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Abstract: We consider the reliability function of a k-out-of-n system under conditions that failures
of its components lead to an increase in the load on the remaining ones and, consequently, to a
change in their residual lifetimes. Development of models able to take into account that failures of
a system’s components lead to a decrease in the residual lifetime of the surviving ones is of crucial
significance in the system reliability enhancement tasks. This paper proposes a novel approach based
on the application of order statistics of the system’s components lifetime to model this situation. An
algorithm for calculation of the system reliability function and two moments of its uptime has been
developed. Numerical study includes sensitivity analysis for special cases of the considered model
based on two real-world systems. The results obtained show the sensitivity of system’s reliability
characteristics to the shape of lifetime distribution, as well as to the value of its coefficient of variation
at a fixed mean.

Keywords: k-out-of-n system; dependent failures; order statistics; reliability characteristics; sensitivity
analysis

MSC: 60H99

1. Introduction and Motivation

Ensuring the reliability of systems, objects, and processes is one of the main goals
in their creation and further operation. Redundancy serves this aim, and a k-out-of-n : F
model is a very popular configuration for it. This is a model of a system that consists of n
components in parallel that fails when at least k of them fail. Hereinafter, we will use this
notation omitting the symbol “F”.

Due to the wide range of practical applications of k-out-of-n systems, many papers
have been devoted to their study. The bibliography on the related topics is extensive (see
Trivedi [1], Chakravarthy et al. [2] and the bibliography therein). For a brief overview
of further investigations, see, for example, [3] by Rykov et al. An overview of recent
publications on k-out-of-n multi-state systems can be found in [4]. Furthermore, the k-
out-of-n systems with several types of failure have been considered in [5,6]. In the 1980s
in [7,8] for the investigation of heterogeneous systems, Ushakov proposed the method of
Universal Generating functions. At present, it has become a very popular technique and
has been used in different applications (see, for example, a monograph by Levitin [9] and
the bibliography therein). Recently, in [10], Kala proposed new sensitivity measures for the
system’s reliability function based on the entropy of its structural function. Engineering
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applications of this model to the study of real-world systems can be found in [11] for
the reliability study of some structures in the oil and gas industry. In [12], the model is
used for reliability analysis of a remote monitoring system of underwater sections of gas
pipeline, and in [13] for the reliability study of a rotary-wing flight module of a high-altitude
telecommunications platform.

Another interesting line of research within the framework of the problem of system
reliability enhancement is the prediction of the remaining useful life (RUL), which is
an indispensable indicator to measure the degradation process of system components.
In [14], a novel adaptive approach based on Kalman filter and expectation maximum
with Rauch–Tung–Striebel was proposed to solve the problem of the RUL prediction of
lithium-ion battery which is critical for the normal operation of electric vehicles [15].

A data-driven RUL prediction approach based on deep learning was proposed in [16]
and verified by two real-world datasets—the aircraft engines dataset and the actual milling
machine dataset.

Recently, an interesting approach of stress–strength reliability characteristic study was
proposed (see, especially, [17–19]). It is interesting to study this index with respect to its
sensitivity to both stress and strength distribution. We do not touch this approach here,
but it will be in our plans in future.

In paper [13], a wide range of issues was posed for the study of systems whose
failure depend not only on the number of failed components, but also on their location
in the system. Moreover, it is also very important to take into account that failures of
system components lead to the increase in the load on the remaining ones. A simple
load-sharing model, in which the lifetime is exponentially distributed and the load from the
failed components is distributed proportionally among the survivors, is considered in [20]
through the example of a 2-out-of-3 system. A load-sharing k-out-of-n : G system with
identical components and arbitrary distribution of lifetime under the equal load-sharing
rule in the context of semi-Markov embedded processes was studied in [21].

The study of a k-out-of-n model in which failed components do not affect the residual
lifetime of surviving components, using order statistics, is considered in [22]. On the other
hand, the increase in the load on working components after the stop of functioning of the
failed ones can lead to the decrease in their residual lifetime. Such a problem has been
studied in our previous papers [12,23]. In addition, in [24] this problem was modeled by
the changing in components’ hazard rate function.

