
Citation: Walsh, S.J.; Borkowski, J.J.

Improved G-Optimal Designs for

Small Exact Response Surface

Scenarios: Fast and Efficient

Generation via Particle Swarm

Optimization. Mathematics 2022, 1, 0.

https://doi.org/

Academic Editors: Raul Martin

Martin and Weng Kee Wong

Received: 10 September 2022

Accepted: 11 November 2022

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Improved G-Optimal Designs for Small Exact Response Surface
Scenarios: Fast and Efficient Generation via Particle
Swarm Optimization
Stephen J. Walsh 1,* and John J. Borkowski 2

1 Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA
2 Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA;

john.borkowski@montana.edu
* Correspondence: steve.walsh@usu.edu

Abstract: G-optimal designs are those which minimize the worst-case prediction variance. Thus,
such designs are of interest if prediction is a primary component of the post-experiment analysis and
decision making. G-optimal designs have not attained widespread use in practical applications, in
part, because they are difficult to compute. In this paper, we review the last two decades of algorithm
development for generating exact G-optimal designs. To date, Particle Swarm Optimization (PSO) has
not been applied to construct exact G-optimal designs for small response surface scenarios commonly
encountered in industrial settings. We were able to produce improved G-optimal designs for the
second-order model and several sample sizes under experiments with K = 1, 2, 3, 4, and 5 design
factors using an adaptation of PSO. Thereby, we publish updated knowledge on the best-known
exact G-optimal designs. We compare computing cost/time and algorithm efficacy to all previous
published results including those generated by the current state-of-the-art (SOA) algorithm, the
G(Iλ)-coordinate exchange. PSO is hereby demonstrated to produce better designs than the SOA
at commensurate cost. In all, the results of this paper suggest PSO should be adopted by more
practitioners as a tool for generating exact optimal designs.

Keywords: coordinate exchange; Genetic Algorithms; Particle Swarm Optimization; G-optimality;
response surface designs

MSC: 62K05; 62K20

1. Introduction

In 1918 Kirstine Smith published guidance for how the residual error variance informs
designing an experiment where the ensuing data are used to fit a polynomial model linear in
the parameters [1]. This paper’s contribution provided what we now refer to as G-optimal
designs for a K = 1 factor experiment supporting a first up to sixth-degree polynomial.
Atkinson and Bailey [2] note that Smith’s contribution is considered the seminal optimal
design paper and was 30 years ahead of its time. Optimal design did not receive a rigorous
theoretical development until the late 1950s with primary contributions from Kiefer and
Wolfowitz [3–5]. These contributions focus on the theory of continuous optimal designs
(often called approximate or asymptotic designs), that is, designs viewed as a probability
measure. The core theory of continuous designs is mathematical in nature and includes the
foundational General Equivalence Theorem which provides a way to verify the optimality of
a candidate design.

Exact optimal designs, in contrast, are those that are optimal for an integer valued
number of experimental runs N. Thus, an implemented experiment utilizes an exact design.
Exact designs have no theory analogous to that of continuous designs with which to verify
the optimality of a candidate design. Therefore, much of the research into generating exact
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designs has focused on algorithm development. Early algorithms for generating exact
optimal designs date back to the 1970s and include the point-exchange and DETMAX [6,7].
Such algorithms discretize the design space via a candidate set (usually a high order
factorial design). The most popular contemporary algorithm for generating exact optimal
designs appears to be the Coordinate-Exchange (CEXCH) of Meyer and Nachtsheim [8]
which, in contrast to the point exchange, honors a continuous design space and allows any
point in the design region to be a component of the experiment.

CEXCH’s success and popularity notwithstanding, it is not without drawbacks.
CEXCH is well-recognized to be a local optimizer and so several authors recommend
applying CEXCH thousands of times in order to ensure the generation of a highly effi-
cient design [9]. Because CEXCH starts with a single random candidate design followed
by a local optimization, it is unlikely, especially in higher dimensional problems, that
CEXCH will find the globally optimal design. This fact has motivated several authors to
explore the class of meta-heuristic evolutionary algorithms for optimal design generation.
Meta-heuristics include the Genetic Algorithm (GA), Simulated Annealing, and Particle
Swarm Optimization (PSO) among others. See, for example applications in optimal de-
sign, [10–19]. Simulated Annealing appears to be widely popular, but has not been applied
to the G-optimal design problem to date [19]. Meta-heuristics offer attractive solutions to
the optimal design problem for two primary reasons. First, they make little to no assump-
tions regarding the nature of the objective (optimality criterion). Furthermore, second, as
opposed to CEXCH, they attempt to search the space of candidate design matrices globally
and are robust to entrapment in local optima thereby giving them a significant advantage
over CEXCH to generate a highly efficient design in a single run. This benefit, however,
often comes at a significant increase to computing cost vs. the CEXCH [11].

Among the meta-heuristics, PSO is a relative newcomer to optimal design, and
most applications have been toward generating continuous designs or space-filling de-
signs [13–18,20,21]. A comprehensive review of the last decade of research literature on
PSO adaptations to experimental design is provided by Chen, Chen, and Wong (2022) [22].
These authors highlight recent applications of PSO for generating continuous optimal de-
signs, minimax/maximin optimal designs (e.g., the G-optimal design problem, or optimal
design for non-linear models), and exact optimal designs. Of the sixteen papers on PSO
for experimental design discussed in Chen, Chen, and Wong (2022), only one works with
exact designs and this is not the primary focus of the paper. Therefore, the literature is
lacking demonstration of PSOs efficacy and efficiency to generating exact optimal designs,
and specifically those to response surface scenarios commonly encountered by industrial
practitioners. More recently, Walsh and Borkowski (2022) [23] present data from a detailed
case-study on the efficiency and efficacy of PSO to generating exact optimal designs for
21 small exact response surface scenarios. In short PSO, and specific a version of PSO which
uses a random local communication topology, is shown to generate highly efficient designs
(efficiency > 95%) with large probability (near 1), and an appreciably large probability of
finding the global optimal designs for the D- and I-criteria in these scenarios. Therefore,
we expect PSO to perform well when applied to the G-optimal exact design generation
problem.

