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Note about section 3.3.1 of the main body of manuscript 

A close-formed solution for the time dependent variation of [A]  in Equation 53 can be represented as 

follows: 
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where E
MK  and F

MK  are the Michaelis-Menten constants for the first and second stages of a ping-pong 

reaction in which the substrate undergoes disproportionation. More information about the symbols is 

given in Table 1. 

Note about section 3.3.2 of the main body of manuscript 

The two alternative approaches to solve analytically Reactions 8 and 9 presented in Case B of the 

section 3.3.2 are explained below. 

1. Steady-state approximation for E and F 

The non-linear ODE system [Equations (60) and (61)] of the time-dependent variation of the 

concentration for the participating compounds of Reactions (54) and (55) can easily be solved if the 

steady-state is invoked for [E]  and, consequently, for [F]  (i.e., [E] 0   and [F] 0  ). If this is the case, the 

analytical solutions for [A] , [E]  and [F]  with initial values for 0[A] [A]=  and 0[E] [E]=  are as follows: 
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Of interest is also the fact that the integrated solution for [A]  [Equation (S1)] could also have been 

derived from the integration of Equation (50) if ck  and fk  were assumed to approach infinity. However, 

unless the condition 0 0[A] [E]  still remains, the approximate integrated solution for [A]  is not 

completely satisfactory. This can clearly be observed in Figure S1, in which the values for ak  and dk  were 

simply exchanged and the values for 0[A]  and 0[E]  were of similar order. The numerical and analytical 

solutions showed a better overlapping for conditions in which a dk k  when compared to a dk k . The 

enzyme states E and F reach more rapidly steady-state when a dk k  and the match between the 

numerical and analytical solutions of the time-dependent variation of the concentration and rate for the 
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substrate and (the sum of) products was maintained through a broader domain of time (Fig S1A, C and 

E). In contrast, when a dk k , a more noticeable mismatch between the numerical and analytical solutions 

for the compounds were observed, even beyond the time at which E and F were already considered to 

be in steady-state (Fig S1B, D and F). 

2. Non-steady-state approximation for E and F 

At time around 0t = , when 0[E] [E] , the first terms of the power expansion series of the enzyme-

dependent function of [E]  [Equation (66)] were obtained and only the partial sum of the first two 

polynomials of grade 1n =  and 2n=  were evaluated to find approximate solutions: 
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The approximate integrated solutions for Equations (S5) and (S6) were as follows: 
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where 1adk , 1adk  and 2adk  were constants that depended on 0[A] , 0[E]  and the rate constants ak  and dk  

as shown below: 
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After the respective substitution of 1[E]n=  and 2[E]n=  for [E]  in Equation (62), the approximate 

integrate solutions for 1[A]n=  and 2[A]n=  were derived: 
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The approximate analytical solutions for [A]  and [E]  together with their respective numerical 

solutions are shown in Figure 2S. The graphs illustrate how the matches between the numerical and 

approximate analytical solutions for [A]  and [E]  improve around 0t =  under non-steady-state 

conditions as the grade of the polynomial increases. However, the approximate analytical solutions for 
[A]  and [E]  have the inconvenience of growing complexity as n increases. The mismatch between the 
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numerical and approximate integrated solutions for [A]  and [E]  was more prominent as the reaction 

progressed and [A]  became exhausted. 
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Figure S1. Representative numerical (dashed lines, subscript ns) and analytical (solid lines, subscript ss) solutions of 

the time-dependent variation of (A−D) the concentration for the substrate A, the products P and Q, and the two 

active enzyme states E and F and (E, F) the reaction rate for A, P and Q of an enzyme-catalyzed ping-pong reaction. 

The substrate A follows disproportionation and the accumulation of the intermediate substrate-enzyme complexes 

EA and FA is negligible. For the analytical solution, E and F were assumed to be in steady-state. Initial conditions: 
3

0[A] 5 mol m−= , 3
0[E] 1 mol m−= , and (A, C and E) 3 3 15 10  m (mol s)ak − −=   and 2 3 15 10  m (mol s)dk − −=   or (B, D 

and F) 2 3 15 10  m (mol s)ak − −=   and 3 3 15 10  m (mol s)dk − −=  .  



4 

 

0 50 100 150 200 250
0

0.5

1

1.5

2

3

4

[ 
 ]

, 
m

o
l 
m

−
3

Time, s

[E]n = 2

[E]n = 1

[E]ns

[E]¥

[F]¥
B

A

[A]n = 1

[A]ns

[A]n = 2

 

Figure S2. Representative numerically (subscript ns) and analytically (subscript 1 or 2n= ) integrated solutions of 

the time-dependent variation of the concentration for (A) the substrate A and (B) the two active enzyme states E and 

F of an enzyme catalyzed ping-pong reaction under non-steady-state conditions. The substrate A undergoes 

disproportionation and the substrate-enzyme complexes AE and AF do not accumulate. The numerical solutions (ns) 

for [A]  and [E]  are shown together with two approximate integrated solutions around 0t = obtained using the first 

terms ( 1 or 2n= ) of the power expansion series of the enzyme-dependent function of [E] . Horizontal solid and 

dashed lines are the limit values of the analytical solution for [E]  and [F]  (i.e., [E]¥  and [F]¥ , Equation 52) when the 

times goes forward and [A]  becomes exhausted. Initial conditions: 3
0[A] 4 mol m−= , 3

0[E] 2 mol m−= , 
3 3 15 10  m (mol s)ak − −=   and 3 3 110  m (mol s)dk − −= . 

 


