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Abstract: Understanding the kinetic mechanism of enzyme inactivation by suicide substrate is of
relevance for the optimal design of new drugs with pharmacological and therapeutic applications.
Suicide substrate inactivation usually occurs via a two-step mechanism, although there are enzymes
such as peroxidase and catalase in which the suicide inactivation by H2O2 happens in a single step.
The approximate solution of the ordinary differential equation (ODE) system of the one step suicide
substrate inactivation kinetics for a uni–uni reaction following the irreversible Michaelis–Menten
model was previously analytically solved when accumulation of the substrate–enzyme complex was
negligible, however not for more complex models, such as a ping-pong reaction, in which the enzyme
is present in two active states during the catalytic turnover. To solve this issue, a theoretical approach
was followed, in which the standard quasi-steady state and reactant stationary approximations were
invoked. These approximations allowed for solving the ODE system of a ping-pong reaction with
one substrate undergoing disproportionation when suicide inactivation was also present. Although
the approximate analytical solutions were rather unwieldy, they were still valuable in qualitative
analyses to explore the time course of the reaction products and identify the enzyme active state that
irreversibly reacted with the suicide substrate during the reaction.

Keywords: catalase; enzymatic kinetics; disproportionation reaction; Michaelis–Menten model;
ping-pong reaction; reactant stationary assumption; quasi-steady-state approximation; suicide
substrate inactivation

MSC: 34A05; 92B05; 92C45; 97B10

1. Introduction

The kinetic analysis of the inhibition of enzyme reactions by inhibitors and inactivators
is widely used in enzymology to better understand the basis of the catalytic mechanism
via which substrates bind to enzymes and are converted into products [1,2]. Furthermore,
it is a frontline strategy to design highly effective enzyme-targeted drugs with pharma-
cological and therapeutic applications [3–5]. The inhibitors can reversibly compete with
the substrates for the binding at the active site, bind to other enzyme sites different from
the active site, or alternatively bind to the enzyme when the substrate–enzyme complex is
already present [6–8]. Additionally, reversible enzyme inhibition can be complete or partial
if, in the latter case, there is still evidence for a nonzero enzyme rate at saturating inhibitor
concentrations [7,9].

When irreversible enzyme inhibition occurs, the inactivators can either directly re-
act with the enzyme in a one-step mechanism, or instead, initially reversibly bind to the
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enzyme and then react with it in a two-step mechanism, producing in both cases a cat-
alytic dysfunction that lasts for a prolonged period. In most cases, irreversible molecular
modification is the formation of a covalent bond between the inactivator and the enzyme,
although noncovalent-bonded inhibitors can also be included in this classification if the
molecular binding is very tight [10]. Irreversible inhibition includes suicide substrate (or
mechanism-based) inactivation, which is characterized by the fact that the substrate of
the enzyme also plays the role of the inactivator [11,12]. This communication is focused
on the numerical and analytical kinetic analysis of the inactivation of enzymes when the
irreversible reaction with the suicide substrate occurs in one single step.

Suicide substrates have received a great deal of attention in drug design because they
are unreactive in the reaction medium before binding to the target enzyme, but in contrast,
are highly reactive when bound to it. The irreversible modification of the active site by the
suicide substrate blocks the catalytic turnover of the enzyme; therefore, product formation
and enzyme inactivation become two competing reactions [13,14]. In the absence of enzyme
inactivation (or inhibition), the kinetics scheme for an irreversible uni–uni enzyme reaction,
in which one single intermediate substrate–enzyme complex EA is formed, follows the
well-established Michaelis–Menten model [15,16]:

A + E
ka
�
kb

EA kc→ E + P. (1)

The definitions of symbols for the reaction compounds, rate constants, and subscripts
of the above enzyme reaction and others below are given in Table 1. The exact integrated
solution of the nonlinear ordinary differential equation (ODE) system of this irreversible
uni–uni Michaelis–Menten model cannot be derived using analytical methods, and only
approximate solutions can be given after applying the standard and total quasi-steady-state
approximations [17–19]. Indeed, the integrated solutions for the substrate, intermediate
substrate–enzyme complex, and product in the transient and steady-state phases have been
a matter of intensive research in the past century [17,20–23], which persists today [18,24].

When there is suicide substrate inactivation, the aforementioned Michaelis–Menten
model changes to accommodate the binding and reaction of the inactivator with the enzyme
active site. The reaction scheme of the enzyme inactivation model following a two-step
mechanism is generally schematized as follows [12]:

A + E
ka
�
kb

EA kx→ EX
kp→ E + P, (2)

EX
k′i→ I′, (3)

where EA is irreversibly converted to EX. This latter intermediate complex can either follow
the catalytic turnover and dissociate into the reaction product and the active form of the
enzyme or irreversibly become an inactive form of the enzyme.

The kinetic analysis of the above suicide substrate inactivation model was first de-
veloped by Waley [13,25]. In the seminal model, the formation of the inactive state of
the enzyme (i.e., I’) was a first-order reaction, and EA and EX were assumed to be in
a steady state. Subsequent studies were conducted in which different conditions were
examined within the uni–uni Michaelis–Menten model, including the ratio between the
initial concentrations of the substrate (or inactivator) and the enzyme, the presence of
auxiliary substrates, the intermediate complex reacting with the inactivator, or the effect of
the reaction product [26–31].
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Table 1. Nomenclature and symbols for the description of the uni–uni and ping-pong reactions.

Nomenclature Definition

Compounds
A Reaction (suicide) substrate
E Active enzyme

EA Intermediate substrate–enzyme complex
EX Second intermediate substrate–enzyme complex in the Waley model
F Intermediate active enzyme of a ping-pong reaction

FA Intermediate substrate–enzyme complex of a ping-pong reaction
I′ Inactive enzyme of the Waley model
I Inactive enzyme of a one-step suicide substrate inactivation reaction
P (First) reaction product (of a ping-pong reaction)
Q Second reaction product of a ping-pong reaction

Constants
KM Michaelis constant of a uni–uni reaction : (kb + kc)/ka, mol·m−3

KE
M Michaelis constant of the first stage of a ping–pong reaction in which A binds to and reacts with E :

k f (kb + kc)/[ka(kc + k f )], mol·m−3

KF
M Michaelis constant of the sec ond stage of a ping–pong reaction in which A binds to and reacts with F :

kc(ke + k f )/[kd(kc + k f )], mol·m−3

ka Second-order forward rate constant, m3·(mol·s)−1

ka, cat Second-order rate constant for H2O2 decomposition, m3·(mol·s)−1

kb First-order backward rate constant, s−1

kc First-order forward rate constant, s−1

kd Second-order forward rate constant, m3·(mol·s)−1

ke First-order backward rate constant, s−1

k f First-order forward rate constant, s−1

k′ i First–order forward rate constant for the formation of I′, s−1

ki Second-order forward rate constant for the formation of I, m3·(mol·s)−1

ki, cat Second-order rate constant for catalase inactivation, m3·(mol·s)−1

kp First-order forward rate constant for the decomposition of EX, s−1

kx First-order forward rate constant for the formation of EX, s−1

kE A function of sec ond–order forward rate constants when E is inactivated in a ping–pong reaction :∣∣∣∣√(ka + kd + ki)
2 − 4kdki