In light of the existing literature we designed a detailed study and applied PSO to
generate exact G-optimal designs and offer the following contributions to the state-of-
knowledge:

1. A brief literature survey of the last 20 years of algorithm development and approaches
for generating exact G-optimal designs in small exact response surface scenarios.

2. Application of the PSO version with local communication topology, as described in
Walsh and Borkowski (2022) to generating exact G-optimal designs for 29 design
scenarios for K = 1, 2, 3, 4, 5 experimental factors and a range of N (experiment
sizes) [23].
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3. For most of the 29 design scenarios, PSO was able to find a better G-optimal design
than those currently known, and we provide a detailed catalogue of these new designs
in the supplementary material.

4. Quantitative benchmarking of PSOs efficiency and efficacy to accomplish this task
and performance comparison to state-of-practice and SOA CEXCH type algorithms as
illustrated in Rodriquez et. al. (2010) and Hernandez and Nachtsheim (2018) [11,24].

The remainder of this paper is organized as follows. In Section 2, we provide notation
and define the exact G-optimal design generation problem. In Section 3, we present a
literature review of recent research on generating exact G-optimal designs. In Section 4,
develop an extension of PSO for generating G-optimal designs. In Section 5, we present
the structure of our study for adapting PSO to generate exact G-optimal designs. In
Section 6, we present the results where we compare G-PSO generated designs to those
provided by [10,11,24]. In Section 7, we provide discussion, conclusions, and future research
directions.

2. G-Optimal Design for Small Exact Response Surface Scenarios
2.1. Small Exact Response Surface Designs

As is standard at the optimization step of response surface methodology (RSM), we
will be working with the second-order linear model under standard assumptions. Let
N represent the number of design points and K represent the number of experimental
factors [25]. A design point is an x′ : 1× K row-vector. In RSM all design factors are scaled
to range [−1,1] and so the design space is the X = [−1, 1]K hypercube [9,25]. Let X : N× K
represent the design matrix, while X denotes the space of candidate design points x′, a design
matrix X is a collection of N such design points. Thus, the space of all candidate designs is
an NK-dimensional hypercube and is denoted:

X ∈
N×

j=1

X =
N×

j=1

[−1, 1]K = [−1, 1]NK = X N . (1)

The second-order linear model which has p = (K+2
2 ) linear coefficient parameters. In

scalar form the model is written

y = β0 +
K

∑
i=1

βixi +
K−1

∑
i=1

K

∑
j=i+1

βijxixj +
K

∑
i=1

βiix2
i + ε.

Let F(X) : N × p represent the model matrix with rows given by the expansion
vector f′(x′i) = (1 xi1 . . . xi2 xi1xi2 . . . xi(K−1)xiK x2

i1 . . . x2
iK). Note that we

will abbreviate the model matrix F, but it is always a function of the design matrix X.
The model can be written in vector-matrix form as y = Fβ + ε where we impose the
standard ordinary least squares assumptions ε ∼ NN(0, σ2IN) where NN denotes the
N-dimensional multivariate normal distribution. The ordinary least squares estimator of β
is β̂ = (F′F)−1F′y which has variance Var(β̂) = σ2(F′F)−1. The total information matrix for
β, specifically M(X) = F′F, plays an important role in optimal design of experiments—all
optimal design objective functions are functions of this matrix [9].

The practitioner must choose a design from X N to implement the experiment in
practice. An optimality criterion is used to define which candidate designs X ∈ X N are
‘good’ designs. An optimization algorithm is required to search X N to find the ‘best’, or
optimal, design. Thus, an exact optimal design problem is defined by three components:

1. The number of design points N that can be afforded in the experiment.
2. The structure of the model one wishes to fit (here the second-order model).
3. A criterion which defines an optimal design. This is a function of M(X).

In the next subsection we define the G-criterion and G-optimal design.
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2.2. G-Optimal Design

A G-optimal design is that design which minimizes the maximum (i.e., worst case)
prediction variance over X . The the variance of the mean predicted value is

Var(ŷ(x′)) = σ2f′(x′)(F′F)−1f(x′)

for any point of prediction x′ ∈ X . The scaled prediction variance (SPV) removes the scale
parameter σ2 and re-scales to N by multiplying by the factor N/σ2. Thus, SPV is defined
as (for a candidate design X)

SPV(x′|X) := Nf′(x′)(F′F)−1f(x′). (2)

The G-score of a candidate design X is defined as the maximum scaled prediction
variance over all points of prediction x′ ∈ X

G(X) := max
x′∈X

SPV(x′|X). (3)

Equation (3), thus, shows that for a fixed candidate design X, scoring the candidate on
the G scale is itself an optimization problem. The G-optimal design X∗ is that design which
minimizes, over all designs X ∈ X N , the maximum scaled prediction variance, namely

X∗ := argmin
X∈X N

G(X)

= argmin
X∈X N

max
x′∈X

SPV(x′|X). (4)

Equation (4) shows that finding the G-optimal design is a minimax problem. This
optimization has proved notoriously difficult to solve because neither of the optimizations
required to compute X∗ are convex in large part due to the expansion of the design matrix
into model matrix F [10,11,24].

