and extend the integral limits
accordingly, but for now we shall remain in Redfield form. For the benefit of the reader we
recall the individual contributions in the Redfield master equation:

7

Si0s(0) = ~ilfs, 5] = X (S0, Bolt0)ps(0)] + [ps1Cat0,0), 4] ).
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In the light of the definitions in (24) and (25) together with the realization that the
sum over « only affects the environmental contributions, for the system consists only of
a single degree of freedom, we can further simplify. Utilizing that the interaction picture
operators of the system’s part of the interaction Hamiltonian are given in full analogy to
the environment, we get:

n=don{ B 2)) atin=ater {2, 1))

As can be checked explicitly, it holds that (l:l)L(C))Jr = (lAIA)Jr(g’,). This can be easily
proven by adjoining the previous result and with the help of the Weyl algebra relations.
Straightforward insertion into the definitions of (24) and (25) then yields the environmental
monitoring operators for the open U(1) scattering model:

t—tg

Bultto) = 57 [ 48 Cua(@)(Un(=0) - U} (-0))
0
412\3 t/od{f n;Zc [cos (26/\1) —isin (5:::{)] cos %(n +(5)>

(e oA} aten [20,2)),

and similarly for the second set of operators:

t—tg

Caltito) = 5~ /dccw -0(W(-0) - U} (-0)

tto

41)\3‘ /d@’ ZC(“)|:(:OS <§Az>+isin (5;;1)}cos (it(n%—é))

nez
. (ﬁAeXP{ o (ot 5)} - 0tew {50 (50- 7))

Furthermore we can set B(t,tg) := ¥, Ba(t, to) and C(t,to) := ¥, Ca(t, to), respec-
tively. As mentioned, this is specifically possible in the model here since the summation
indices between the system’s interaction picture operators S p(—¢) and the environmental
correlation functions C,p(—¢) are not intertwined due to the fact that the C,5(—¢) are
diagonal and the system only has a single degree of freedom. For a brief moment we will
resert to the more compact notation U, (—¢&) and U} (—¢) instead of the above form. This
lets us see the structure of the resulting master equation more clearly, we will reconsider
the explicit, written-out form when we examine the physical properties of the individual
contributions in Section 3.3. Let us briefly recall the abbreviations we made along the way:

1040 iy B 1

inn?t, 2innz -
B(za, o) 1= ) TR, g, = , Ta=—, Oy = = =
ne, T e 2my 2mukgT

Gathering all individual terms we can finally insert these into the Born-Redfield
Equation (23) and obtain:

%ﬁs(t) = —i[Hs, ps(t)] — 21/\ ) ({ U, —Ul), Bu(t, to)ﬁs(f)] + [ﬁs(t)éa(fr to), (Un — HDD

ael

This is one of the standard forms of the equation, however when it comes to attribut-
ing physical meaning to the equation, it is more feasible to cast it into a different form,
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expressed as a combination of double-commutators and commutators of anti-commutators,
respectively. For this purpose, we use the following identities:

(@ - a), @0 - af-o)es] = 5 ([@ - ab),

( )
Cn -, (@, (—C))/ﬁs(t)}Df

[0s(0) (T (—8) = T(-9)), (U —T})] = ;(Xm = 03), (G (=8) - i (=2)), ps(b)]]

[~ ). { (@0 - ai-a).asm}]).

where {-, -} denotes the anticommutator. Note that the above two expressions only differ
by the sign in front of the commutator-anticommutator combination, which precisely fits
the difference in the sign of the argument of Cy, in the definitions of the operators By (t, to)
and C, (t,t) in (24) and (25), respectively. This lets us immediately conclude that in the
final master equation, the double-commutator is smeared with the cosine contribution
whereas the commutator-anticommutator term is smeared with the sine-contribution from
the environmental correlation functions, the mixed contributions cancel essentially by
virtue of the way the correlation functions are defined. If we now gather all terms, we get
the following expression for the final master equation of the open U(1) scattering model:

d ﬂran o—20uns

s = —ilAs,ps(1)] + / £y L

x=1 nez Z”" “)
2

X (cos (5:’; ) [fh - uj, {a/\(_é) - HX(—C)/ﬁs(f)H

®
2
— isin (5/\

cos (n%)t(n + 5))

) [ -0t {a-o - af-omw}]). e

My

In the limit of a vanishing "temperature’ parameter T we reduce the initial environ-
mental density operator to a pure state and correspondingly are left with the vacuum
contribution n = 0 instead of the sum over all integers:

t—tg

. d . A 1 7 N

tim (g#s() = ~ilAs. () + gy [ 42 1 hcos (£10)
0 a=
)\2

((cos (52 ) [0 = 2t [0-0) - 01 (-2, s(0)]

—isin (20 [t - 0, {On(-0) - a}(—@,ps(t)}}).