The application of order statistics to the study of k-out-of-n models is not new [1,25].
Previously, in [26], the so-called sequential order statistics (which is some extension of
ordinary order statistics) were considered for the study of a k-out-of-n system, in which
a failure of any component can affect other components, so that their basic failure rate is
corrected in relation to the number of previous failures. A similar model of the impact
of a component’s failure on the functioning of the survived ones has been developed for
example in [27,28], where it was supposed that the failure of any component influences the
others, so that their failure rate is adjusted with respect to the number of preceding failures.

However, the problem of system failure, associated with a change in the residual
component lifetime, depending on the increase in load after the failure of any component,
has not yet been solved. Thus, the present article is devoted to the solution of this problem.
The novelty of this investigation consists of the following:

– we perform the reliability study of a k-out-of-n system, whose component failures
change residual lifetime of the other components;

– in the current paper, despite the fact that order statistics have already been applied to
the study of k-out-of-n system reliability characteristics, we propose a novel applica-
tion of order statistics to study of the lifetimes of components and the whole system.

The paper is organized as follows. In the next section, the problem is set up, the main
notations and some practical examples of k-out-of-n models are given. Then, in Section 3
the necessary preliminaries are introduced and in Section 4 the general procedure for the
solution of the stated problem is proposed. The numerical study of different scenarios for
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the investigation of a 2-out-of-6 system is made in Section 5. In conclusion, directions for
further research are outlined.

2. State of the Problem: Notations and Examples
2.1. Problem Setting

Usually, real-world redundant systems are constructed based on the same type of
components. Thus, we consider a k-out-of-n system that consists of n identical components
in parallel and fails if at least k of them fail. At that point, it is supposed that the failure of
an i-th component for i < k leads to the increase of load on the others and therefore to the
decrease of their residual lifetimes. It is modeled by multiplying the residual lifetime of the
surviving components by some weighting factor ci < 1, (i = 1, k− 1). We will consider
the system operation up to its first failure.

In the present paper, the main reliability characteristics of such a system are studied,
namely:

– time T to the first failure of the system,
– reliability function R(t) = P{T > t} of the system,
– its two first moments,
– high confidence quantiles;
– sensitivity analysis of the system’s reliability function to the shapes of its components’

lifetime distribution.

2.2. Notations: Assumptions

To study the system, introduce the following notations:

• P{·}, E[·] are symbols of probability and expectation;
• Ai : (i = 1, n) is the series of components’ lifetimes, which are supposed to be

independent identically distributed (iid) random variables (rv);
• A(t) = P{Ai ≤ t} is their common cumulative distribution function (cdf);
• j is the system state, which means the number of failed components;
• E = {j = {0, 1, . . . , k}} is the set of the system states.

Under the set of states E, define a stochastic process J = {J(t) : t ≥ 0} by the
expression

J(t) = j, if in time t the system is in the state j ∈ E

and denote by T and R(t) time to the first system failure and the reliability function,
respectively,

T = inf{t : J(t) = k}, R(t) = P{T > t}.

2.3. Examples

As mentioned in the Introduction, k-out-of-n models have a wide sphere of applica-
tions (see [1] and others), including the study of energy (see [11,12]), and telecommunica-
tion [13] problems. Let us focus on two examples of applying the k-out-of-n model. In the
numerical analysis, we will use these examples for the special case of n = 6, k = 2.

2.3.1. A Flight Module of a Tethered High-Altitude Telecommunication Platform

As an application example of the proposed k-out-of-n model, consider the model of a
multi-copter flight module, which is part of the tethered high-altitude telecommunications
platform [13]. The main area of its application is solving problems related to the long-term
operation (tens of hours) without lowering the unmanned flight module to the ground.
Therefore, unlike autonomous Unmanned Aerial Vehicles (UAVs) reliability parameters are
of crucial importance for the tethered UAV-based high-altitude platforms.

A multi-rotor UAV is a system consisting of n rotors arranged uniformly in a circle and
pairwise symmetrically with respect to the center of the circle [29]. The multi-copter may
malfunction due to the failure of the propeller engines. There are various modifications
of multi-rotor UAVs. The most common architectures are quad-, hexa-, and octocopters.
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The higher the redundancy ratio, the higher the reliability of the system. , Therefore,
in practice, flight modules with 6 or 8 rotors are most often used. In this example, we
consider a hexacopter as a hot standby system consisting of n = 6 components (rotors) that
work and fail independently of each other (see Figure 1).

Figure 1. An unmanned hexacopter flight module of a tethered high-altitude telecommunications
platform.