The scale of G for an arbitrary design has known bounds. The General Equivalence
Theorem of [3] demonstrates that the lower bound on G(X) is

G(X) = max
x′∈X

SPV(x′) ≥ p. (5)

That is, the smallest that the maximum scaled prediction variance of candidate design
X may be is p, the number of parameters. This apparently gives a way to verify if a proposed
exact G-optimal design is globally optimal, however, not all design scenarios have globally
G-optimal designs that will achieve this lower bound. Further, if design X∗ is globally
G-optimal and achieves the result in Equation 5, then for this design SPV(x′|X) = p at all
diagonals of the hat matrix F(F′F)−1F′ and SPV(x′|X) ≤ p at all other points of prediction
x′ ∈ X [25]. It is customary to exploit this fact and score candidate designs on the G-
efficiency scale,

Geff(X) = 100
p

G(X)
, (6)

in order to gauge the quality of a candidate design X (larger Geff on this scale implies a
better design). Last, the relative efficiency of two candidate designs may be computed as

Greleff(X1, X2) = 100
Geff(X1)

Geff(X2)
. (7)

In the next section, we provide a review of the most literature for generating G-optimal
designs for small exact response surface models.
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3. Literature Review: Algorithm Development and Current Best-Known Exact
G-Optimal Designs

The exact G-optimal design generation problem is recognized as the notoriously
difficult mini-max problem expressed in Equation 4. It was not until recent decades that
modern computing resources were cheap enough to enable the application of well-suited
meta-heuristic optimization approaches to this problem. Borkowski [10] provided one of
the earliest applications of Genetic Algorithms (GAs) for generating exact optimal designs
over the hypercube supporting a second-order response surface model in K = 1, 2, 3
design factors and for experiment sizes N = 3, 4, 5, 6, 7, 8, 9, N = 6, 7, 8, 9, 10, 11, 12, and
N = 10, 11, 12, 13, 14, 15, 16, respectively. Borkowski [10] adapted a GA to generate G-,
D-, I-, and A-optimal designs and published a proposed catalog of exact optimal designs
for each criterion. The results provided in [10] have become a ‘ground truth’ standard
data set against which to compare results of newly developed algorithms to solve this
problem. Until this point, the exact G-optimal designs of Borkowski (2003) have remained
the best-known designs for these scenarios [10] and were subsequently reproduced by [24]
via an augmented application of the coordinate exchange, and used as a benchmark dataset
for new algorithms proposed by authors [11,26].

Next, [24] adapted the coordinate exchange (CEXCH) algorithm of [8] in conjunction
with Brent’s minimization algorithm (used to score a candidate design on the G-scale) to
generate exact G-optimal designs. These authors covered all scenarios or K = 2, 3 design
factors as in Borkowski (2003) and were able to reproduce these designs with their new
algorithm. These authors extend [10] and propose candidate exact G-optimal designs
for K = 4, N = 15, 20, 24 and K = 5, N = 21, 26, 30. Note that, to this point, K = 4, 5
G-optimal designs had not been explored because of prohibitive computational cost. A
third contribution of this work was a detailed comparison of the resulting G-CEXCH
generated exact G-optimal design’s properties (via fraction of design space plots) with
corresponding D- and I-optimal designs. The authors found that, for scenarios where
post hoc prediction was the primary objective, the I-optimal designs exhibited smaller
prediction variance than the corresponding G-optimal designs over large percentages of the
design space (even though the G-optimal design has lower maximum prediction variance).
This observation motivated the authors to recommend that the additional computing cost
required for G-optimal designs may not be worth the effort and I-optimal designs might be
preferred for many practical experimental scenarios. The G- vs. I-optimal design question
is the subject of ongoing research in the broader literature [27].

Saleh and Pan (2015) recognized the lack of algorithm development on the G-optimal
design problem and provide a hybridized point and coordinate exchange algorithm which
utilizes clustering to explore the characteristics of SPV over the design space [26]. Their
algorithm is termed cCEA and they apply it to linear model and generalized linear model
scenarios. cCEA proceeds by first by generating a large set of candidate design points x′

to provide a covering of X . These points are fed into a clustering algorithm to produce
families of design points over X based on SPV . For a candidate design, these clusters are
scored on the SPV scale. A point exchange algorithm is applied to the candidate and each
cluster is rescored on SPV. The algorithm proceeds until no further reductions in maximum
SPV are found. In the second step, standard CEXCH locally adjusts the candidate in order
to find a design that further reduces the SPV. In short this algorithm attempts to get a
design close to G-optimal quickly via the clustering and point exchange, and then refines
this design locally using the standard coordinate exchange. With cCEA, these authors were
able to nearly reproduce designs with scores equivalent to [10,24].

The most recent publication on generating exact G-optimal designs is offered by [11].
The primary focus of this paper is the computational cost associated with generating G-
optimal designs. These authors noticed a correspondence between continuous Iλ-optimal
designs and G-optimal designs. They propose a new algorithm that exploits the structural
relationship between these two types of designs which first generates a continuous Iλ-
optimal design as a starting point for the exact G-optimal design search. Then they apply the
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CEXCH algorithm to locally improve the candidate G-optimal design. We will refer to their
algorithm as G(Iλ)-CEXCH. These authors are the first to completely run G(Iλ)-CEXCH
and rerun the searches via GA by Borkowski (2003) in MATLAB, and CEXCH by [24] in JMP
(they also reported the architecture of their PC) in order to compare computing efficiency of
their proposed algorithm to the others. They implemented 200 runs of each algorithm for
each design scenario discussed in [10] and also ran two new scenarios: K = 4, N = 17 and
K = 5, N = 23 with only G(Iλ)-CEXCH (they indicated that CEXCH would have taken 25
and 166 days, respectively, to complete the task, and so this algorithm was not run on these
scenarios). These authors found that the GA was able to find the most efficient G-optimal
designs in repeated runs, but that CEXCH and G(Iλ)-CEXCH produced designs with high
relative efficiency vs. GA generated designs with relative-efficiencies of 90% or greater at a
fraction of the cost [11]. Thus, the GA achieves this superiority at high computational cost
exhibiting 2-orders of magnitude increase in the number of objective function evaluations
as compared to the G(Iλ)-CEXCH. G(Iλ)-CEXCH was demonstrated to produce designs
with high G-efficiency as well as standard CEXCH but with computing times at a fraction
of CEXCH for the higher dimensional searches. Thus, they propose that G(Iλ)-CEXCH
is a good choice for generating exact G-optimal designs as it is demonstrated to produce
designs with high relative efficiency to GA generated designs and does this more efficiently
than existing algorithms.