3.3. Physical Properties of the Master Equation of the Open U (1) Scattering Model

In the context of the four canonical models of open quantum systems [3], there is a
specific interpretation to the individual terms in the master equation, see for instance [7].
The nomenclature of the real and imaginary part of the environmental correlation functions
as noise- and dissipation kernel already are suggestive. It is indeed the noise kernel
that usually determines the decoherence dynamics. Suppose we are interested in the
temporal derivative of the expectation value of the system’s momentum. Then we can
replace the expectation value with a trace and apply the derivative to the density operator
and consequently replace this derivative by the right hand side of the master equation.
The resulting equation can be greatly simplified by realizing that the trace is cyclic. This is
true in our case and generally needs to be checked explicitly if unbounded operators are
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)y =Te(Poost)) ~ cos (£ ) e(po [0 - 1, [ (-0 - 0

involved. Under the assumptions of the validity of the Born-Markov master equation one
can deduce a system of generally coupled differential equations for the various moments
of the position and momentum variables, respectively. Let us quickly recall the case of
collisional decoherence as discussed in the introduction and the form of its master equation
derived in [15,16]:

S TN DUV o
—i[H,p(t)] + / da (Lap(t)LZ - ELaLZp(t) — Ep(t)L“LD’ Ly :=+/vG(a)e™, (39)

where G(a) > 0is the momentum transfer function with [ da G(a) = 1 and some collision
rate . It is immediately clear that this equation has Lindblad form, which is evidently
not the case for the equation derived here (38), since there is a residual time-dependence
in the effective system operators. In case of (4), and (p),, where the expectation values
with respect to the system’s density operator has been denoted with a lowercase p for more
clarity, the resulting differential equations in the collisional decoherence model amount to:

d p d
a<‘7>p = @/ a@)p = ’Y/dﬂ aG(a), (40)
R

m

which vanishes in the case of a symmetric function G(a) = G(—a), suggesting (p), ~ const.
A similar computation [15,16] for the position operator yields 7 9;(3), = (p),, just as one
would expect based on intuition from classical physics. We now shall repeat this analysis
for the master equation in the previous section and derive the equations of motion for the
respective first moments. For now it is sufficient to express the expectation value in terms
of proportionalities, at the end of the derivation we will again collect all proper prefactors.
We obtain

N

My
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(=), ps(t)
T(=2),ps(t

I])
1))

Hence, we are interested in the explicit expressions for Tr(p,[Qx, [Or (=), ps()]])
and Tr{py[Qn, {Qr(—€),ps(t)}]} respectively, where we set Uy — Ul =: 2iAQ, for
brevity. Note that the unitary evolution generated by the free particle Hamiltonian Hs does
not contribute in this computation since p, commutes with itself and the trace is invariant
under cyclic permutations of its arguments. This yields
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= T ([0 + 0}, Qa(-0)]s),
where we have first permuted every instance of gs to the rightmost position and con-
secutively cancelled the first and fourth term in the trace by inserting the commutators.

As a last step we used 2i[p,, 0] A] = (U) + Ul). On a similar note we can simplify the
second contribution:

=
—~
>
<
o
T
—_
o
=
—~
|
R
\\_/
=N
%)
——
S—
Il
=
L
>
-
N
)
=
O
=
—
|
R
SN—
|
!
=
—~
|
R
S~—
o
T
>
=
[—
=N
%)
~—



Mathematics 2022, 10, 4248 20 of 32

Note that we left the interaction picture’s operators in Q, (—&) untouched so far, the
remaining trace can now be evaluated with the Weyl relations between the one-parameter
unitary groups associated to the canonical variables known from ordinary quantum me-
chanics. More precisely, we need to simplify commutators of four different kinds:

:UA,CL\(—@: = 37% a, :Z:I)UGXP { - @p‘/’}] =e lzg’ﬁé (1 —e i’é"AOZ) %exp{ - Ql’q)}
0,0,(-0) = St [ exp { - Ep,}] = (1 )ttt ep { - P,
:LAIA,lflj\(fff): =e ’Zi;'ﬁg at :U;Uexp {%@OH = 6712%\0 (1 - lg'Ao )U’LU;\ exp{ é%ﬁ(p},

o080 - [ (£20,)] < 5 1 5P (20

where we repeatedly used the Weyl relations to rewrite the commutators in the second step
of each line. The exponential prefactor is universal to both operators U, (—¢) and LAIK(—Qf ),
which is evident if we recall the operator ordering that we chose beforehand and the fact
that these operators contain an exponential of p, with which neither U, nor U} commute.
On a similar note the anticommutators can be obtained by carefully rearranging terms,
using the Weyl relations and the fact that (I, and U} commute among themselves

igA2

{000} =¢ B (140 W) Bow { - D5y},

(a0, -0)) = 5 (145001 { - 25, ),
{0,010} = 50 (1405 )00, exp {22, ],

igA2

{ajv U}L\(*C)} =e M (1+€_i§”}:)2> (lAI;r\) exp{ipq)}

If we collect all contributions for the commutator we end up with
2 [0+ 8, 00-0]as) = (165 ) (o {1} - {00}
e B (1B ) (Bew {7} - (@) e {Ep, )
and in the case of the contribution involving the anticommutator we get
({24 05,000 o) =5 (1008 ) (o (529, ) e { B2 ),