If the location of the failing components is not taken into account, this system fails
when k = 2 out of 6 rotors fail.For practical use, various reliability characteristics of such a
system, including those considered in the general model, are of interest.

2.3.2. An Automated System for Remote Monitoring of a Sub-Sea Pipeline

As another application example of the k-out-of-n model, we consider an automated
system for remote monitoring of a sub-sea pipeline. This system has been considered in [12],
where its description has been given in details. One of the main parts of this system is an
Unmanned Underwater Vehicle (UUV), the structure of which is illustrated in Figure 2.

Figure 2. An unmanned multi-functional underwater vehicle.

The UUV consist of 6 motors, indicated by numbers 1–6, which allow it to rise, fall
and move in various directions, including along the pipeline. The UUV is equipped with
various devices, indicated by numbers 7–15, for receiving and transmitting information
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about the state of the pipe. In paper [12] the reliability function of this model has been
studied in two scenarios:

(1) in the case, when the system’s failure depends only on the number of its failed
components. At that point, it is assumed that the device can perform its functions
until at least 3 of its engines fail;

(2) in the case, when the system’s failure depends also on the position of the failed
components in the system. At that point, the UUV can perform its functions as long
as at least two engines located on opposite sides, or any three engines are operational.
Therefore, it could be considered to be a combination of 3 + 1-out-of-6 : F and 5-out-
of-6 : F systems. For such a system, the special notation such as (5, 3 + 1)-out-of-6 : F
system was used.

However, the influence of the number of failed components on the residual lifetimes
of the survived ones was not taken into account earlier. In the current paper, this model
has been studied under the condition that failed components reduce the residual lifetime
of surviving system’s components.

3. Distribution of the System’s Time to Failure
3.1. Preliminaries

It is evident that if a k-out-of-n system’s failure depends only on several its failed
components, it coincides with the k-th order statistic from n iid rv Ai (i = 1, n) with a
given cdf A(t). For simplicity, further we will denote order statistics A(1) ≤ · · · ≤ A(k) ≤
· · · ≤ A(n) of iid rv Ai (i = 1, n) by Xi, i.e., Xi = A(i) and X1 ≤ · · · ≤ Xk ≤ · · · ≤ Xn.
Distributions of order statistics are well studied (see, for example, [30]), where it was
shown that the joint probability density function (pdf) fn(x1, . . . xn) of all order statistics
X1 ≤ X2 ≤ · · · ≤ Xn from n iid rv A1, A2, . . . , An with a given pdf a(x) has the follow-
ing form:

fn(x1, x2, . . . , xn) = n!a(x1)a(x2) · · · a(xn) (x1 ≤ x2 ≤ · · · ≤ xn).

By integration of this pdf with respect to last n− k variables one can simply find the
joint pdf fk(x1, . . . xk) of the first k order statistics X1 ≤ X2 ≤ · · · ≤ Xk from the n iid rv
Ai (i = 1, n) in the domain x1 ≤ x2 ≤ . . . ≤ xk in the form

fk(x1, x2, . . . , xk) =
n!

(n− k)!
a(x1)a(x2) . . . a(xk)(1− A(xk))

n−k. (1)

However, if a failure of one of the system’s components leads to the change in the
residual lifetimes of all survived components, then their distributions are also changed.

3.2. Transformation of Order Statistics

Following the proposed model of the influence of components’ failures on the residual
lifetime of survivors, they are reduced by multiplying by some constant ci depending on
the number of failed components. Denote by Yi (i = 1, k) the time of an i-th component
failure under the conditions of increasing the load on survived components. To simplify
the representation of these values in terms of order statistics X1 ≤ X2 ≤ · · · ≤ Xn, we
introduce the following notations,

C1 = (1− c1), C2 = c1(1− c2), . . . , Ck−1 = c1 · · · ck−2(1− ck−1), Ck = c1 · · · ck−1.

In these notations, the following theorem holds.

Theorem 1. The time to the considered system failure Yk is a linear function of order statistics of
the following form:

Yk = C1X1 + C2X2 + · · ·+ Ck−1Xk−1 + CkXk. (2)
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Proof. To calculate the time of the system failure, we slightly expand the problem state-
ment and calculate the successive time moments Yi (i = 1, k) of failures of the system’s
components under conditions of increasing load on the surviving components. To do that,
we use a recursive procedure and denote by X(j)

i the expected time moment of the i-th
failure after the failure of the j-th component (i > j).