Last, in Table 1 we present a summary of exact G-optimal design scenarios that authors
have addressed in previous algorithm development and research, and that we will study
further using PSO in this paper.

Table 1. Summary of design scenarios, algorithms, and authors who have addressed the exact
G-optimal design problem for the second order RSM model in the last 20 years.

# Exp. Factors Experiment
Sizes Algorithms Authors

K N

1 3, 4, 5, 6, 7, 8, 9 GA
G(Iλ)-CEXCH

Borkowski (2003)
Hernandez and Nachtsheim (2018)

2 6, 7, 8, 9, 10,11, 12
GA

CEXCH
cCEA (N = 7 to 12)

Borkowski (2003)
Rodriquez et. al. (2010)

Saleh and Pan (2015)

3 10,
11,12,13,14,15,16

GA
CEXCH

cCEA (N = 11 to 16)

Borkowski (2003)
Rodriquez et. al. (2010)

Saleh and Pan (2015)

4
15, 20, 24 CEXCH

cCEA (N=24)
Rodriguez et. al. (2010)

Saleh and Pan (2015)
16 cCEA Saleh and Pan (2015)
17 G(Iλ)-CEXCH Hernandez and Nachtsheim (2018)

5 21, 26, 30 CEXCH
cCEA (N = 26)

Rodriquez et. al. (2010)
Saleh and Pan (2015)

23 G(Iλ)-CEXCH Hernandez and Nachtsheim (2018)

Evaluating the G-Score for Candidate Design X

Any algorithm needs to address both optimizations expressed in Equation 4, or more
specifically, given a candidate design X, one must score it on the G-scale via Equation 3.
There are two approaches to doing this implemented in the algorithms discussed in the
previous section.

First, authors [10,11] exploit the symmetry of the SPV-surface for a G-optimal design and
recommend using a 5K point grid overX with each factor containing xj ∈ {−1, 0.5, 0, 0.5, 1}
for j = 1, . . . , K grid-points. The full grid defined as GX = {−1, 0.5, 0, 0.5, 1}K [11]. Once
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one has a candidate design, the SPV is evaluated on GX and the maximum value is taken
as an approximation of the G-score for the candidate design, while this approach computes
an approximate G-score for a candidate design X both authors have noted that, due to the
symmetry of the quadratic G-surface for G-optimal designs, the approximation is quite
adequate giving small errors and supports finding highly G-optimal designs.

Authors [24,26] use a different mechanism to compute G for a candidate design X.
Ref [26] use the clustering and point exchange phase of their algorithm. In [24], once a can-
didate is available (e.g., after every coordinate exchange) they employ Brent’s minimization
algorithm to search for the maximum prediction variance for the candidate design over X.

Regarding the choice of method for scoring a candidate design on the G-scale in
this paper: we implemented the 5K grid approach recommended by [10,11] for several
reasons. Similar to authors [10,11] we find that this approach yields G-optimal design
candidates with small error on the G-eff scale. Further, we ran a pilot study using a nested
PSO approach [20] but similar to [24] we observed that if the inner PSO search to score a
candidate design on the G-eff scale mis-scored the candidate design, this error propagated
through the outer PSO search and reduced the success of finding the globally optimal
design.

In the next section we describe the PSO algorithm and provide an extension of PSO to
generate G-optimal designs used to produce the results presented in this paper.

4. Particle Swarm Optimization for Generating Optimal Designs

PSO is a wildly popular meta-heuristic optimization approach which has been widely
applied to great success across engineering applications and applied science problems. To
date, the seminal paper by [28] has 73,647 citations (queried in Google Scholar on 8 August
2022). PSO has been demonstrated to perform very well for high-dimensional optimization
of multimodal objective functions, see for example, [28–37,37]. PSOs strengths include:

1. few-to-no assumptions about the properties of the objective function f to be optimized,
2. PSO is demonstrated to be robust to entrapment in local optima, and thereby is a good

match to the exact optimal design generation problem,
3. simplicity—the core function of the algorithm can be explained via two simple update

equations, and
4. in contrast to other meta-heuristics where studying a range of tuning parameters

can yield more efficient searches for specific problems, PSO only has three tuning
parameters and these have been studied extensively, both theoretically and empirically,
with optimal values demonstrated for searches (such as ours) that reside in the
common Cartesian product space with the typical Euclidean geometry, see [34,38–40]
among others.

PSOs widespread application notwithstanding, we observe relatively few applications
in Statistics and specifically Optimal Design. The first such application in 2013 by Chen et.
al. discussed PSO-generated latin-hypercube designs [14]. Application of PSO to generating
space-filling designs is addressed by [13,17]. PSO for generating optimal designs for non-
linear models is illustrated in [15,16,20]. PSO-generation of Bayesian continuous designs
is discussed in [21] and PSO for constructing continuous optimal designs for mixture
experiments is provided in [18]. More recently [23] provided a benchmarking study on
PSO for generating small-exact response surface designs under the D- and I-criterion.
These authors show that a version of PSO which utilizes a local communication topology
is superior to standard PSO which uses global communication topology in the sense that
it greatly increases the probability that PSO will find the globally optimal design in a
single run of the algorithm [23]. We expect these results to be similarly realized for the
G-optimality searches as conducted in this paper.