+e_i2§’;\§ (1 +eif'§$2)< exp{ﬂm} - (HD exp {Qp‘f’}>

On top of this, the expectation value of the commutator and anticommutator brackets
that do not include the holonomies can be further simplified to represent an analytic
function of (p,), when we consider U(1) complexifier coherent states [35,57]. In the course
of our analysis, we do not observe the higher-order corrections from a more general class of
states due to the truncation at linear order in A performed in consecutive steps, hence we
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opt for the more compact notation at this point. Furthermore, let us abbreviate the second
expectation value with (A),, that is:

<exp {qu,} — exp {qu,}> = —2i< sin (%ﬁq,) >p = —2isin (%@@p),
<UA eXP{ mCAPqJ} (LAIDZQXP {ﬁg%}% = (A)p-

Hence, the effective equation of motion for the expectation value of p,, is given by:

t—tg

&), = s [ a2 L ¥ g

5 a=1 nez (20, Ta)

[(—21’)2)\ cos (E)i) sin (%) < exp {%ﬁrp} - exp{ - %ﬁ¢}>p
—2i ZAsm(C}\z) g)\z)< Xp{%ﬁ¢}—exp{—%ﬁ¢}>p>
(5o) (3

)51 (sm (C—O) +icos (%))(A%

—oun? 7217,,(716

cos (n%)\(n + 5)) X

(@)

0S

(
o)

5

+2A cos (

—2iAsin ( ) cos (EAZ) <cos (%ﬂ/\;) —isin (i;\oz)) <A>P}
t=to oxn® ,—20,1
= 2/\3 / d¢ az:l ngi 232“/;)5 cos (n%/\(n +8)) x (41)

[(cos (Z;i) sin (5:;) + sin (Z;i) cos (g;:)) sin (%(m)p)
_% cos (;:T)?\lz) sin (5:;) (sin (Z‘OZ) ~+icos (‘Z‘;)) (A)p
+2 sin (5:;) cos (5:;) (cos (énjloz) —isin (i:;)) <A>p].

In order to get a better understanding of the properties of this equation we would
like to expand the prefactors of the expectation values in terms of A. This will establish a
correspondence between the momentum transfer function G(a) in [16] and the choice of
our environmental interaction Hamiltonian. We treat each line individually, starting with
the first one:

2%cos (TS An +(5)) (cos (2(:'(::11) sin (gﬁ)) +sin (E:Yi) cos (5:;)) sin (T/:li< ¢>p)

() Do) & (& Jow, e

There is no contribution of lower (or even inverse) order since sin(A) ~ A 4+ O(A3)
and both summands in the bracket contain such a contribution with A? in the argument.
The superselection parameter ¢ does start to contribute in O(A?) since cos(A) ~ A2 4+ O(A*)
and the bracket together with the expectation value is at least of order O(A). We would
like to stress that this part of the master equation was particularly simple to evaluate since
there was no involvement of the holonomies whatsoever. An expansion of U and LAIX is
not meaningful in the quantum framework since the associated generator does not exist.
The strategy will now be to only expand the prefactor of the expectation values including
holonomies and investigate the relation between the noise- and dissipation kernel order by
order in the Taylor series. We get
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t—to

(Po)p =53 / dz Z 2

mcos (5};\;) sin ((2::’\;) (sin (i?oz) +icos (%)) <A>p %mio/\<[\> +0(A),

ﬁSUl(é{Az)cos (Lﬂ) (COS (5;\2) isin (é;;\Z))<A>p = émi/\<A>P+O(A)’

2m,x 21710 my 0

Note that these expansions only differ in the mass label m, and hence generally do
not cancel. It is not possible to take the limit A — 0 in the chosen representation for any
my # mg as the expansion of <A>p will contain a zeroth order contribution proportional

(but not limited) to ~ <4i(p>p + O(A), which are at best meaningful in a semiclassical
regime because of the discontinuity of the holonomy operators in the superselection sectors
due to which the angle operator cannot be implemented on our Hilbert space. This is
the point where our result can be related to the symmetry properties of the momentum
transfer function found in [16], the case of a symmetric momentum transfer function in (40)
and hence <ﬁ<l’>p = const. is not included in the polymerized scattering model for a non-

vanishing coupling constant. Even the lowest-order contribution of <ﬁ¢>p shows a different

behaviour than Schrodinger-type models. Henceforth, we assume that the environment
consists of particles with masses identical to the system mass g, which lets us directly
simplify the effective differential equation for <7§4’>p since all problematic terms cancel. The
conventional approach suggests that the sum over couplings and masses is replaced by
an integral over a so-called a-priori spectral density [3]. This in a sense corresponds to the
thermodynamical limit, the environmental modes (or masses, respectively) are assumed to
lie dense enough as to be replaced by a continuous integral instead of a sum. The choice of
spectral density then crucially influences the properties of the model [8] but can be used
to remedy the occurrence of spontaneous recoherence or Poincaré recurrences, respectively
cancel up to arbitrary order in A:

—on? e —20né C: g/\Z ) §A2 - Aé
7)C05 (m—o)\(n +(5)) cos (%) sin (z—mo) sin (m0< ‘P>p>
neZ
g Eae E, o
a=1 nez ) Zm% P
—20nd Pt
:_Zl Zzg“ 1927) ( 6m ? {Po >P+O(A2)
® ne
_t0>3 ~ 2 . . N >
W<P(p>p+o()‘ ), with G:=) gi>0 V N <co. (42)
0 a=1

This can immediately be integrated to yield the lowest-order solution for <ﬁ¢>P:

PRV
(Pg),(t) = exp { - G<tz4nio(2)>}<ﬁ(”>ﬂ(t())' (43)

Hence, we get a strong suppression of the momentum expectation value even in the
lowest-order expansion in A. The case of (Q,), is significantly easier. We can immedi-
ately see that the contribution from the non-unitary term in the master equation vanishes
by virtue of the cyclicity of the trace, which is evident from the boundedness of every
operator involved:

A

A(=2),ps]]) = T ((QROn(-8) - (0@} - B (-0 + Qi (-9)Q} s ) = 0.
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A similar argument holds for the anticommutator:

Tr(Qa [0 {Qa (=), 5}]) = Tr((QFQu(—8) + Qu(-0)Q} — Q30 (=) — n(—2) 3} ) s ) =o.

The only non-vanishing term comes from the unitary evolution:

d, » (AT A : 3 5215
(@) = (@i [As ps(0)]) = 5, - Te([Qn P 10s) (44)

1 A At A
= —M<[UA/ Pl — U0 P51),

= M«a/ﬁ' U3) po + Po (U + a}\)>p

—

1 . "
- m(cos()\(p)p(p + pq,cos()tgo)>p. (45)

As can be seen the resulting equation can not be solely written in terms of expectation
values of p, and Q) due to the non-closing of the algebra between these two variables,
since the relevant algebra is formed by (;54,, l:I/\, I:I;r\) and not combinations of the latter
two. We can however attempt to solve Equation (44) for <Q /\>p based on the lowest-order

solution of ( ﬁ4’>p in the context of an expectation value with respect to U(1) complexifier

coherent states [35,57]. This observation is based on the fact that, as mentioned beforehand,
there is no order-by-order expansion of the holonomies, which invalidates the strategy used
for the solution of <ﬁ¢>p. Hereby we can use that at lowest order in the semiclassicality

parameter, the operators reduce to their classical counterparts and quantum corrections
occur in higher orders of the semiclassicality parameter only that shall be neglected here,
enabling a straightforward solution of Equation (44). Direct integration then yields

) = si 1 3 G(t—ty)* 14/3m2 (1
<Q)\>p(t) = SIn (Cl 4(t to)E(4, 24m% + 5 e T i
(LG (1 Gty 1efamd
- Pa\ 24m2 4" 24m2 Vg tla) )

where A = 1 has been chosen. Moreover, <QA>p(t0) := sin (C;) with C; € R in the

general case, E(n, x) is the exponential integral function, closely related to the incomplete
Gamma function I'(+, ) (with fwo arguments, notably) and I'(-) is the ordinary Gamma
function, respectively. A visualization for an exemplary choice of parameters can be seen
in Figures 2 and 3 below, respectively.

Corresponding to the solution for the momentum expectation value in (43) and visu-
alized in Figure 2, the lowest-order behaviour of <Q )‘>p (t) reflects the strong momentum
damping in the sense that the motion of the polymer particle comes to a halt after a char-
acteristic timescale defined by the relation of coupling constants g, and masses my. We
would like to stress, however, that the above relations between coupling parameter and
particle mass are purely exemplary and should be considered a proof of concept. In order
to obtain realistic predictions, we would need to make sure to avoid Poincaré recurrences
by virtue of an introduction of a proper continuum limit [3] regarding the environmental
degrees of freedom. The choice of a spectral density with appropriate physical properties
to effectively describe the environment in the context of a polymerized model is still an
open issue to the best knowledge of the authors.
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Figure 2. Visual illustration of the behaviour of the solution <f)¢>p (t) for % = {},1,2} represented
0

as the dotted, thick and dashed lines, respectively. The parameter values are chosen as <ﬁ‘P>p (o) =1
and f¢ = 0 for convenience.
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Figure 3. Visual illustration of the behaviour of the solution <QAA>P(t) for A = 1 and the lowest

semiclassicality order in U(1) complexifier coherent states with % = {},1,2} represented as the
0

dotted, thick and dashed lines, respectively. These are in direct correspondence to Figure 2 above.