∣∣∣∣, m3·(mol·s)−1

kF A function of sec ond–order forward rate constants when F is inactivated in a ping–pong reaction :∣∣∣∣√(ka + kd + ki)
2 − 4kaki

∣∣∣∣, m3·(mol·s)−1

kS A function of sec ond–order forward rate constants when E is inactivated in a uni–uni reaction :
kakc/(kb + kc) + ki, m3·(mol·s)−1

Subscripts
E Enzyme state inactivated by suicide substrate
F Intermediate enzyme state inactivated by suicide substrate

max Maximum
(n)ss (Non)quasi-steady state

n Grade of the polynomial of a power expansion series
ssi Suicide substrate inactivation
0 Condition at t = 0
∞ Condition at t→ ∞

The kinetic analysis of the enzyme inactivation by suicide substrate was later ex-
panded to the bi–bi Michaelis–Menten model, in which one of the two substrates was
the inactivator [32]. Using the analytical method to solve the transient phase of enzyme
systems [22,33], Varon et al. [32] established that the catalytic pathway of the bi–bi enzyme
mechanisms remained in the steady state when the catalytic turnover between the compet-
ing catalytic and inactivation rate constants was much higher than the unit, however not
when the rate constants were very close to each other. Additionally, the catalytic turnover,
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in conjunction with the initial concentration of the enzyme, was employed to discriminate
between different types of bi–bi enzyme mechanisms.

In the above two-step suicide substrate inactivation mechanisms with one or two
substrates, the inactivator and the enzyme initially formed a reversible substrate–enzyme
complex before, eventually, the enzyme irreversibly became inactive. However, there are
situations in which the kinetics of the suicide substrate inactivation can be described as a
one-step mechanism similar to that for more generic inactivators that irreversibly modify
some specific amino acid residues with essential roles in the enzyme active site [6]. In this
case, the one-step kinetic mechanism of the enzyme inactivation follows an irreversible
second-order reaction that does not reach saturation by the suicide substrate. Excellent
examples of the one-step suicide inactivation mechanism are the inactivation of peroxidase
and catalase by H2O2 [34–36], in which H2O2 particularly inactivates an intermediate state
of the enzyme formed during the catalytic turnover of a ping-pong reaction consisting of
two stages. When H2O2 inactivation occurs, the catalytic and suicide inactivation reactions
are presented as two concurrent irreversible second-order reactions. In particular, for the
approximate solution of the nonlinear ODE system of the suicide inactivation of peroxidase
by H2O2, it is required to fix conditions such that the concentration of H2O2 should both be
constant during the time course of the reaction and higher than that of the nonsaturating
concentration of the electron donor (or second substrate) [35,36]. In contrast, the kinetic
analysis of the suicide inactivation of catalase by H2O2 does not introduce any restriction
for the concentration of the H2O2, and none of the two concurrent second-order reactions
reaches saturation by H2O2 [34,37]. The latter one-step suicide substrate inactivation with
one substrate is generally schematized as shown below [34,38], where A is H2O2 and E
stands for the total active catalase with no distinction between the initial and intermediate
enzyme states of the ping-pong reaction.

A + E
ka, cat→ E + P, (4)

A + E
ki, cat→ I. (5)

This simplified reaction scheme has been extensively used with success to determine
the overall inactivation rate constant of catalase when the enzyme was exposed to prolonged
incubation with H2O2 under different experimental conditions such as temperature and
pH [38–40]. More recently, a theoretical analysis of the inactivation reaction was conducted
to design a rapid and high-throughput measurement of catalase in vitro [41].

The theoretical approach here presented aims to gain deeper insight into the kinetics
leading to one-step suicide substrate inactivation of a ping-pong reaction in which the
substrate undergoes disproportionation and can either irreversibly inactivate the initial
or the intermediate active state of the enzyme, a situation not addressed in the above
enzyme inactivation scheme (Reactions (4) and (5)). To achieve this goal, the standard
quasi-steady-state and reactant stationary approximations [24] were examined initially
in a uni–uni reaction following the irreversible Michaelis–Menten model, and then in a
ping-pong reaction with one substrate undergoing disproportionation in the presence and
absence of one-step suicide substrate inactivation. Despite the complexity of the ODE
system of the enzyme-catalyzed ping–pong reaction in the presence of suicide substrate
inactivation, the exploratory analysis of the approximate analytically integrated solutions
was shown to be of relevance to identify the enzyme state that irreversibly reacted with
the suicide substrate. Scheme 1 shows the flow to achieve the approximate analytically
integrated solutions of the ODE systems of enzyme reactions under investigation in the
present study.
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Scheme 1. Flow of the approximations used to solve the ODE system of the uni–uni and ping-pong
reactions in the absence and presence of one-step substrate suicide inactivation. The numbers in the
diagram correspond with the (sub)headings of Section 3.

2. Materials and Methods

The computer algebra system Wolfram Mathematica v. 12.2 (Champaign, IL, USA) [42]
was used to program scripts to numerically and analytically solve the ODE systems of
the irreversible uni–uni Michaelis–Menten and ping-pong reaction mechanisms, in which
the enzyme followed a one-step suicide substrate inactivation. The Runge–Kutta method
was applied to numerically solve the ODE system. The NDSolve and DSolve commands,
together with other graphical and table commands, were programmed in Wolfram Mathe-
matica in a manner such that the time and the values for initial concentrations and kinetic
rate constants in the script could arbitrarily be modified. The values for the initial con-
centrations of the participating compounds and the kinetic rate constants were chosen to
highlight key features of the enzyme reaction models in the graphical representations of the
numerical and analytical solutions of the ODE systems. Thus, the molecular ratios between
substrate and enzyme might not be representative of standard enzyme activity methods
used in experimental laboratories. The approximate analytically integrated solutions of
the time-dependent variation of the concentration for substrate, products, and enzyme
were obtained after evaluating the standard quasi-steady-state and reactant stationary
approximations [24]. The Taylor expansion series as the time approached zero were used
when the DSolve command failed to provide an explicit analytical solution for the ODE
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system under evaluation. The Lambert function is symbolized with the letter W. This
function satisfies the equation W(x)× Exp[W(x)] = x. The Wolfram Mathematica scripts
for the analysis of the numerical and analytical solutions of the linear and nonlinear ODE
systems and the graphical representations of the enzyme reaction models are available as
Wolfram notebooks (Supplementary Materials, Figures S1A and S2A,B).