We present the full PSO algorithm, extended to optimize functions that take matrix
inputs, in Algorithm 1. The primary difference of our exposition of PSO vs. the standard
PSO literature is that our version in Algorithm 1 is a clear formulation that works on



Mathematics 2022, 1, 0 8 of 18

functions that take matrix inputs as opposed to vector inputs. A brief dictionary of all
quantities is

Algorithm 1: PSO for Generating Exact Optimal Designs on the Hypercube

1: Input: Objective function f , number of particles S, search space bounds lb = −1K
and ub = 1K

2: // Randomly draw S candidate designs Xi and initialize
3: for each i = 1, . . . , S do
4: x′ij ∼ UK(lb, ub) for j = 1, . . . , N giving candidate design Xi with rows x′ij

5: v′ij ∼ UK

(
lb−xij

2 ,
ub−xij

2

)
for j = 1, . . . , N giving velocity matrix Vi with rows v′ij

6: {vijk ← min{vijk, vmax
k }} for j = 1, . . . , N // limit stepsize

7: Ni ← genNeighbors(Xi) // generate communication neighborhood for particle i
8: Pbest,i ← Xi //set initial personal best position
9: endfor

10: Gbest← argmin
Xi∈{X1,X2,...,XS}

f (Xi) // current best design among swarm

11: Lbest,i ← argmin
Xi∈Ni

f (Xi) for i = 1, . . . , S // current best design in local neighborhoods

12: // swarm search loop
13: while stopping criteria not met do (this is iteration over t)
14: if Gbest(t) = Gbest(t− 1)
15: // if the solution does not improve, reform the local communication networks
16: Ni ← genNeighbors(Xi)
17: endif
18: for each i = 1, . . . , S do // Update velocities and positions
19: Vi ← ωVi + c1U� (Pbest,i− Xi) + c2U� (Lbest,i− Xi)
20: {vijk ← min{vijk, vmax

k }} for j = 1, . . . , N
21: Xi ← Xi + Vi
22: Xi ← confine(Xi) // keep candidates in searchspace
23: if f (Xi) < f (Pbest,i) // update knowledge about best known design to time t
24: Pbest,i ← Xi
25: if f (Pbest,i) < f (Gbest)
26: Gbest← Pbest,i
27: endif
28: endif
29: endfor
30: for each i = 1, . . . , S do // with personal best’s update, can update local best
31: if f (Pbest,i) < f (Lbest,i)
32: Lbest,i ← Pbest,i // update best known design in local neighborhoods
33: endif
34: endfor
35: endwhile

36: Output: Particle swarm solution—the best optimal design found Gbest

• S:= number of candidate designs (i.e. particles) in the swarm,
• Xi : N× K:= candidate design i,
• Pbest,i:= the best design found by particle i,
• Lbest,i:= the best design found by the particles in particle is communication neighbor-

hood,
• Gbest:= the best best design found by the swarm; this is the proposed optimal design,
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• UK(lb, ub)= K-dimensional multivariate uniform distribution with lower and upper
bound vectors lb and ub, respectively,

• U = {uij}N,K
i=1,j=1:= random matrix with elements uij

i.i.d∼ U(0, 1),
• �:= Hadamard product (elementwise multiplication).

We briefly identify core components of the algorithm as follows. Lines 4 and 5 show
how the S initial candidate designs are randomly constructed based on a multivariate
uniform distribution. We employ Standard Particle Swarm 2007 which utilizes a local
communication topology [30]. Therefore line 7 indicates a sub-routine genNeighbors
which randomly initializes particle matrix is communication neighborhood. This local
communication topology has been illustrated to increasing the chance that the swarm finds
the global optimal design. The core velocity update equation is stated in line 19 which
shows that particle is step size and direction is a weighting of the typical inertia, cognitive,
and social components. We implement the optimal recommended values for the weighting
parameters

ω =
1

log(2)
, c1 = c2 =

1
2
+ log(2).

These values have been illustrated theoretically and empirically to provide an excellent
balance between exploration and exploitation while guaranteeing that the swarm eventually
converges to a consensus solution [30,34,41].

5. Study Structure: Experimental Design and PSO Run Parameters

We implemented Algorithm 1 in the Julia language [42]. Our machine is an Intel
i7-6700K which has 4 cores and 8 compute threads running at 4.0GHz. Thus, we could send
multiple runs of PSO to 7 of the cores at the same time. We ran G-PSO nrun = 140 times for
all design scenarios (and searches for the optimal design that supports the second-order
model) covered by [10]. These scenarios cover K = 1, 2, 3 design factors with experi-
ment sizes N = 3, 4, 5, 6, 7, 8, 9, N = 6, 7, 8, 9, 10, 11, 12, and N = 10, 11, 12, 13, 14, 15, 16,
respectively. Both [10,11] ran the GA for these scenarios, but, they did not find the same
exact G-optimal designs (in part related to the stopping criterion implemented by [11]).
Regarding G-optimality, [10] found the current best-known G-optimal designs (to this
point). Hernandez and Nachtsheim (2018) [11] found highly G-efficient designs relative
to those of [10], but used their GA generated designs to compare their results from the
other two algorithms in their study. We also ran G-PSO nrun = 210 times for the additional
scenarios in [24]. These scenarios cover K = 4, 5 with experiment sizes N = 15, 20, 24 and
N = 21, 26, 30, respectively. Last, we ran G-PSO nrun = 210 for the additional scenarios in
[11], specifically K = 4, N = 17 and K = 5, N = 23. Our stopping criteria for all PSO runs
was either a non-zero change in the objective equal to the square root of machine epsilon
(about 10E-08, or if the objective score stagnated for 100 iterations, we terminated the run
and started a new run [23].

In total we have covered all published exact G-optimal designs for 29 design scenarios
requiring 4620 independent runs of PSO. In the next section we compare G-PSO results to
those of [10,11,24].