The parameter values are chosen as <Q ,\>p (to) = 0 and ¢y = O for convenience.

4. Conclusions

In this article we derived and investigated an open U(1) scattering model in the frame-
work of polymerized quantum mechanics [38,55,58] which mimics collisional decoherence
that can be regarded as one of the simplest decoherence models. One of our motiva-
tions to consider such a model is to obtain a better understanding of how decoherence
effects look like in polymerized quantum mechanics as compared to their corresponding
Schrodinger-like models. This is a first step towards the ability to analyze these effects
also in more complicated LQC- and/or LQG-inspired models at a later stage. Next to its
simplicity it is also an interesting model because using a Schrodinger representation, as
has been done in [15-18], the usual approach, to start with a given total Hamiltonian that
involves the dynamics of the system and environment as well as its interaction, does not
work in a straightforward manner here because one commonly encounters singularities in
the derivation of the master equation (more precisely the correlation functions) for such
a model [15]. The main difference in the setup considered here compared to previous
work on collisional decoherence in [15-18] is that in polymerized quantum mechanics,
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depending on the chosen specific representation either only the position or momentum
operator exist on the polymer Hilbert space. For the remaining elementary variable, only
the corresponding exponentiated version can be implemented as an operator but not the
corresponding generator. A similar situation is for instance also considered in [36,37] for
the quantization of the phase space in applications of quantum optics. In the notation
of [38], we have chosen the A-type representation where the momentum operator exists.
As a consequence, operators involving the position need to be expressed in terms of the
associated Weyl elements. The latter allows to base the model on a chosen total Hamilto-
nian that involves no potential but involves the polymerized version of typical interaction
Hamiltonians leading to decoherence and dissipation. Furthermore, our choice was guided
by the results for Lindblad operators found in previous works on the subject [15-18].

Our results deviate from and extend the results present in the literature in several
aspects. Firstly, we utilized the projection operator formalism in the form of the TCL
approach in order to formulate a master equation, whereas [15,17,18] implemented an
S-matrix-like strategy for the scattering of a massive Brownian particle in an ideal gas
environment. Secondly, due to the different representation of the canonical variables, our
Hilbert space looks different in the sense that our basis functions do not belong to the
standard Hilbert space L?(R,dq), where they would be non-normalizable. The Gibbs state
in the form of the environmental density operator consequently has a different form than
the one used previously, which is one aspect of the avoidance of the afore-mentioned
singularities. These can however also be circumvented in Schrodinger quantum mechanics
by the choice of an overcomplete decomposition of the density operator as discussed in [15],
albeit not in the context of a TCL master equation.

In order to analyze the physical properties of the derived master equation we consid-
ered a Taylor series in the polymerization parameter, where we only apply the expansion
to functions, not operators involved in the final master equation. Our results show that
the lowest-order solution of the effective differential equation for the momentum operator
expectation value in the case of equal system and environmental mass reveals a strong
momentum damping based on the relation between coupling strength and the value of the
particle masses. It is noteworthy that, with a non-vanishing coupling and finite particle
mass, we cannot reproduce (fy), = const. as is the case in [17] for a symmetrical momen-
tum transfer function. This holds even in zeroth order in the polymerization parameter A,
where one intuitively might expect the result from Schrédinger quantum mechanics as a
limiting case. Taking the continuum limit is however not as trivial as sending the lattice
spacing to zero [38], the Hilbert space used in the model presented here has a manifestly
different structure than just L?(R, dq). In this sense the results for (p,), and (Q,), are a
footprint of the structure of the polymer Hilbert space and its associated superselection
sectors. Solving the (then coupled) differential equations between these two expectation
values up to higher orders in A and comparing these results to both the existing solutions
for Schrodinger quantum mechanics and the lowest-order approximation is the goal of
a future analysis of this class of models. For the purpose of a more direct comparison,
we would need to analyze the results of an analogous interaction Hamiltonian in terms
of holonomies on the Schrodinger Hilbert space, highlighting the structural differences
between Hilbert spaces. Up to the correlation functions the results would be identical
due to the observable algebra, at the level of the correlation functions, the question arises
whether certain convex decompositions of the density operator are preferred in the sense
of the avoidance of singularities as for example pointed out in [15]. This will be analyzed
in detail in the course of a future project.