Thus, to start the induction, we have X(0)
i = Xi. After the first failure of a component

at time Y1 = X(0)
1 = X1 all residual lifetimes of surviving components that equal Xi − X1

for i > 1 decrease by a factor of c1, and therefore the expected failure times X(1)
i for i > 1

take the form

X(1)
i = X(0)

1 + c1(X(0)
i − X(0)

1 ) = (1− c1)X1 + c1Xi, i = 2, k.

Therefore Y2 = X(1)
2 = (1− c1)X1 + c1X2.

Similarly, after the j-th failure at time Yj = X(j−1)
j , the residual lifetimes X(j−1)

i −X(j−1)
j

of all surviving components for all i > j decrease by a factor cj, 0 < cj < 1 (j = 1, k) and
the expected failure times of components take the following form:

X(j)
i = X(j−1)

i , ∀i ≤ j,

X(j)
i = X(j−1)

j + cj(X(j−1)
i − X(j−1)

j ) = (1− cj)X(j−1)
j + cjX

(j−1)
i , ∀i > j.

Thus, the expected failure times of the system components Yj (j = 1, k) under condi-

tions of load redistribution equal to Yj = X(j−1)
j (j = 1, k). Expressing X(j)

i in terms of the
original order statistics, we obtain the following expression for i > j:

X(j)
i = (1− c1)X1 + c1(1− c2)X2 + c1c2(1− c3)X3 + · · ·+ c1 · · · cj−1(1− cj)Xj + c1 · · · cjXi

=
j

∑
l=1

c1 · · · cl−1(1− cl)Xl + c1 · · · cjXi. (3)

Supposing that the last expression is true for a given j check it for all i > j:

X(j+1)
i = (1− c1)X1 + c1(1− c2)X2 + c1c2(1− c3)X3 + · · ·+ c1 · . . . · cj−1(1− cj)Xj

+ c1 · . . . · cj(1− cj+1)Xj+1 + c1 · . . . · cjcj+1Xi =

=
j

∑
l=1

c1 · · · cl−1(1− cl)Xl + c1 · · · cj(1− cj+1)Xj+1 + c1 · · · cj+1Xi =

=
j+1

∑
l=1

c1 · · · cl−1(1− cl)Xl + c1 · · · cj+1Xi. (4)

Hence, by the principle of mathematical induction, the equality (3) holds for any j. In
terms of the original order statistics Xi (i = 1, k), we obtain for all j = 1, k:

Yj = X(j−1)
j = (1− c1)X1 + c1(1− c2)X2 + · · ·+ c1 · · · cj−2(1− cj−1)Xj−1 + c1 · · · cj−1Xj,

which, using the notation introduced earlier, leads to (2) for j = k, which completes the
proof.

3.3. Distribution of the System Failure Time

Now move on to the calculation of the cdf FYk (y) of the system’s time to failure Yk
under the condition of redistribution of the load on the components. We will do that
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by taking into account expression (2) for the time of the system failure in terms of order
statistics Xi and using Formula (1) for the joint distribution of the first k order statistics.

To simplify the representation of this cdf we introduce the following notations,

z0 = y,

zi = zi(y; x1, . . . , xi) =
y− C1x1 + C2x2 − . . .− Cixi

Ci+1
(i = 1, k− 1). (5)

With these notations the following theorem holds.

Theorem 2. The distribution of the system’s time to failure for y > 0 is

FYk (y) = P{Yk < y}

=
n!

(n− k)!

z0∫
0

a(x1)dx1

z1∫
x1

a(x2)dx2· · ·
zk−1∫

xk−1

a(xk)(1− A(xk))
n−kdxk. (6)

Proof. According to Theorem 1 (see Formula (2)) the time Yk of the system failure is the
linear function of the first k order statistics

Yk = C1X1 + C2X2 + · · ·+ Ck−1Xk−1 + CkXk.

Therefore, for cdf FYk (y) of rv Yk in terms of pdf fk(x1, . . . , xk) of the first k order
statistics we obtain

FYk (y) = P{Yk < y}
= P{C1X1 + C2X2 + · · ·+ Ck−1Xk−1 + CkXk < y}

=
∫
· · ·

∫
D(x1,...,xk ;y)

fk(x1, x2, . . . , xk)dx1 . . . dxk, (7)

where the integration domain is

D(x1, . . . , xk; y) = {0 ≤ x1 ≤ · · · ≤ xk, C1x1 +C2x2 +C3x3 + . . . +Ck−1xk−1 +Ckxk ≤ y}.