Hernandez and Nachtsheim (2018) [11] is the only reference that reported computing
cost among our references, and they offer two measures: (1) number of function evaluations
over all runs for each design scenario and (2) computing time wall-clock for the set of
searches for each algorithm and design scenario and so a way to check the efficiency of
G-PSO relative to the state-of-the-art. We will compare the efficiency of PSO to the other
algorithms by reporting number of function evaluations during the runs of PSO. This
measure is, of course, senstive to the number of particles and the stopping criterion. We
ran all PSO searches with S = 150 particles.
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6. Results
6.1. The K = 1, 2, 3 Design Scenarios

The proposed G-optimal designs generated by the GA implemented by [10] were
reproduced by G-CEXCH in [24] and heretofore have remained the best known exact
G-optimal designs for the second-order model and each of the K = 1, 2, 3 design scenarios.
We provide a comparison of the nrun = 140 PSO search results (for each scenario) to the
G-GA designs of [10] in Figure 1. The data presented in this graphic are efficiencies of
the G-PSO designs relative to the single best found G-GA designs. Therefore, scores over
100 indicate that the PSO generated design is an improvement over the GA generated
design. For the K = 1 scenarios, which are low-dimensional optimization from 3 to 9
dimensions, the graphic illustrates that all PSO runs are finding designs with equivalent
G-score relative to the GA designs. In the second panel the results for the K = 2 designs
now shows a distribution in the G-releff score, but, for each scenario, the PSO produced
designs with 90% relative efficiency or higher for every single run. Further, PSO found
a better G-optimal design for design sizes N = 9, 10, 11, 12. The last panel of the graphic
indicates that, for K = 3 factors and all experiment sizes N, PSO has identified an improved
G-optimal design than those currently known, and the improvements are non-negligible,
with increases ranging from 2 to 8% efficiency.
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Figure 1. Distributions of G-PSO design efficiencies relative to the published GA designs for
K = 1, 2, 3 design factors.

Hernandez and Nachtsheim [11] provides a comparison of G(Iλ)-CEXCH, G-CEXCH
and G-GA and their relative ability to generate designs with the highest/best G-optimality.
We note that, in their data, [11] did not compare their results to the G-GA designs as
published by [10], rather, they re-ran the GA algorithm nrun = 200 times in order to
compare relative costs of the algorithm. Thus, the G-GA optimal designs in [11] are equal
to or less efficient than those of [10]. Nonetheless, we can use their data to compare all
algorithms vs. the GA designs of [10] (which are the best known to date). Table 2 reports
the efficiencies of the optimal design relative to the GA design found by [10] for each
scenario and algorithm. In all cases, it can be seen that PSO finds the best design vs. all
other algorithms.
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Table 2. Relative efficiencies of G-optimal designs for each algorithm relative to GA generated
designs of [10].

Design Scenario Best Design Efficiency Relative to G-GA)

K N G-PSO G(Iλ)-CEXCH G-CEXCH

1

3 100.0 100.0 100.0
4 100.0 96.2 98.7
5 100.0 97.0 98.7
6 100.0 100.0 100.0
7 100.0 98.8 99.7
8 100.0 94.7 99.4
9 100.0 100.0 89.4

2

6 100.3 94.1 96.5
7 100.1 95.5 97.9
8 100.0 94.7 99.7
9 100.3 95.8 97.0

10 101.7 93.2 97.5
11 101.0 97.0 94.0
12 103.9 95.1 101.2

3

10 101.6 95.4 93.1
11 104.2 96.9 92.9
12 103.8 90.3 90.7
13 103.2 99.9 92.9
14 100.5 100.0 87.6
15 102.5 100.1 98.5
16 108.1 100.2 100.1

Regarding computing cost, run time wall-clock for the entire set 140× 21 = 2940 of
PSO searches over K = 1, 2, 3 factors and the N aforementioned was approximately 30 min
(recall we are using Julia as well as running independent PSO searches in parallel on
separate CPU cores). Hernandez and Nachtsheim [11] provides algorithm cost in the form
of number of function evaluations over nrun = 200 runs of G(Iλ)-CEXCH, G-CEXCH and
G-GA. Table 3 contains comparison of the [11] cost data to the cost of running G-PSO over
our nrun = 140 runs. We provide a comparison of G-PSO cost on [11]’s nrun = 200 run scale
by estimating the expected number of function evaluations and a 95% confidence interval
via Poisson statistics. Table 3 shows that GA is the most expensive algorithm, and often
via 2 orders of magnitude for the higher-dimensional problems. G(Iλ)-CEXCH is slightly
more costly than G-CEXCH for the lower dimensional problems, but is cheaper for the
higher dimensional problems (often by an order of magnitude). Last, the 95% confidence
interval on the expected number of function evaluations in 200 PSO searches indicates
that, in all cases, G-PSO has approximately the same cost as the new G(Iλ)-CEXCH (with
some scenarios being slightly higher, but many scenarios being slightly lower cost than
G(Iλ)-CEXCH).

These results illustrate that G-PSO is approximately the same cost as the state-of-
the-art algorithm G(Iλ)-CEXCH for generating G-optimal designs, while PSO generates
highly optimal designs more efficiently, as it is demonstrated here to produce the current
best-known exact G-optimal designs for these scenarios.
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Table 3. Algorithm cost comparison to values reported by [11]. Table value is log10(# f evaluations).
The first PSO column reports the observed number of function evaluations in 140 runs of PSO. The
PSO columns report an estimate of the expected number of function evaluations in 200 PSO runs
with a 95% confidence interval.