At the level of the master equation discussed here, as well as the effective equations
for the expectation values of the momentum operator and the polymerized position are
concerned, it is clear that the second Markov approximation cannot be performed without
any further assumptions as well. These assumptions can for example encompass the choice
of a spectral density as a replacement for the sum over coupling constants and environ-
mental particle labels and corresponds in a sense to the environmental thermodynamic
limit. This replacement can be intuitively understood as regarding the particle number in
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the environment as sufficiently large such that it can be approximated by a continuum of
modes (or as in our case, masses) rather than a discrete sum [3,20]. In the course of this
approximation it is convenient to replace the coupling by a frequency- or mass-dependent
function with a defined cutoff, such as a Lorentzian or a (sub-)Ohmic spectral density, see
for example [3,19,20,59]. Consequently, all quantities including the environmental particle
mass are part of the integrand. With this method, depending on the explicit form of the
spectral density and the correlation functions, the second Markov approximation might
be employed, which leads to time-independent operators in the Born-Markov master
equation. In the model considered here however, we did not replace the couplings by a
spectral density and hence kept the explicit time-dependence in the final equations. Since
this time-dependence is crucial for the final result presented in this work, it is clear that an
application of too many approximations alters the physical predictions of a given model,
such as for example already encountered in [32] for a first decoherence model regarding
surface states in LQG.

A valid question to ask is whether the model can be generalized in a way involving a
combination of Hamiltonians and associated couplings such that the Lindblad operators
found in Schrédinger collisional decoherence are directly obtained in the derivation of a
Born-Markov master equation. In the vicinity of the model we discussed in this work,
the answer is in the negative. The coupling scheme we used here corresponds to the
polymerized version of an interaction of the form g ® g which is, among the four possible
choices, the most complicated one as far as the derivation is considered. There are three
remaining different coupling schemes that could have been used in the interaction Hamil-
tonian. A g-polymerized coupling in the interaction Hamiltonian of the form g ® p would
lead to time-independent correlation functions. As a consequence, this simply leads to
a time-integral of the interaction picture of the system’s interaction Hamiltonian in the
master equation. It is at this point not obvious how this can be performed at the operator
level in a meaningful way. The second option would be an interaction term of the form
p ® g, which yields identical environmental correlation functions but time-independent
system operators in the, now trivial, interaction picture. The resulting temporal integral
of the trigonometric functions in the master equation can be in principle performed, the
second Markov approximation is however not applicable due to the ill-definedness of the
integral in that case. Thirdly, an interaction of the form p ® p contains no polymerized
quantities and has an entirely trivial interaction picture. Consequently, the integral in the
Born-Markov master equation gives rise to a linear time-dependence as for example in
the case of [32]. The limit ) — —oo is not applicable as well, hence the second part of
the Markov approximation relying on the peakedness of the environmental correlation
functions or the choice of a suitable spectral density fails.

The presented results also provide a starting point towards the investigation of the
behaviour of (complexifier) coherent states [35,57] and the decoherence-free Hilbert space
sectors of so-called pointer states [60-62]. The dissipator obtained in the final master equa-
tion of the open U(1) scattering model in (38) in Section 3.2 can in principle be directly
applied to existing U(1) coherent states, revealing the compatibility of these states with the
notion of classicality possibly brought about by the master equation derived here. It was
shown in [16] that the pointer states for collisional decoherence presented in their work
consists of solitonic states. In this context, an interesting albeit challenging task would be to
find a suitable generalization of soliton states that is applicable to the polymerized model
in this article and gives rise to a decoherence-free subspace of a superselected polymer
Hilbert space. Analogously, the presented computations or rather a variant thereof can be
performed in the B-type representation (see [38] for the respective nomenclature). The cru-
cial difference is that the background dynamics would be generated by a combination of
holonomies where the interaction Hamiltonian would be given by the proper position op-
erators (although with a discrete spectrum due to momentum polymerization). This brings
along the difficulty of defining an initial state (most prominently a Gibbs state) in terms
of an eigenbasis decomposition of a combination of holonomies, whereas the interaction
picture transformation turns out to be even easier than in the case presented above.
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A similarly structured model with bilinear interaction Hamiltonian can in the future
be implemented for the polymer quantum harmonic oscillator, which would then be the
polymerized counterpart of QBM or the Caldeira-Leggett model [7] in the case of a g ® g-
type interaction. Based on our considerations, it is immediately clear that this would be
more complex in two aspects: On the one hand this involves the transition to the interaction
picture, since the background Hamiltonians for the system and environment include
both polymerized and non-polymerized operators. This complicates the solution of the
Heisenberg equation or the closed summation of the iterated commutators, respectively. On
the other hand, since the eigenfunctions of the closed polymer quantum harmonic oscillator
are the Mathieu functions [55], the explicit computation of the environmental correlation
functions might require perturbative methods. The process of discussing gradually more
and more complex models will be useful for the long-term goal to consider open quantum
models also in the context of symmetry-reduced, loop-quantized models such as open LQC
as well as in the context of loop quantized gravitationally-induced decoherence models as
extensions of the model presented in [12].
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Appendix A. Quantization of a Bead on a Circle