3. Results and Discussion
3.1. Approximate Analytical Solutions for the Irreversible Uni–Uni Michaelis–Menten Model in
the Absence of Suicide Substrate Inactivation

The most common irreversible enzyme-catalyzed reaction involving one substrate and
one substrate–enzyme complex is usually schematized as shown in Section 1 (Reaction (1)).
The time-dependent variation of the reaction rate for each compound, using the mass action
law and the compound stoichiometry, can be described with the corresponding nonlinear
first-order ODEs as follows:

[A]′ = −ka[A][E] + kb[EA], (6)

[E]′ = −ka[A][E] + (kb + kc)[EA], (7)

[EA]′ = ka[A][E]− (kb + kc)[EA], (8)

[P]′ = kc[EA]. (9)

Likewise, the following relations for concentrations and rates hold for reaction one:

[A]0 = [A] + [EA] + [P], (10)

[E]0 = [E] + [EA], (11)

0 = [A]′ + [EA]′ + [P]′, (12)

0 = [E]′ + [EA]′. (13)

3.1.1. Case A: [A]0 >> [E]0, [EA]′ ≈ 0

Figure 1A shows a representative numerical solution of the time dependence of the
reaction rate for all the participating compounds in reaction one under conditions in which
the standard quasi-steady-state approximation for the substrate–enzyme complex was not
invoked. The maximum rate for [P] in non-steady-state conditions (i.e., [P]′max, nss) occurs
when [E]′ = [EA]′ = 0. At this singular time, −[A]′ = [P]′max, nss, and the following, the
relation is derived after substitution in Equation (9):

− [A]′ = [P]′max, nss =
kc[E]0[A]

(kb + kc)/ka + [A]
. (14)

Regardless of the initial values of the concentration for [A]0 and [E]0, or the finite
values for the rate constants ka, kb, and kc, Equation (14) shows that [P]′max, nss also matches
the maximum rate under the conditions in which [EA] is assumed to reach a steady state
in the Michaelis–Menten equation. However, the match between −[A]′ = [P]′max, ss in the
Michaelis–Menten equation is imposed to go beyond one singular time. Equation (14) is
valid for a reasonably prolonged time domain only if [EA] is assumed to be in a quasi-
steady state (i.e., [EA]′ ≈ 0) [17,18] after a rapid equilibrium of [EA] with [A] and [E].
The rapid equilibrium implies that ka ≈ kb > kc [7]. However, the condition for a rapid
equilibrium is not sufficient to derive the integrated Michaelis–Menten equation [15,21].
Thus, [A] is not necessarily equal to [A]0 at the time in which the quasi-steady state is
reached unless the reactant stationary approximation is also satisfied [24]. This implies
that the decrease in the substrate should be negligible during the transient phase, e.g.,
when [A]0 >> [E]0, a condition that is easily reached in most enzyme activity assays
developed in experimental laboratories. If the second condition is fulfilled, the transient
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phase is notably shortened [17,18]; therefore, the starting point of the quasi-steady-state
approximation approaches the initial time. When this occurs, the shadowed area between
−[A]′ and [P]′ in Figure 1A shrinks, and the two rates finally match.
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Figure 1. Representative numerical solutions of the time-dependent variation of the reaction rate for
the participating compounds of an enzymatic system with one substrate and one substrate–enzyme
complex in (A) the absence (subscript c) and (B) the presence of one-step suicide substrate inactivation
(subscript ssi) under non-steady-state conditions. Vertical dashed and dotted lines show the time at
which [EA]′ and [E]′ are equal to zero, respectively. The shadowed area between −[A]′ and [P]′ in
(A) shows the gap that should be closed between these two rates to reach the steady state. Initial
conditions: [A]0 = 4 mol ·m−3, [E]0 = 2 mol ·m−3, ka = 10−2 m3·(mol ·s)−1, kb = 5× 10−3 s−1,
kc = 2× 10−2 s−1, and ki = 2× 10−3 m3·(mol ·s)−1.

Using the initial conditions [A] = [A]0 and [E] = [E]0, along with the reactant station-
ary approximation [24], a closed form of the integrated Michaelis–Menten equation can,
thus, be represented as follows [43], in which KM is the Michaelis–Menten constant, and
W[ ] is the Lambert function:

[A] = KM ×W
[
[A]0
KM

Exp
(−kc[E]0t + [A]0

KM

)]
. (15)

3.1.2. Case B: KM >> [E]0, [EA] ≈ 0

An alternative integrated solution, for which there is also a prolonged overlap between
−[A]′ and [P]′, can be achieved when KM + [A]0 >> [E]0, regardless of whether [A]0 >>
[E]0 or [A]0 ≈ [E]0 [24], a condition that also satisfies the validity of the total quasi-steady-
state approximation [17]. For situations in which [A]0 ≈ [E]0, the condition KM >> [E]0
can be fulfilled when ka ≈ kc < kb or ka ≈ kb < kc. The ratio ka ≈ kc < kb, [EA]
accumulates and remains in a quasi-steady state for a prolonged time domain. In contrast,
for the case in which ka ≈ kb < kc, [EA] is negligible; hence, the substrate–enzyme complex
does not accumulate significantly at any phase if kc → ∞ (i.e., [EA] ≈ 0 and [E] ≈ [E]0).
When this latter case occurs, the scheme of reaction one can be simplified to a single
second-order reaction.

A + E ka→ E + P, if kc → ∞. (16)
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Using the initial conditions [A] = [A]0 and [E] = [E]0, the approximate integrated
solution is then:

[A] = [A]0e−ka [E]0t. (17)

It is worth noting that this second integrated solution could also have been achieved if
the limit of Equation (14) had been determined when kc approached infinity.

In brief, it can be established that the ODE system of the irreversible uni–uni Michaelis–
Menten model can have approximate analytically integrated solutions under the reactant
stationary approximation when either [EA]′ ≈ 0 or [EA] ≈ 0. The second integrated
solution is apparently an oversimplification of the irreversible enzyme-catalyzed reaction
with one substrate–enzyme complex because, after all, it makes negligible the formation of
the substrate–enzyme complex and the presence of the transient phase. However, the latter
approximation cannot be ignored, as shown below, in enzyme-catalyzed reactions in which
there is one-step suicide substrate inactivation, and an approximate analytically integrated
solution is sought for the ODE system.