Let us represent this multidimensional integral as an iterated one. Taking into account
that x1 ≤ x2 ≤ · · · ≤ xk, the integration domain can be transformed in the following way.
For the last variable xk from the inequality

C1x1 + C2x2 + C3x3 + . . . + Ck−1xk−1 + Ckxk ≤ y,

it follows that

xk ≤
y− C1x1 − C2x2 − C3x3 − . . .− Ck−1xk−1

c1 · · · ck−1
= zk−1(y; x1 . . . xk−1).

Furthermore, taking into account that xk−1 ≤ xk, from the last inequality, it follows that

xk−1 ≤ xk ≤
y− C1x1 − C2x2 − C3x3 − . . .− Ck−1xk−1

c1 · · · ck−1
.

From this inequality with the simple algebra one can find

xk−1 ≤
y− C1x1 − C2x2 − . . .− Ck−2xk−2

c1 · · · ck−2
= zk−2(y; x1 . . . , xk−2).
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Following in the same way we obtain for variable x2 the inequality

y ≥ (1− c1)x1 + c1(1− c2)x2 + c1c2x3 ≥
≥ (1− c1)x1 + c1(1− c2)x2 + c1c2x2 = (1− c1)x1 + c1x2,

from which it follows that

x2 ≤
y− (1− c1)x1

c1
,

and, at last,
y ≥ (1− c1)x1 + c1x1 = x1.

It means that 0 ≤ x1 ≤ y. This argumentation shows that the integration domain
D(x1, . . . , xk; y) in terms of notations (5) can be represented as

D(x1, . . . , xk; y) = {xi−1 ≤ xi ≤ zi(y; x1, . . . xi−1) (i = 1, k)}.

Thus, using formula (1) for pdf fk(x1, . . . , xk) for the first k order statistics and the
above form of the integration domain, we can rewrite integral (7) for y ≥ 0 as

FYk (y) =
n!

(n− k)!

y∫
0

a(x1)dx1

z1∫
x1

a(x2)dx2 · · ·
zk−1∫

xk−1

a(xk)(1− A(xk))
n−kdxk,

that ends the proof.

As a consequence of the theorem, the main system reliability characteristics can
be calculated.

Remark 1. Based on the distribution of the system’s time to failure, any other system’s reliability
characteristics can be calculated, such as:

– its reliability function R(y) = 1− FY(y);
– its mean lifetime E[T] =

∫ ∞
0 R(t)dt;

– its lifetime variation var[T].

3.4. A Special Case: Exponential Distribution

In a special case, when the system components’ Ai (i = 1, n) lifetimes have exponen-
tial (Exp) distribution with a parameter α the integral (6) can be calculated analytically,
but the calculations are rather cumbersome. We show it for the given value of k = 2.
But for exponential distribution of the system components’ lifetime, we propose another
approach for the system lifetime distribution. It is based on the memoryless property of
any exponentially distributed rv.

Denote by Ti the time interval between i− 1-th and i-th components failures, i = 1, k− 1
(T0 = 0). Then due to the memoryless property of the exponential distribution the time to
the k-th failure Yk is the sum

Yk = T1 + T2 + · · ·+ Tk,

of k independent exponentially distributed rv Ti with parameters

λ1 = nα, λi = c1c2 · · · ci−1(n− i + 1)α = c̄i(n− i + 1)α, i = 2, k,

where for simplicity additional notations are used:

c̄i =

{
1, i = 1,
c1 · · · ci−1, i = 2, k.



Mathematics 2022, 10, 4243 9 of 16

The moment generating function (mgf) of the system’s lifetime in this case has the
following form:

φk(s) = E
[
e−sYk

]
= ∏

1≤i≤k
E
[
e−sTi

]
= ∏

1≤i≤k

c̄iλi
s + c̄iλi

.

To apply the above theorem and the proposed approach, let us consider the simplest
example of a k-out-of-n model with k = 2. In this case, suppose c1 = c. Thus, according
to (1) the joint distribution of rv X(1), X(2) is

f2(x1, x2) =
n!

(n− 2)!
a(x1)a(x2)(1− A(x2))

n−2 =
n!

(n− 2)!
α2e−αx1 e−(n−1)αx2 .