Design Scenario G-PSO G(Iλ)-CEXCH G-CEXCH G-GA

K N nrun = 140 nrun = 200 nrun = 200

estimate 95% CI

1

3 6.000 6.155 (6.145, 6.165) 6.0 5.5 6.9
4 6.535 6.690 (6.684, 6.695) 6.4 5.7 7.0
5 6.681 6.835 (6.831, 6.840) 6.6 5.8 7.1
6 6.226 6.381 (6.373, 6.388) 6.4 5.9 7.2
7 6.685 6.840 (6.835, 6.845) 6.8 6.0 7.2
8 6.761 6.916 (6.912, 6.921) 6.8 6.0 7.3
9 6.405 6.560 (6.553, 6.566) 6.9 6.1 7.4

2

6 7.088 7.243 (7.240, 7.246) 7.2 7.3 8.4
7 7.086 7.241 (7.238, 7.244) 7.4 7.3 8.5
8 7.042 7.197 (7.194, 7.200) 7.2 7.5 8.6
9 7.119 7.274 (7.271, 7.277) 7.0 7.5 8.6
10 7.163 7.318 (7.315, 7.321) 7.3 7.6 8.7
11 7.221 7.376 (7.373, 7.378) 7.4 7.6 8.7
12 7.196 7.351 (7.348, 7.354) 7.7 7.7 8.7

3

10 7.437 7.592 (7.590, 7.594) 8.0 8.7 9.6
11 7.511 7.666 (7.664, 7.668) 7.8 8.8 9.7
12 7.544 7.699 (7.697, 7.701) 7.9 8.8 9.7
13 7.538 7.692 (7.691, 7.694) 7.5 8.9 9.7
14 7.543 7.698 (7.696, 7.700) 7.6 9.0 9.8
15 7.515 7.670 (7.668, 7.671) 7.6 9.2 9.8
16 7.556 7.711 (7.709, 7.713) 7.6 9.9 9.8

6.2. The K = 4, 5 Design Scenarios

Due to the computational cost, this number of experimental factors is the highest that
the design community has gone to date. Searching for G-optimal designs for more factors
will take a considerable time/computing investment. Note, however, that K does not define
the dimension of the optimization search: the dimension is NK so the largest problem we
study here is K = 5, N = 30 which is an optimization search in a 150 dimensional search
space.

Table 4 contains the G-efficiencies of the best G(Iλ)-CEXCH, G-CEXCH, and G-PSO
generated design, as well as the relative efficiency of the G-PSO design to the indicated
CEXCH algorithm. In all cases PSO is found to generate better G-optimal designs, and
in some cases with a significant improvement. We present distributions of the G-releff
scores of the PSO designs to the corresponding CEXCH generated designs in Figure 2. In
all cases it can be seen that PSO found an equivalent or better G-optimal design (evidenced
by relative efficiencies over 100). We note that each of the CEXCH algorithms was run
nrun = 200 times in the work of [11] and the PSO searches were run nrun = 210 times (a
number evenly distributed on 7 computer cores). The graphic further illustrates PSO’s
ability to seek highly optimal designs each run, evidenced by the distributions of G-releff
being tightly packed at or over 100% relative efficiency. For many scenarios, there is
apparently a high probability that PSO would generate a design with 95% efficiency or
better in a single run.

Regarding the significant improvements in designs, first for the K = 4, N = 15 case
PSO provided a design with 145% relative efficiency to the best-known design. Second,
for the K = 4, N = 20 scenario, PSO produced a design with 123% improved efficiency.
Furthermore, last, for the K = 5, N = 21 scenario, PSO found a design with 177% relative
efficiency. We contacted the authors of [24] to investigate these large discrepancies. For the
K = 4, N = 15 and K = 5, N = 21 scenarios, it was confirmed that the designs published
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by [24] were mis-scored on the G-scale (personal email correspondence with Dr. Bradley
Jones, June 20, 2020). Given that [24] employs a separate optimization search to score each
candidate design on the G-scale, these results illustrate the consequences of failing to find
the maximum prediction variance for a candidate design, and, to our opinion, support the
approach of using the 5K grid GX to score candidate designs.

The information for a proper time comparison for generating designs with K = 4, 5
factors via PSO vs. the other approaches does not exist due to algorithms being run on
different machines and computing languages. Nonetheless, for information we report
what data do exist for computing times on the K = 4, N = 17 and K = 5, N = 23 design
scenarios. Hernandez and Nachtsheim [11] report that they were able to run G(Iλ)-CEXCH
nrun = 200 times on the K = 4, N = 17 in 20.13 h on their computing platform (approx
6.0m for each run). They were not able to run G-CEXCH as they estimated that 200 runs
would have taken 25 days on their machine. Our approach (PSO, Julia, nrun = 210 parallel
PSO runs [30 runs per 7 cores]) took about 3 h which translates into approximately 6 m
per each individual run. Hernandez and Nachtsheim [11] report that they were able to
run G(Iλ)-CEXCH nrun = 200 times on the K = 5, N = 23 in 25.07 h on their computing
platform (approx 7.5m for each run). They were not able to run G-CEXCH as they estimated
that 200 runs would have taken 166 days on their machine. Our approach (PSO, Julia,
nrun = 210 parallel PSO runs [30 runs per 7 cores]) took about 20h which translates into
approximately 40m per each individual run. These results imply that PSO has more
difficulty scaling to higher dimension. The reason why PSO took approximately 6 times
longer for the K = 5 scenario than for the K = 4 scenario is that the respective 5K grids
used to score each candidate design during the search have 55 = 3125 and 54 = 625 points,
respectively, and each particle (i.e. each candidate design) must have the G-score evaluated
at each of these grid points, at each iteration of the algorithm. Nonetheless, we believe this time
increase to be of little hindrance to scaling PSO to efficient searches for higher dimensional
designs due to the use of Julia and parallel computing, and the additional cost is easily
mitigated via CPUs with more computer cores.

Table 4. G-efficiencies of published G-optimal designs for K = 4, 5 factors. Relative efficiency of PSO
generated design to published designs is shown in column 3 (over 100 means PSO generated a better
design). Author [24] used the G-CEXCH while [11] used the G(Iλ)-CEXCH.