3.2. Approximate Analytical Solution for the Irreversible Uni–Uni Michaelis–Menten Model in the
Presence of Suicide Substrate Inactivation

If the substrate is responsible for suicide inactivation, and the inactivation follows
a one-step suicide mechanism, the new reaction to be added to the enzymatic scheme in
reaction one is as follows:

A + E
ki→ I. (18)

With this new reaction, the ODE system of the uni–uni Michaelis–Menten model needs
to be reformulated as follows:

[A]′ = −(ka + ki)[A][E] + kb[EA], (19)

[E]′ = −(ka + ki)[A][E] + (kb + kc)[EA], (20)

[EA]′ = ka[A][E]− (kb + kc)[EA], (21)

[P]′ = kc[EA], (22)

[I]′ = ki[A][E]. (23)

For the new ODE system, the following relations for concentrations and rates also hold:

[A]0 = [A] + [EA] + [P] + [I], (24)

[E]0 = [E] + [EA] + [I], (25)

0 = [A]′ + [EA]′ + [P]′ + [I]′, (26)

0 = [E]′ + [EA]′ + [I]′. (27)

Figure 1B shows a representative time-dependent variation of the reaction rate for
all of the compounds when there is one-step suicide substrate inactivation. When ki > 0,
the active enzyme is irreversibly consumed. Reaction (18) does not reach saturation by
the inactivator and, strictly speaking, there is no condition for which [EA] remains in a
quasi-steady state during a prolonged time domain. At t = 0, [EA] = 0, and it increases
until the time at which [EA]′ = 0. Beyond this instance, the value for [EA] decreases and
approaches zero, regardless of whether [A] remains high and finally [I]∞ = [E]0 or [A] is
exhausted and [I]∞ = [E]0 − [E]∞. Additionally, when ki is small, there are also conditions
for which [E] can reach a minimum (i.e., [E]′ = 0), and thus, −[A]′ = [P]′. However, [P]′ is
not maximum at the time at which [E]′ = 0. In contrast, if ki is high, there might be no time
at which [E]′ = 0, while the enzyme is still active and, hence, there will be no condition for
which −[A]′ = [P]′ (data not shown in Figure 1B).
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The time dependence of [P]′ shows that it reaches its maximum at [EA]′ = 0, regardless
of the value for ki. Bearing this in mind, the following equations can be derived from the
ODE system containing Equations (19)–(23):

[A]′ = −
(

kakc

kb + kc
+ ki

)
[A][E], (28)

[E]′ = −ki[A][E], (29)

[P]′max,nss = −[A]′ + [E]′. (30)

Once again, one must keep in mind that these rates (Equations (28)–(30)) are only
valid for the singular time at which [EA]′ = 0. If attempts are now conducted to find
conditions for which the above reaction rates for [A] and [E] are expected to be valid for a
prolonged time domain, one has to inspect the overlap of some representative numerically
and analytically integrated solutions of the ODE system by changing the values for the
initial concentrations and rate constants. Accepting [A] = [A]0 and [E] = [E]0 as the
starting points for integration, the following integrated equations for [A], [E], [P], and [I]
were obtained:

[A] =
[A]0(ki[A]0 − kS[E]0)

ki[A]0 − kS[E]0 × Exp[−(ki[A]0 − kS[E]0)t]
, (31)

[E] =
[E]0(ki[A]0 − kS[E]0)

ki[A]0 × Exp[(ki[A]0 − kS[E]0)t]− kS[E]0
, (32)

[P] = [A]0 − [A] + [E]− [E]0, (33)

[I] = [E]0 − [E], (34)

where:
kS = kakc/(kb + kc) + ki. (35)

After trial and error visualization, it was possible to confirm there was no overlap be-
tween the numerically and analytically integrated solutions of the time-dependent variation
of the concentration for the participating compounds when arbitrarily varying the values
for [A]0, [E]0, and the rate constants. This clearly indicates that other conditions should
be imposed on the initial concentrations, or the rate constants of the enzymatic system to
find the expected overlap between the numerically and analytically integrated solutions
if Equations (31)–(34) were to be valid for a prolonged time domain. The application of
the reactant stationary approximation, KM >> [E]0, for the case in which ka ≈ kb < kc
(i.e., kc → ∞ ), simplifies kS to the sum of the two second-order rate constants of the two
competing reactions for the suicide substrate (i.e., kS ≈ ka + ki). Now, the respective
numerically and analytically integrated solutions for [A], [E], [P], and [I] are merged, and
their overlap remains regardless of the values for [A]0 and [E]0, and for ka and ki. These
approximate analytically integrated solutions are equivalent to those shown in [34,39,41]
for the one-step suicide inactivation of catalase by H2O2, in which the kinetic mechanism
analysis does not consider the formation of the intermediate active state of the enzyme.
Therefore, when there is one-step suicide substrate inactivation in an irreversible uni–uni
Michaelis–Menten model, it can be established that the ODE system of the reaction scheme
can be analytically solved if the approximation [EA] ≈ 0 is accepted in any time domain in
which the enzyme reaction takes place (Figure 2).
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Figure 2. Representative approximate analytically integrated solutions of the time-dependent vari-
ation of the concentration for the participating compounds of an irreversible uni–uni Michaelis–
Menten model in the absence (dashed lines, subscript c) and presence of suicide substrate inactivation
(solid lines, subscript ssi) following a one-step mechanism. Initial conditions: [A]0 = 4 mol ·m−3,
[E]0 = 2 mol ·m−3, ka = 10−2 m3·(mol· s)−1, and ki = 2× 10−3 m3·(mol· s)−1.

3.3. Analytical Solutions for an Enzyme-Catalyzed Ping-Pong Reaction with One Substrate
Undergoing Disproportionation in the Absence of Suicide Substrate Inactivation

An enzymatic reaction, in which the substrates and products alternatively bind to
and leave out the enzyme, is said to follow a ping-pong reaction. In this type of enzyme-
catalyzed reaction, there are occasions in which one single substrate undergoes dispropor-
tionation (i.e., usually an enzymatic redox transformation in which the same substrate can
be both oxidized and reduced, and then be converted to two or more different products).
The substrate, thus, binds to the enzyme at two different stages per catalytic turnover.
Two well-known examples in enzymology are represented by the disproportionation of
the superoxide radical (O2

•−) and H2O2 by superoxide dismutase and catalase enzymes,
respectively [37,44]. The enzyme-catalyzed disproportionation reaction here presented
differs from other uni–bi Michaelis–Menten models in which the substrate binds to the
enzyme only once per catalytic turnover, however two substrate–enzyme complexes are
involved, each forming a different product [45,46]. Thus, the ping-pong reaction with a
substrate following disproportionation can be represented as follows:

A + E
ka
�
kb

EA kc→ F + P, (36)

A + F
kd
�
ke

FA
k f→ E + Q. (37)

In the first stage, the substrate reversibly forms a substrate–enzyme complex EA with
the free enzyme. After the irreversible release of the first product, the enzyme remains
in an active intermediate state that reversibly binds to the substrate in the second stage.
The new substrate–enzyme complex FA is different from the previous one and produces a
second product that eventually irreversibly leaves out the active site of the enzyme. Finally,
the enzyme returns to its initial state, and the reaction cycle repeats until the substrate is
fully consumed.