Calculate cdf FY2(y) of the rv Y2 = (1− c)X(1) + cX(2),

FY2(y) = P{(1− c)X(1) + cX(2) < y} = P

{
X(2) <

y− (1− c)X(1)

c

}

= n(n− 1)α2
y∫

0

e−αx1 dx1

y−(1−c)x1
c∫

x1

e−(n−1)αx2 dx2

= 1 +
n− 1

nc− (n− 1)
e−nαy − nc

nc− (n− 1)
e−

(n−1)α
c y,

and therefore its pdf for y ≥ 0 is

fY2(y) =
n(n− 1)α

nc− (n− 1)

(
e−

(n−1)α
c y − e−nαy

)
.

Please note that this result holds for c 6= (n− 1)/n and in this case the distribution
is a mixture of exponential distributions. The point c = (n− 1)/n is a singular point for
which cdf of the rv Y2 is the Erlang distribution,

FY2(y) = 1− e−nαy − nαye−nαy, y > 0,

with pdf
pY2(y) = n2λ2ye−nλy, y > 0.

Remark 2. The singularity in the calculation of the cdf of the system’s lifetime arises because for
some special values of the coefficient ci (here for c = (n− 1)/n) the moment generating function of
the system’s lifetime has multiple roots that leads to changing of the shape of distribution.

With the help of another approach one can find mgf of the system’s lifetime in the
following form:

φ2(s) =
n(n− 1)α2

s2 + (2n− 1)αs + n(n− 1)α2 .

By expanding this expression into simple fractions, we find

φ2(s) =
n(n− 1)α

s + nα
− n(n− 1)α

s + (n− 1)α
,

then, by calculating the inverse function, we obtain

f2(y) = n(n− 1)α
(

e−(n−1)αy − e−nαy
)

,

which is the same as the result above for c = 1.
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The analytical calculations of the reliability characteristics are not always possible.
Nevertheless, their numerical analysis in the wide domain of initial data is possible. There-
fore, in the next section a procedure for the numerical calculation of different reliability
characteristics of the considered system will be proposed. Furthermore, in Section 5 this
procedure will be used for the numerical analysis of the model with some examples.

4. The General Calculation Procedure of the System Reliability Characteristics and
Numerical Experiments

Based on the results of the previous section, the general procedure for the problem
solution can be implemented with the help of the following algorithm (Algorithm 1).

Algorithm 1 : General algorithm for calculation of reliability function

Beginning. Determine: Integers n, k, real ci (i = 1, k), distribution A(t) of the system components’
lifetime and its pdf.
Step 1. Taking into account that the system’s failure moment Yk according to formula (2) equals

Yk = C1X1 + C2X2 + · · ·+ Ck−1Xk−1 + CkXk,

calculate the following,

Ci =


1− ci, i = 1,
c1 · · · ci−1(1− ci) i = 2, k− 1,
c1 · · · ck−1 i = k.

Step 2. Taking into account that according to formula (1), the joint distribution density of first k order
statistics X1 ≤ X2 ≤ · · · ≤ Xk holds

fX1X2 ...Xk (x1, x2, . . . , xk) =
n!

(n− k)!
a(x1)a(x2) . . . a(xk)(1− A(xk))

n−k,

with which following to (6) calculate the reliability function

R(y) = 1− FYk (y) = 1− n!
(n− k)!

y∫
0

a(x1)dx1

z1∫
x1

a(x2)dx2 · · ·
zk−1∫

xk−1

a(xk)(1− A(xk))
n−kdxk,

where the limits of integration are determined by the relation (5)

z0 = y, zi = zi(y; x1, . . . , xi) =
y− C1x1 + C2x2 − . . .− Cixi

c1c2 . . . ci
(i = 1, k− 1).

Find the values of the constants ci (singular points at which the denominator of the cdf FYk (y) turns
into 0) for which the cdf changes its appearance.
Step 3. From the system reliability function R(y), calculate
– mean time to the system failure

µT = E[Yk] =

∞∫
0

R(y)dy;

– its variance

σ2
T = Var[Yk] =

∞∫
0

(y− µT)
2 f (y)dy, where f (y) =

d
dy

FYk (y),

and coefficient of variation
v =

σ

µ
.

Stop.

Remark 3. The algorithm can also be used to solve other different problems, for example, to analyze
the sensitivity of the system’s reliability function and its characteristics to the shape of the lifetime
distribution of the system’s components.