Design Scenario PSO Peformance Published Design Quality

K N G-PSO Design
Relative Efficiency

G-PSO CEXCH
Algorithm

G-CEXCH

4

14 145.41 71.09 CEXCH 48.89

17 105.36 73.90 G(Iλ)-
CEXCH 70.14

20 123.18 80.20 CEXCH 65.11
24 106.5 85.95 CEXCH 81.05

5

21 177.26 68.67 CEXCH 38.74

23 100.24 73.19 G(Iλ)-
CEXCH 73.02

26 103.92 75.31 CEXCH 72.47
30 100.47 76.16 CEXCH 75.80
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Figure 2. Distributions of G-PSO design efficiencies relative to the published CEXCH designs for
K = 4, 5 factors.

6.3. Prediction Variance Properties of the New G-Efficient Designs

We publish fraction of design space (FDS) plots of the highly G-efficient designs
generated in this work in Figure 3 [43]. The FDS plot communicates the distribution of the
designs prediction variance as a fraction of the entire design space. These plots are often
used when analyzing and choosing between competing designs. Following the prescription
of [44], the FDS plots communicate relative prediction variance (that is, not scaled by N) so
that a comparison of designs can be conducted across different experiment sizes N.

For the K = 2 cases, a clear benefit can be seen by increasing the size of the experiment
beyond the saturated G-optimal design N = 6, but the benefit seems to yield diminishing
returns by N = 9. Therefore, if the researcher needs a G-optimal design for K = 2 factors,
the N = 9 design constructed in this study is a good choice. For K = 3 factor experiments,
the G-optimal design constructed in this paper for N = 16, while having a better G-
efficiency, has worse prediction variance than the N = 14, 15 designs, and hence these
appear to be better choices of designs for the K = 3 factor experiment case. The FDS plot
for K = 4 factors indicates that we realize substantial improvements to prediction variance
for increasing the sample size in the range of all sizes studied, and so for these experiments
the published N = 24 G-efficient design is a superior choice. Last, the prediction variance
properties of the N = 26 G-efficient design found during this study has approximately the
same prediction variance signature on the FDS plot as the largest N = 30 point G-efficient
design, and so would give equal quality predictions at lower cost.
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Figure 3. Fraction of Design space plots (relative prediction variance) for the G-efficient designs
generated in this study.

7. Conclusions

In this paper, we summarized the last two decades of research into algorithm develop-
ment for generating exact G-optimal designs. To date, PSO has not been applied to this
problem and so we proposed an extension of PSO to generate exact G-optimal designs.
We then ran PSO on all published design scenarios. For the 21 N scenarios on K = 1, 2, 3
design factors studied in [10,11,24], PSO found better G-optimal designs for 12 of the higher
dimension scenarios, some of these improvements offering 5% or better efficiency than
currently known designs, see Table 2. On our computing setup, the total run time for all
2940 PSO searches on the 21 K = 1, 2, 3 design scenarios was less than 30 min with the
the nrun = 140 PSO searches for the K = 1 scenarios taking less than a minute, and the
nrun = 140 PSO searches for the K = 3, N = 16 (i.e. a 48 dimensional optimization) took
approximately 4 min, or about 12 s for each individual PSO search (using S = 150 particles).
The use of Julia and parallel computing definitely helps to run many PSO searches very
quickly. We believe this speed may enable realistic searches for good G-optimal designs for
practitioners.

There are not many published proposed exact G-optimal designs for K = 4, 5 design
factor cases due to the expense of searching for optimal designs for these scenarios. To
date, there are only 4 design scenarios for each K covered by [11,24]. In all cases, G-PSO
found as good or better G-optimal designs than those currently known, see Table 4. We
reiterate, however, that the curse-of-dimensionality is at play here and higher dimensional
searches require more particles, which is a major cost driver of the algorithm, and therefore
for G-opt searches PSO has some difficulty scaling (in time/cost) to higher K.

PSO is distinct from the various coordinate exchange algorithms studied in the fol-
lowing way. CEXCH starts with a randomly drawn design and then optimizes this design
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locally inX N . In CEXCH, there is no ‘intelligence’ which seeks to searchX N more globally
for the best possible optimum. PSO, in contrast, uses S randomly drawn design matri-
ces which are searching X N for the best possible fitness on the objective. Further, these
candidate designs remember and communicate their best positions, have a tendency to
want to revisit these locations, and this increases the likelihood of PSO to find the global
optimum. In this sense, and due to the demonstrated computational cost, we propose that
PSO should now be viewed as state-of-the art for generating optimal designs.

The genetic algorithm has enjoyed large success in academic research and is demon-
strated, to this point, to be the superior algorithm for generating optimal designs with the
best optimality scores. The GA, however, is computationally expensive, and so it is not
a great tool for the practitioner of experiments to generate candidate optimal designs for
their problem. This work has demonstrated that PSO, in repeated runs, performs as well
or better than GA in generating optimal designs at a fraction of the cost. Further, PSO has
produced better designs than the SOA algorithm, the G(Iλ)-CEXCH, but at approximately
the same cost, see Table 3. Therefore, we propose that PSO should be applied further in
academic research in generating optimal designs instead of GA.

In conclusion, PSO is hereby demonstrated to be superior to existing algorithms
for generating exact G-optimal designs. It costs roughly the same as the state-of-the-art
algorithm, the G(Iλ)-CEXCH, but is more efficient at finding the global optimal design in
all studied cases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math1010000/s1. [PSO G-optimal designs:] File containing all
PSO generated G-optimal designs for all scenarios discussed in this paper (can be used to verify
optimality scores). (.csv file). [R-code for scoring the newly found proposed exact G-optimal designs:]
this script may be applied to the provided .csv file in order to verify the G-scores of the PSO generated
designs published in this paper, and to reproduce several of the discussed results.
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