The ODE system of the time-dependent variation of the reaction rate for the participat-
ing compounds of this ping-pong reaction (Reactions (36) and (37)) is as follows:

[A]′ = −(ka[E] + kd[F])[A] + (kb[EA] + ke[FA]), (38)
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[E]′ = −ka[A][E] + (kb[EA] + k f [FA]), (39)

[EA]′ = ka[A][E]− (kb + kc)[EA], (40)

[F]′ = −kd[A][F] + (kc[EA] + ke[FA]), (41)

[FA]′ = kd[A][F]− (ke + k f )[FA], (42)

[P]′ = kc[EA], (43)

[Q]′ = k f [FA]. (44)

For this ODE system, the following relations for concentrations and rates also hold:

[A]0 = [A] + [EA] + [FA] + [P] + [Q], (45)

[E]0 = [E] + [F] + [EA] + [FA], (46)

0 = [A]′ + [EA]′ + [FA]′ + [P]′ + [Q]′, (47)

0 = [E]′ + [F]′ + [EA]′ + [FA]′. (48)

For conditions in which the substrate–enzyme complexes are not in a quasi-steady
state, there is a time t for which the decomposition rate of the substrate matches the sum of
the formation rates of the products (Figure 3).
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Figure 3. Representative numerical solutions of the time-dependent variation of the reaction rate
for (A) the substrate A, and the products P and Q, and (B) the enzyme states E and F, and the
substrate–enzyme complexes EA and FA of an enzyme-catalyzed ping-pong reaction with one
substrate undergoing disproportionation under non-steady-state conditions. Vertical dashed and
dotted lines show the time at which [EA]′ + [FA]′ = 0 and kc[EA]′ + k f [FA]′ = 0, respectively. The
shadowed area between −[A]′ and [P]′ + [Q]′ in (A) shows the gap that should be closed between the
substrate and product rates to reach the steady-state conditions. Initial conditions: [A]0 = 4 mol·m−3,
[E]0 = 2 mol ·m−3, ka = 10−2 m3·(mol ·s)−1, kb = 5 × 10−3 s−1, kc = 2 × 10−2 s−1, kd = 5 ×
10−2 m3·(mol ·s)−1, ke = 4× 10−3 s−1, and k f = 4× 10−2 s−1.

At this singular time, the sum of the concentrations of the two substrate–enzyme
complexes reaches its maximum (i.e., [EA]′ + [FA]′ = 0), and, hence, −[A]′ = [P]′ + [Q]′.
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However, in contrast to the reaction scheme of the irreversible uni–uni Michaelis–Menten
model with one single substrate–enzyme complex, the former condition does not necessarily
imply that the sum of the product rates is also maximum at that time. In fact, a closer
inspection of the time dependence of the reaction rate for the participating compounds
shows that, firstly, the maximum of [P]′ + [Q]′ is reached at the time at which the sum
kc[EA] + k f [FA] is maximum (or kc[EA]′ + k f [FA]′ = 0), and, secondly, only if, particularly
for kc = k f , there is a time at which the equality −[A]′ = ([P]′ + [Q]′)max, nss also holds.
The maximum of the sum of the product rates (kc[EA] + k f [FA]) can appear before or after
the time at which [EA]′ + [FA]′ = 0, and this simply depends on whether the ratio between
kc and k f is higher or lower than the unit. Although all these relations might provide a hint
about the ping-pong reaction in which the substrate undergoes disproportionation under
non-steady-state conditions, the ODE system still remains very complex, and −[A]′ =
([P]′ + [Q]′)max, nss cannot be expressed as an analytical function that only depends on the
concentrations of [E]0 and [A], as shown for the irreversible uni–uni Michaelis–Menten
model with only one substrate–enzyme complex (Equation (14)).

3.3.1. Case A: [A]0 >> [E]0, [EA]′ ≈ 0, [FA]′ ≈ 0

In order to reach an analytical function in which −[A]′ only depends on [E]0 and [A],
yet not on the enzyme intermediates, it is necessary to invoke rapid equilibria of [EA]
with [A] and [E], and of [FA] with [A] and [F] to fulfill the condition that both [EA] and
[FA] are in a quasi-steady state (i.e., [EA]′ ≈ 0 and [FA]′ ≈ 0). If steady-state conditions
are thus applied [7,47], the analytical expression for −[A]′ can be achieved following the
King–Altman method [48], while keeping in mind that the following equalities between
reaction rates for the participating compounds must also hold due to the stoichiometry of
Reactions (36) and (37):

− 1
2
[A]′ = [P]′ = [Q]′. (49)

The enzyme reaction rate is, thus, as follows:

− 1
2
[A]′ = [P]′max, ss = [Q]′max, ss =

kck f [E]0
kc + k f

[A]

KE
M + KF

M + [A]
, (50)

where:
KE

M = k f (kb + kc)/
[
ka

(
kc + k f

)]
, (51)

KF
M = kc

(
ke + k f

)
/
[
kd

(
kc + k f

)]
. (52)

Equation (50) shows that −[A]′ = 2[P]′max, ss or −[A]′ = 2[Q]′max, ss. However, in
contrast to the first case for one substrate–enzyme complex (Equation (14)), the maxima of
the sum of the product rates under non-steady-state and quasi-steady-state conditions are
not coincident [i.e., ([P]′ + [Q]′)max, nss 6= 2[P]′max, ss or ([P]′ + [Q]′)max, nss 6= 2[Q]′max, ss].
In other words, there is no time, except for a singular case, at which ([P]′ + [Q]′)max, nss
matches the value for 2[P]′max, ss or 2[Q]′max, ss, regardless of the chosen initial values for
[A]0, [E]0 and the rate constants. The singular case can only be found if the counterpart
rate constants of the two stages of the ping-pong reaction were set equal to each other (i.e.,
ka = kd, kb = ke, and kc = k f ). These matches between rate constants are not expected
to be found under experimental conditions and, in the event that they are, the enzyme
mechanism can simply be treated as an enzyme reaction following the irreversible uni–
uni Michaelis–Menten model. As stated for case A in Section 3.1.1, the condition for
rapid equilibrium is not sufficient to derive the integrated Michaelis–Menten equation.
Thus,[A] is not necessarily equal to [A]0 in the transient phase unless the reactant stationary
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approximation is also satisfied [24]. Therefore, Equation (50) can be integrated using
[A] = [A]0 and [E] = [E]0 if [A]0 >> [E]0:

2kck f [E]0t(
kc + k f

) =
(

KE
M + KF

M

)
ln

[A]0
[A]

+ [A]0 − [A]. (53)

A closed-form solution for the time-dependent variation of [A] is also given in the
Supplementary Materials.