Furthermore, the algorithm will be applied to some examples.
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5. Numerical Experiments: 2-Out-Of-6 System

According to Algorithm 1, we calculate the reliability function of a 2-out-of-6 sys-
tem. Since such a system fails due to the failure of two components, we have only one
constant that defines the decreasing residual lifetime of surviving components. Therefore,
hereafter, we suppose c1 = c. Consider the Gnedenko–Weibull (GW) distribution as the

lifetime distribution of the system’s components, A(t) ∼ GW
(

θ,
a

Γ(1 + θ−1)

)
, with the

corresponding cdf

A(t) = 1− exp

{
−
(

tΓ(1 + θ−1)

a

)θ
}

, t > 0,

where

• a is a fixed mean components’ lifetime,
• θ is the shape parameter of GW distribution calculated based on the preset value of

the coefficient of variation,

• v =
σ

a
= a−1 ·

√
Γ(1 + 2 · θ−1)

Γ(1 + θ−1)2 − 1 is the coefficient of variation,

• σ is the standard deviation.

Additionally, consider the Erlang (Erl) distribution, A(t) ∼ Erl(l, θ) with pdf

a(y) =
θl

Γ(l)
yl−1e−θy, y > 0.

In this case, the distribution’s parameters can be represented via the corresponding
mean a and coefficient of variation v as follows,

l = v−2, θ = (av2)−1.

For numerical experiments, we consider the reliability function and its characteristics
of a 2-out-of-6 system for given distributions with a fixed mean a and different values of v.
Thus, we can analyze the influence of the coefficient of variation of the repair time on the
reliability characteristics of the system. In other words, investigate its sensitivity.

Suppose that the mean lifetime of the component a = 1. If θ = 1, GW and Erl
distributions transform into the exponential one with the mean time a and the coefficient of
variation v = 1. In this case, its reliability function is

R(t) =
5e−6t − 6c · e− 5t

c

5− 6c
. (8)

From Formula (8) it is clear that c = 5
6 leads to changing of the shape of distribution.

Since calculating the coefficient θ for GW through the value of v is quite difficult, we
define the parameter θ so that v ≈ 0.5. Moreover, if θ of GW takes non-integer values, it
is not always possible to obtain a closed-form reliability function R(t) according to Algo-
rithm 1 (the integrand takes a complex form). Therefore, define θ = 2, then, the coefficient
of variation v = 0.5227. For Erl distribution, suppose that v = 0.5, which leads to θ = 4.

Suppose c = 0.1; 0.5; 1. Figure 3 illustrates the reliability function of the 2-out-of-6
system for different distributions, as well as c and v. Here, solid line means v = 1 and
reliability function (8), dashed one is for GW with v = 0.5227 and dash-dotted is for Erl
with v = 0.5. The legend of the figure denotes the color of line for different c.
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Figure 3. Reliability function of a 2-out-of-6 system.

The figure shows that the higher reliability coincides with the lower value of v.
The case c = 1 means the absence of load from the failed components to the surviv-
ing ones, thus this case corresponds to the highest reliability for different v compared to
the values c < 1. Moreover, dependence of the reliability function curve on the shape of
lifetime distribution is observed. On a small interval y, the system reliability as A ∼ Erl is
higher than as A ∼ GW for each c, despite close values v. This may indicate the sensitivity
of the reliability function not only to the shape of the lifetime distribution, but also to the
corresponding value of the coefficient of variation.

According to the algorithm, we calculate other reliability characteristics of the 2-out-
of-6 system (Tables 1 and 2). These characteristics correspond to the system’s reliability
behavior, shown in Figure 3. The lower value of v leads to the higher value of the system
lifetime expectation E[Y2], and the lower value of c leads to the lower value of E[Y2].
Moreover, as v ≈ 0.5 the relative error between the considered distributions is 14.11% for
c = 0.1, 7.98% for c = 0.5 and 3.86% for c = 1.

Table 1. E[Y2] of a 2-out-of-6 system.

c = 0.1 c = 0.5 c = 1

v = 0.5 (A ∼ Erl) 0.4925 0.5670 0.6668
v = 0.5227 (A ∼ GW) 0.4316 0.5251 0.6420

v = 1 (A ∼ Exp) 0.1867 0.2667 0.3667

To distinguish coefficients of variation of the components and the whole system,
denote them as vcomp and vsys, respectively. Thus, Table 2 shows the following. With a
decrease in c, the coefficient of variation of the system vsys grows and tends to the value
of the coefficient of variation of each system component vcomp. The increasing vcomp leads
to the increasing vsys for all distributions and c. Thus, the coefficient of variation of the
system vsys confirms that as c tends to 0 and vcomp tends to 1, variability with respect to the
average lifetime of the system E[Y2] grows.