The configuration manifold in standard quantum mechanics usually is some Cartesian
product of the real line, thatis R, R? and so on. This fact of course entails the unboundedness
of position and momentum operators, respectively, whereas the representations of the
(bounded) Weyl elements are unique up to unitary equivalence. In the context of quantum
gravity [26] or more specifically quantum cosmology [28,29], the quantization procedures
deviate drastically from the usual approach in the sense that the relevant quantities are not
simply the configuration degrees of freedom and their associated momenta but generally
more complicated objects such as holonomies of a given gauge group. In the course of
this formalism, von Neumann's uniqueness result for weakly continuous one-parameter
unitary groups is violated, which naturally comes with the major caveat of finding an
appropriate representation. This is, albeit in a less complicated manner, also the case for
a particle with a configuration manifold topologically equivalent to a circle S'. In this
case, the angle variable ¢ is not a suitable variable for quantization as it fails to exhibit
a key feature of the theory’s phase space, periodicity. A quantization of the associated
Weyl element (or holonomy, respectively) is much more approriate and leads exactly to a
representation space equal to the superselection Hilbert spaces we encountered in the main
part of this article.

The prime example of a particle with a configuration manifold equal to S (or U(1) if
a group action is implied) is a bead with mass my moving frictionlessly on a circular wire
with some fixed radius rg. The associated Lagrangian and Hamiltonian, respectively, are
easily found:

2
. . p . p
mog’ry,  pe =morsy, H= W%r ¢ =19, H}(gp,) = WC/;% = w = const. (A1)

It is immediately clear that the phase space of this system has the topology of S x R (as
the cotangent bundle of the circle) with the configuration variable ¢ € [0,277) and p, € R
being a constant of motion that purely depends on the initial conditions. Consequently,
it is impractical to implement the quantization procedure with the canonical pair (¢, py),
we rather need variables that reflect the structure of the phase space. This is achieved by
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the consideration of complex exponentials of the angle coordinate. A similar procedure
is implemented in [36,37] in the context of the optical phase space with an angle variable
and its canonical (angular) momentum, although with real variables instead of complex
ones as in our case. We will loosely follow the course of these works here. That is, our
new canonical coordinates are given by the triple (ei(f’, e~ i, p(p) with a Poisson structure
according to:

: d ,;,\dp dp d . . i ;
eiup’ — (eizgo) re  TFe (e:tz(p) — :I:leiw, eiup’ eTioY — .
et =\ ) ap, ~ ag \ap, { }

Intuitively, this Poisson algebra contains the generators of (complex) rotations and
translations, hence it corresponds to the Lie algebra of the Euclidean group E(2) of the
two-dimensional plane, which in itself consists of subgroups for rotations and transla-
tions, respectively. This is especially easy to see in a rotated coordinate system with
sin(¢),cos(@), py as the generators. Upon quantization, this structure is expressed in
terms of commutators within a C*-algebra of the above variables, where for brevity we set
U :=¢'% and U* := ¢~? previous to quantization:

(U, py) = i{U, po} = —U, [U',p,) =i{Ut,p,} =0" [0, =0. (A2)

As a next step we need to provide a representation space with a suitable inner product.
It turns out that all irreducible unitary representations of E(2) and its coverings [36] can be
implemented on L2(S!, (21—7";) with the standard inner product, labelled by two parameters
r>0andd € [0,1). In our case J is the important of the two as it essentially determines
if the representation corresponds to the group itself (6 = 0), a g-fold covering group
(0 € Q) or the universal covering (6 € R\ Q) of E(2). The physical consequences of the
numerical value of § will be discussed in the course of this text. The representation space
with the chosen inner product has the convenient orthonormal basis e,(¢) = ¢? with
n € Z. This leads to the self-adjoint generator of rotations ﬁgf) = —idy + 6 in the "position’
representation, whereas U, U are not self-adjoint but unitary and act multiplicatively.
The important distinction between this case and a proper loop representation is that the
operators U, U are weakly continuous, in otherwords there is an infinitesimal, self-adjoint
generator in the form of an angle operator ¢, we hence still operate within the Stone-von
Neumann theorem on uniqueness up to unitary equivalence akin to Schrodinger quantum
mechanics. Note however that ¢ does not correspond to a function on phase space due to
the lack of periodicity. Conveniently, the basis state e, (¢) are eigenstates of the angular
momentum operator with eigenvalues (n + §). Of course, different values of § lead to
different spectra of ;55,,6), the individual representations are hence not unitarily equivalent.
It is worth noting that this particular representation of the momentum has similarities to a
covariant derivative and indeed can be interpreted accordingly in the context of non-trivial
phase shifts associated with the Aharonov-Bohm effect. Although different values of 4 lead
to unitarily inequivalent representations, it turns out that we can shift this parameter to the

Hilbert space basis instead of having to deal with it in terms of the operator.
L2 (Sl, czi—;ﬁ) — 12 (51, 3—2,(5), en(@) — eﬁfs)((p) = e!("H9)? with n € 7, Py = —idy.