3.3.2. Case B: KE
M and KF

M >> [E]0, [EA] ≈ 0, [FA] ≈ 0

Similar to Case B in Section 3.1.2, another solution for which there will also be a
prolonged overlap between −[A]′ and [P]′ + [Q]′ can be obtained if both KE

M and KF
M >>

[E]0, regardless of whether [A]0 >> [E]0 or [A]0 ≈ [E]0. The reasoning follows that given
for the irreversible uni–uni Michaelis–Menten model. The conditions KE

M >> [E]0 and
KF

M >> [E]0 can be fulfilled when ka ≈ kb < kc and kd ≈ ke < k f , respectively. This now
implies that both [EA] and [FA] are negligible and do not accumulate at any phase; hence,
[E]0 ≈ [E] + [F] if kc → ∞ and k f → ∞ . When this occurs, the scheme of reactions (36) and
(37) can be simplified to two single second-order reactions as follows:

A + E ka→ F + P, (54)

A + F
kd→ E + Q. (55)

For the two new enzyme reactions, the following relations for concentrations and
reaction rates also hold:

[A]0 = [A] + [P] + [Q], (56)

[E]0 = [E] + [F], (57)

0 = [A]′ + [P]′ + [Q]′, (58)

0 = [E]′ + [F]′. (59)

Thus, the nonlinear ODE system of the time-dependent variation of the reaction rate
for the participating compounds can be reduced to the following two differential equations:

[A]′ = −[(ka − kd)[E] + kd[E]0][A], (60)

[E]′ = −[(ka + kd)[E]− kd[E]0][A]. (61)

To solve Equations (60) and (61), the chain rule dz/dx =dz/dy · dy/dx was applied
using [A] = [A]0 and [E] = [E]0 as the integration starting points to determine the enzyme-
dependent variation of [A]:

[A] = [A]0 +
ka − kd
ka + kd

([E]− [E]0) +
2kakd[E]0
(ka + kd)

2 ln
[
(ka + kd)[E]− kd[E]0

ka[E]0

]
. (62)

Equation (62) is of interest because it can directly be used to determine the final
concentration of [E]∞ and [F]∞, when [A] becomes exhausted (i.e., [A] = 0) at the end of
the reaction, regardless of the initial value for [A]0 (Figure S2).

[E] =
kd

[
ka − kd + 2kaW

[
(ka−kd)

2kd
Exp

[
ka(ka−kd)[E]0−(ka+kd)

2[A]0
2kakd [E]0

]]]
(ka − kd)(ka + kd)

[E]0, (63)

where the Lambert function (i.e.,W[ ]) rapidly approaches zero when [A]0 >> [E]0.
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For a particular situation in which [A]0 is in excess in comparison to [E]0, the values
for [E]∞ and [F]∞ do not depend on [A]0, and they can be determined as the limit of [E]
when [A]0 approaches infinity.

[E]∞ = lim
[A]0→∞

[E] =
kd

(ka + kd)
[E]0, (64)

[F]∞ = [E]0 − [E]∞ =
ka

(ka + kd)
[E]0. (65)

The next natural step ought to be the substitution of the enzyme-dependent function
of [A] (Equation (62)) for [A] in [E]′ (Equation (61)), followed by the integration of the
equation by separation of variables.

[E]′ = −[(ka + kd)[E]− kd[E]0]

[
[A]0 +

ka − kd
ka + kd

([E]− [E]0) +
2kakd[E]0
(ka + kd)

2 ln
[
(ka + kd)[E]− kd[E]0

ka[E]0

]]
. (66)

However, it was found that there was no analytically integrated solution for [E]′

(Equation (66)). Therefore, alternatively, and in an attempt to find approximate analyt-
ically integrated solutions, two approaches were attempted. In the first approach, the
nonlinear ODE system (Equations (60) and (61)) was easily solved when the steady-state
approximation was invoked for [E], and, consequently, for [F]. In the second approach, ap-
proximate solutions for [A] and [E] were found under non-steady-state conditions around
t = 0. Both alternative approaches had some advantages, however disadvantages are also
discussed with some more detail in the Supplementary Materials. For the special case in
which ka = kd, the approximate analytically integrated solution for [A] was equivalent to
Equation (17); thus, it is not further discussed here.

Accordingly, the analytical and numerical solutions of the time dependence of −[A]′

and [E]′ can be divided into three domains of time as shown in Figure 4.
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which the substrate–enzyme complexes do not accumulate. The numerical solutions (ns) for−[A]′ and
[E]′ are shown together with two approximate analytical solutions for −[A]′ and [E]′ in two different
domains: the pale-green domain for which the steady-state approximations are not invoked around
t = 0 (i.e., −[A]′n=2 and [E]′n=2 ) and the pale-blue domain for which the steady-state (ss) approxima-
tion is invoked (i.e., −[A]′ss and [E]′ss ). The intermediate non-shadowed domain is not analytically
solved. The equality −[E]′ = [F]′ holds for any domain. Initial conditions: [A]0 = 10 mol ·m−3,
[E]0 = 1 mol ·m−3, ka = 6× 10−3 m3 · (mol ·s)−1, and kd = 3× 10−3 m3·(mol· s)−1.
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The first domain around t = 0 respectively shows the match of the numerical solutions
of −[A]′ and [E]′ with the approximate solutions for −[A]′n=2 and [E]′n=2 under non-
steady-state conditions (see Supplementary Materials). This domain is followed by an
intermediate domain for which there are no analytical solutions for −[A]′ and [E]′, and the
mismatch between the numerical and analytical solutions was more prominent, particularly
for −[A]′. The last domain corresponds with the region for which [E] and [F] were in a
steady state and, hence, their rates approached zero (Equations (S2) and (S3)). In this last
domain, the time-dependent variation of [A] is an exponential function that can easily
be expressed in terms of [E]0. The latter analytical solution is widely used in the kinetic
analysis of enzymes such as catalase when suicide substrate inactivation by H2O2 (at
low concentration) is negligible, and steady-state conditions are considered to be rapidly
reached [37].