Mathematics 2022, 10, 4243 13 of 16

Table 2. vsys of a 2-out-of-6 system.

c = 0.1 c = 0.5 c = 1

vcomp = 0.5 (A ∼ Erl) 0.3802 0.3049 0.2986
vcomp = 0.5227 (A ∼ GW) 0.4813 0.3854 0.3641

vcomp = 1 (A ∼ Exp) 0.8993 0.7289 0.7100

Table 1 showed that with increasing c and v ≈ 0.5, the mean system lifetime E[Y2]
is very close. However, Figure 3 shows that over a small interval y with these c and v,
the reliability of the system has significant differences. This leads to the study the quantiles
of the system reliability. This measure shows how long the system will be reliable with
a fixed probability. The quantiles qγ = R−1(γ) of the reliability function are presented
in Figures 4–6. In all cases, red bullets correspond to γ = 0.99, whereas black bullets
correspond to γ = 0.9.

All the values for quantiles γ = 0.999; 0.99; 0.9 are presented in Table 3 for different
distributions. The values in the table show that for the presented quantiles qγ, the shape of
the lifetime distribution of the system’s components as well as its coefficient of variation
play a critical role on the system’s reliability. Therefore, for example, as c = 0.1 and A ∼ Erl
a given reliability level 0.9 will last about 8 times longer than for c = 0.1 and A ∼ Exp.
At that for q0.999, the difference for similar case is almost 40 times. As the coefficient c
increases, this difference decreases for all values of the quantiles and lifetime distributions
of the components. As c = 1 this difference is reduced by about two times. Thus, even as
c = 1, which defines no changing in components’ residual lifetimes, the influence not only
of the lifetime distribution of the components but also its coefficient of variation on the
reliability of the system is huge. This once again confirms the sensitivity of the reliability
characteristics of the k-out-of-n system to the shape of the lifetime distribution and the
coefficient of variation of system’s components.

Figure 4. Reliability function with v = 1 and quantiles (A ∼ Exp). Red and black bullets are the
points of intersection of the reliability function curves with fixed reliability levels of 0.99 and 0.9,
respectively.
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Figure 5. Reliability function with v = 0.5227 and quantiles (A ∼ GW). Red and black bullets are
the points of intersection of the reliability function curves with fixed reliability levels of 0.99 and 0.9,
respectively.

Figure 6. Reliability function with v = 0.5 and quantiles (A ∼ Erl). Red and black bullets are the
points of intersection of the reliability function curves with fixed reliability levels of 0.99 and 0.9,
respectively.

Table 3. Quantiles of reliability function qγ.

c = 0.1 c = 0.5 c = 1

q0.999 A ∼ Exp 0.0026 0.0059 0.0083
A ∼ GW 0.0419 0.0804 0.1027
A ∼ Erl 0.1019 0.1641 0.1945

q0.99 A ∼ Exp 0.0088 0.0192 0.0271
A ∼ GW 0.0804 0.1458 0.1859
A ∼ Erl 0.1576 0.2345 0.2784

q0.9 A ∼ Exp 0.0344 0.0691 0.0972
A ∼ GW 0.1813 0.2784 0.3517
A ∼ Erl 0.271 0.3574 0.424
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6. Conclusions and the Further Investigations

The reliability function of a new k-out-of-n : F model is investigated, under the new
assumptions that the failures of its components lead to the increase in the load on the
remaining ones and, consequently, to the change in their residual lifetimes. To model the
situation, we proposed a novel approach based on the transformation of the order statistics
of the system components’ lifetimes , which is the new field of application of order statistics.
An algorithm for calculation of the system’s reliability function and its moments has been
developed. Numerical experiments for the special case of the considered model based on
the real-world systems have been carried out. The experiments show an essential sensitivity
of the model reliability function and its moments to the shapes of the lifetime distributions
of the system’s components and their coefficient of variation.

Furthermore, it is proposed we extend this approach to the investigation of stationary
characteristics of the model and consider its preventive maintenance, aiming to improve its
reliability characteristics.
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