Naturally, the basis and all functions expanded in that basis accrue a phase factor with
every full rotation, that is e,(f) (p+2m) = ei2"5e,(15) (¢). Note that the angular momentum
operator in this particular quantization is not bounded from below, contrary to the case
of a cone-like (instead of a cylindrically shaped) phase space geometry associated with a

similarly quantized harmonic oscillator Hamiltonian [37].
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Appendix B. Interaction Picture: An Alternative Route

A different route to the constituents of the interaction picture interaction Hamiltonian (35)
and (36) is given by the iterated commutator bracket or the adjoint action of the free particle
(background) Hamiltonian respectively. This method of transforming into the interaction
picture might be easier or harder than comparable approaches, depending on the details of
the model at hand. In our case, we would like to evaluate the following expression:

=B.

o [AB], =[A[AB], ], [AB]q:

In order to solve this infinite sum, it is helpful to have a closer look at the first few
orders of the commutator. This way one can oftentimes make an educated guess regarding
the higher-order terms, which can in turn then be proven inductively. For pragmatic
purposes we would like to have a normal-ordered (or anti-normal-ordered) expression
since this considerably simplifies consequent computations. For the sake of simplicity and
due to the fact that operators labeled with « only act on the respective subspaces, we can
omit this label for increased readability. Keeping in mind that the commutator amounts to

(U, py] = —AU,, we conclude:

(ﬁfp)zf Ur| = P[Py, Ua] — [Ur, D] Pp = AppUr + Unpy) = A2Up +2AUn py,
(1)

[(o)"/ 0] ) = A([5 U] Py + Py [, 0] ) = A2 (a5 + 29001y + 75111

= AZ(U p(p +2(Uppy — [Un, o)) P + HAﬁ?o - [y, ﬁ?o])

= Ay + 403U py + 402U 3,

0], =2 B (o= B2 () (e

(n) k=0 01=0

This can straightforwardly be proven by induction in two steps.

(0], 0, = (00 [0 0] ] = 2 (38 (00" 0]

k=0
_An+1 Z LLAPN® U An—k+1_|_ i n Ak+1u ~n—k
= & \k Po YA Py & \k Po Po
)ﬁk U A)’l k+1 _'_ril( ) ﬁ)’l k+l)
@

n n R a SR
(k) (k " 1)} ph U Pg k+1 ”)\Pﬁ“ pz-&-ll [A)
n+1 0. 5 N .

. >P¢ pr(; k+1 U,\Pgﬂ pgﬂ >

n—+1
_ yn+1 n+1 Ak o oAn— k+1
=A ( k )Pq’ APo
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Normal-ordering the holonomies then consequently yields:

k k
AR ok K\ kia o4 KN ki (s o ~a ) A
o Uy = poply Uy = O(Z>A" ’PgoUApip:lZé(l)?\" l<[P(pruA}+uAp(p)pip

1=0

k k TP . . 1\ A .
(>+< 1>}Ak G B AR 4 O, = Z( l >Ak I, gl

SR\ kit (ol Ly Al £k ki & k—I+17y Al
:2 I A /\U)LP(P-FU/\P(P :Z I AU, 2 A LIqu,

I=0

A fully analogous calculation for the interaction picture of the adjoint U] yields to a
result that only differs by a minus sign. This can be easily seen if we consider the iterated
commutator for this case and recall that [U}, p,] = AUL:

N2 A NP . . .
{(pr) uﬂ = PolPp, 3] — [U1, Pl o = —A(ppUS + UL pg) = A2U; —2AU7 Py,
) = —/\< — AUL P, — 2AppUR Py — /\ﬁzq)a;r\)

= A2(Up3 + 29 Ufpy + UL = ALY — 4030} pyp + 4020142,

[(f’q))z/aﬂ "= (—A)" i (Z)ﬁlﬁcﬂ a, i k_ ig (;{1) (Il<><_/\)n+k Ly N e+l

k=0

where we observed that every instance of [p,, l:lj\] yields a factor of —A and eliminates a
power of p,, in the process. Apart from the alternating sign, the inductive proof is absolutely
identical. Upon closer inspection we realize that these are the sum representations for an
exponential. Since U, does not carry a summation index it can be moved to the very left of
the expression, letting us evaluate the remaining sums explicitly. A similar procedure leads
to the analogous result for U, (&)t but with a flipped sign in front of A due to the structure
constants of the operator algebra. The closed-form expressions are finally given by:

U, (€) = i nl'(é:iir)ln i Yy (Z) (Il{> Akl P K, exp{ ic <(ﬁ¢ +)\]1)2 _ ﬁé) },

ul(e) = i ;léii?n Zn: Xk: (Z) (?)(A)'Hk lu+ o k+l UAeXp{ it ((W 7/\]1>2 B ﬁé) }

n=0 k=01=0
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