3.4. Analytical Solutions for an Enzyme-Catalyzed Ping-Pong Reaction with One Substrate
Undergoing Disproportionation in the Presence of Suicide Substrate Inactivation

The presence of suicide substrate inactivation in an enzyme reaction with two active
states opens the question of which enzyme state is inactivated by the suicide substrate
and whether it can be identified. Figure 5 shows representative numerically integrated
solutions for the time-dependent variation of [A] and the sum of [P] + [Q] in a ping-pong
reaction in which the substrate underwent disproportionation and steady-state conditions
were not invoked. In the example, one-step suicide substrate inactivation occurred in the
active state E or F following second-order reactions that did not reach saturation by the
substrate (Reactions (69) and (78)). The formation of the intermediate substrate–enzyme
complexes was considered negligible in Reactions (67) and (68), as well as in Reactions (76)
and (77), although the conclusions here presented for the numerically integrated solutions
did not depend on it. The plots undoubtedly show that the traces for [A] and [P] + [Q] vary
notably depending on the enzyme state inactivated by the suicide substrate, implying that
the mathematical expressions of their approximate analytically integrated solutions should
also reflect such differences.
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Figure 5. Representative numerically integrated solutions of the time-dependent variation of the
concentration for the substrate A undergoing disproportionation, and the sum of products P and
Q of an enzyme-catalyzed ping-pong reaction in which suicide substrate inactivation by A occurs
when the enzyme is in the active state E (subscript E) or F (subscript F). The subscript c stands
for control. Initial conditions [A]0 = 6 mol ·m−3, [E]0 = 1 mol·m−3, ka = 10−2 m3(mol· s)−1,
kd = 3 × 10−2 m3·(mol ·s)−1, and ki = 8 × 10−3 m3·(mol ·s)−1. The value for ki was the same
regardless of which enzyme state reacted with the suicide substrate.
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Following the same reasoning given in Section 3.2 to find a match between the nu-
merically and analytically integrated solutions of the time-dependent variation of the con-
centration for the participating compounds, the conditions ka ≈ kb < kc and kd ≈ ke < k f

(i.e., kc → ∞ and k f → ∞ ) were imposed. This means that KE
M >> [E]0 and KF

M >> [E]0;
hence, [EA] ≈ 0 and [FA] ≈ 0 The two potential inactivation mechanisms were, thus,
schematized as follows:

3.4.1. Case A: Suicide Substrate Inactivation on E

For this first case, the enzymatic reaction can be represented by the following scheme:

A + E ka→ F + P, (67)

A + F
kd→ E + Q, (68)

A + E
ki→ I. (69)

Thus, the time-dependent variation of the reaction rate for the participating com-
pounds can be described as follows:

[A]′ = −[(ka + ki)[E] + kd[F]][A], (70)

[F]′ = (ka[E]− kd[F])[A], (71)

[E]′ = [kd[F]− (ka + ki)[E]][A], (72)

[P]′ = ka[E][A], (73)

[Q]′ = kd[F][A], (74)

[I]′ = ki[E][A]. (75)

3.4.2. Case B: Suicide Substrate Inactivation on F

For this second case, the enzymatic reaction can be represented by the scheme:

A + E ka→ F + P, (76)

A + F
kd→ E + Q, (77)

A + F
ki→ I. (78)

Thus, the time-dependent variation of the reaction rate for the participating com-
pounds can be described as follows:

[A]′ = −[ka[E] + (kd + ki)[F]][A], (79)

[F]′ = [ka[E]− (kd + ki)[F]][A], (80)

[E]′ = (kd[F]− ka[E])[A], (81)

[P]′ = ka[E][A], (82)

[Q]′ = kd[F][A], (83)

[I]′ = ki[F][A]. (84)

Attempts to solve either of the above two nonlinear ODE systems were infructuous.
Therefore, to find approximate analytically integrated solutions in which the analysis could
allow for distinguishing between E or F inactivation by suicide substrate, it was considered
an enzyme reaction in which the substrate was continuously added into the reaction system
and thus [A] remained constant and unaffected by time. If this is now the case, the ODE
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system becomes linear, and the time-dependent variation of [E]′ and [F]′ can be solved and
their integrated solutions be substituted for [E] and [F] in [P]′ and [Q]′ to finally obtain the
approximate analytically integrated solutions of [P] and [Q].

For case A, in which the enzyme state E was inactivated by the substrate, the integrated
solutions were as follows:

[E] =
1

2kE
[E]0e−

1
2 (ka+kd+ki+kE)[A]0t

[
(ka − kd + ki)

(
1− ekE [A]0t

)
+ kE

(
1 + ekE [A]0t

)]
, (85)

[F] =
ka

kE
[E]0e−

1
2 (ka+kd+ki+kE)[A]0t

(
ekE [A]0t − 1

)
, (86)

[P] =
ka

2kikE
[E]0e−

1
2 (ka+kd+ki+kE)[A]0t

[
(ka + kd − ki)

(
1− ekE [A]0t

)
− kE

(
1 + ekE [A]0t − 2e

1
2 (ka+kd+ki+kE)[A]0t

)]
, (87)

[Q] =
ka

2kikE
[E]0e−

1
2 (ka+kd+ki+kE)[A]0t

[
(ka + kd + ki)

(
1− ekE [A]0t

)
− kE

(
1 + ekE [A]0t − 2e

1
2 (ka+kd+ki+kE)[A]0t

)]
, (88)

[I] =
ki
ka
[P], (89)

where:

kE =

∣∣∣∣√(ka + kd + ki)
2 − 4kdki

∣∣∣∣. (90)

The integrated solutions for case B, in which the intermediate enzyme state F was
inactivated by the substrate, were obtained following the same procedure:

[E] =
1

2kF
[E]0e−

1
2 (ka+kd+ki+kF)[A]0t

[
(ka − kd − ki)

(
1− ekF [A]0t

)
+ kF

(
1 + ekF [A]0t

)]
, (91)

[F] =
ka

kF
[E]0e−

1
2 (ka+kd+ki+kF)[A]0t

(
ekF [A]0t − 1

)
, (92)

[P] = 1
2kikF

[E]0e−
1
2 (ka+kd+ki+kF)[A]0t×[

ka(kd − ki)
(

1− ekF [A]0t
)
+ (kd + ki)

(
(kd + ki)

(
1− ekF [A]0t

)
− kF

(
1 + ekF [A]0t − 2e

1
2 (ka+kd+ki+kF)[A]0t

))]
,

(93)

[Q] =
kd

2kikF
[E]0e−

1
2 (ka+kd+ki+kF)[A]0t

[
(ka + kd + ki)

(
1− ekF [A]0t

)
− kF

(
1 + ekF [A]0t − 2e

1
2 (ka+kd+ki+kF)[A]0t

)]
, (94)

[I] =
ki
kd

[Q], (95)

where:

kF =

∣∣∣∣√(ka + kd + ki)
2 − 4kaki

∣∣∣∣. (96)

As time goes by, the enzyme is consumed regardless of which state is inactivated by
the suicide substrate (Figure 6). The sum of concentrations [E] + [F] becomes zero as t
approaches infinity, while the concentration of the inactivate state of the enzyme (i.e., I)
increases until [I] is equal to [E]0. At the same time, the product formation ceases, and [P]
and [Q] reach constant values in the reaction mixture. The values for [P] and [Q] can be
evaluated at the end of the reaction if the limit of the integrated solutions is determined
when t approaches infinity.
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Figure 6. Representative approximate analytically integrated solutions of the time-dependent varia-
tion of the concentration for (A,B) the products P and Q and (C,D) the two active enzyme states E and
F, together with the inactivated state I, of a ping-pong reaction under non-steady-state conditions, in
which the suicide substrate A undergoes disproportionation and inactivates (A,C) E or (B,D) F, while
its concentration remains constant (i.e., [A] = [A]0). Horizontal dashed, dotted, and short dashed lines
are the limit values for [P], [Q], and [I] as the time approaches infinity, respectively. Initial conditions:
[A]0 = 5 mol ·m−3, [E]0 = 1 mol ·m−3, ka = 2× 10−2 m3·(mol· s)−1, kd = 1.5× 10−2 m3·(mol ·s)−1,
and ki = 5× 10−3 m3·(mol s)−1.

For the case in which E is inactivated, the values for [P], [Q], and [I] are as follows:

[P]∞ = lim
t→∞

[P] =
ka

ki
[E]0, (97)

[Q]∞ = lim
t→∞

[Q] =
ka

ki
[E]0, (98)

[I]∞ = lim
t→∞

[I] = [E]0. (99)

The limits for [P] and [Q] depend on both [E]0 and the ratio (or catalytic turnover)
between the rate constants ka and ki of Reactions (67) and (69), in which the enzyme state
inactivated by the suicide substrate (i.e., E) participates. Both limits give the same value,
implying that [P] and [Q] might first evolve differently, however they tend to approach the
same limit concentration when the enzyme reaction stops. Thus, the ratio between [P]∞
and [Q]∞ is the unit regardless of the values for ka and ki.

On comparing the results of the above limits (Equations (97)–(99)) with those of [P],
[Q], and [I] (Equations (100)–(102)) when the inactivated state is F, it can be newly observed
that the limits similarly depend on both [E]0 and the ratio between the rate constants kd
and ki of Reactions (77) and (78), in which F participates. However, the values for the limits
of [P]∞ and [Q]∞ are not the same.

[P]∞ = lim
t→∞

[P] =
(

1 +
kd
ki

)
[E]0, (100)

[Q]∞ = lim
t→∞

[Q] =
kd
ki
[E]0, (101)

[I]∞ = lim
t→∞

[I] = [E]0. (102)
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The difference in the limits for [P]∞ and [Q]∞ implies that the ratio between [P]∞ and
[Q]∞ thus, depends on kd and ki, and it does not approach the unit unless kd >> ki.

Therefore, the analytical solutions for [P] and [Q] as time approaches infinity can
be used to identify the enzyme state that becomes inactivated by the suicide substrate
in an enzyme-catalyzed ping-pong reaction in which the suicide substrate undergoes
disproportionation during the catalytic turnover. This kinetic analysis differs from the
study presented by Varon et al. [32], in which approximate analytical solutions for the two-
step suicide substrate inactivation of an enzyme-catalyzed ping-pong reaction with two
substrates A and B were given. In the former study, the suicide substrate (A or B) was first
defined, and hence, the enzyme state undergoing inactivation. In addition, the formation
and accumulation of the substrate–enzyme complexes [EA] and [FB] were considered in
the kinetic analysis as part of the two-step mechanism in which the (suicide) substrates
first reversibly bound to the enzyme’s active states. The former authors imposed the
condition that the initial concentrations of the two substrates were much higher than that
of the enzyme in order to linearize the ODE systems and analytically solve them. In the
study here presented, the condition that the accumulation of [EA] and [FA] was negligible
also allowed for solving the ODE system regardless of whether [A]0 >> [E]0 or [A]0 ≈
[E]0. Therefore, despite the evident dissimilarities between both kinetic schemes and the
conditions imposed to solve the ODE systems of the one-step and two-step suicide substrate
inactivation mechanisms, the two studies reached equivalent conclusions about the enzyme
state that became inactivated as time approached infinity, revealing the robustness of this
type of exploratory analysis, even when some of the analytical solutions for the participating
compounds are unwieldy.

4. Conclusions

The theoretical kinetic analysis here presented of the one-step suicide substrate in-
activation of an enzyme-catalyzed ping-pong reaction with one substrate undergoing
disproportionation provides approximate analytically integrated solutions for the time-
dependent variation of the concentration for the participating compounds. To analytically
solve the ODE system of the reactions, the reactant stationary approximation was invoked
to ensure that the substrate–enzyme complexes did not steadily accumulate, and thus,
their concentrations were negligible. These kinetic conditions were considered to occur
experimentally for some enzymes such as catalase. Despite the unwieldiness of the approxi-
mate analytically integrated solutions, they were operational to qualitatively explore which
enzyme state became inactivated by the suicide substrate. This type of kinetic analysis
can be of potential use for the design of new drugs targeting enzyme-catalyzed ping-pong
reactions. Additionally, the step-by-step theoretical approach followed in this study also
has the purpose of showing—to those who are not conversant with the kinetic analysis
of enzyme-catalyzed reactions—how both the standard quasi-steady-state and reactant
stationary approximations are applied to analytically solve the ODE systems of enzyme
reactions following the Michaelis–Menten mechanism.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/math10224240/s1: Figure S1. Representative numerical (dashed
lines, subscript ns) and analytical (solid lines, subscript ss) solutions of the time-dependent variation
of (A–D) the concentration for the substrate A, the products P and Q, and the two active enzyme
states E and F, and (E,F) the reaction rate for A, P, and Q of an enzyme-catalyzed ping-pong reaction;
Figure S2. Representative numerically (subscript ns) and analytically (subscript n = 1 or 2) integrated
solutions of the time-dependent variation of the concentration for (A) the substrate A and (B) the
two active enzyme states E and F of an enzyme catalyzed ping-pong reaction under non-steady-state
conditions. Wolfram Mathematica scripts for the analysis of the numerical and analytical solutions
of the linear and nonlinear ODE systems and the graphical representations of the enzyme reaction
models are available as Wolfram notebooks (Figures S1A and S2A,B) and pdf files.
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