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1. Introduction and Motivation

Let D be the derivative operator with respect to x. Given two n-times differentiable
functions u := u(x) and v := v(x), the higher derivatives of their product uv can usually
be computed by the well-known Leibniz formula. This formula plays a fundamental role
in calculus, which is recorded as follows:

Dn(uv
)
=

n

∑
k=0

(
n
k

)
Dku Dn−kv.

Pfaff ([1], 1795; cf. Johnson [2], Equation (1.1)) first discovered the following generaliza-
tion of Leibniz’ rule with an additional h-function. Suppose that u := u(x), v := v(x) and
h := h(x) are three n-times differentiable functions with respect to x. Then the following
formula holds:

Dn(uv
)
=

n

∑
k=0

(
n
k

)
Dk−1(hku′

)
Dn−k(h−kv

)
. (1)

In fact, this identity reduces to the Leibniz formula when h ≡ 1. Making the re-
placement v by hnv in (1), we can easily recover the following formula of Cauchy [3]
(cf. Johnson [2], Equation (1.3)):

Dn{hnuv
}

=
n

∑
k=0

(
n
k

)
Dk−1(hku′

)
Dn−k(hn−kv

)
. (2)

There exists a symmetric formula also due to Cauchy ([3], 1826; cf. [2], Equation (1.4)),
where one can also find a special case of it due to Olver [4]), which reads as

Dn−1{hnD(uv)
}

=
n

∑
k=0

(
n
k

)
Dk−1(hku′

)
Dn−k−1(hn−kv′

)
. (3)
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In the same paper, Pfaff ([1], 1795) also got the derivative identity, nowadays called
the “Jensen type” (cf. [2], Equation (1.2)):

n

∑
k=0

(
n
k

)
Dk(hku

)
Dn−k(h−kv

)
=

n

∑
k=0

n!
k!

Dk
{(

h′/h
)n−kuv

}
. (4)

Among these derivative identities, Pfaff [1] discovered (1) and (4) more than 200
years ago. Thirty years later, Cauchy [3] found two similar ones (2) and (3). Since then,
these findings remained almost unnoticed. In 2007, Johnson [2] unearthed these important
generalizations and investigated their applications to Lagrange series, Laguerre and Jacobi
polynomials, as well as Hurwitz’ extended binomial theorems [5], including the binomial
convolution identities of Abel–Rothe type.

By making use of these derivative identities, the author discovered a useful pair
of derivative inverse series relations (cf. [6]), which can be reproduced as follows: Let
φ := φ(x) and w := w(x) be two infinitely differentiable functions with respect to x. Define
the θ-function by

θ(λ) = 1− λ

D
× φ′

φ
. (5)

Then the system of equations

f (n) =
n

∑
k=0

(
n
k

)
Dn−k{θ(n− k)φnw

}
g(k), n = 0, 1, 2, · · · (6)

is equivalent to the system

g(n) =
n

∑
k=0

(
n
k

)
Dn−k{φ−k/w

}
f (k), n = 0, 1, 2, · · · . (7)

By switching the θ-factor to the dual relation, we get another inverse pair

f (n) =
n

∑
k=0

(
n
k

)
Dn−k{φnw

}
g(k), (8)

g(n) =
n

∑
k=0

(
n
k

)
Dn−k{θ(n− k)φ−k/w

}
f (k). (9)

These derivative inversions are closely connected to the important expansion formula
discovered by Lagrange [7] (cf. [6,8], Section 3.8 also) For details, the reader can consult
the papers by Jacobi [9], Laplace [10] and Johnson ([2], Section 4). The related q-series
counterparts exist too, which can be found in [11–13] and the references therein.

The purpose of this paper is to establish new multiple inversion theorems, which
may serve as multifold analogues for the above derivative inverse series relations and a
general framework to review their connections with other related topics. The main results
are given in the second section, where we shall prove two new pairs of multiple inverse
series relations with their connection coefficients being given by higher derivatives of
fixed multivariate analytic functions. Then the rest of the paper is dedicated to review-
ing several important applications. In Section 3, the rotated forms of the new multiple
inverse pairs is highlighted and then utilized to present a new proof for MacMahon’s
master theorem [14] (§64). In Section 4, we shall prove that our multiple inverse series
relations imply the multivariate Lagrange expansion formula due to Good [15]. Section 5
is devoted to deriving multivariate extensions of derivative identities (1–3). New proofs
of the generalized convolution formulae due to Carlitz [16,17] are provided in Section 6.
Comparisons are made in Section 7 between the inversion theorems established in this
paper and those obtained earlier by the author [18,19]. Finally, the paper is concluded in
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Section 8, where a brief comment on the contribution of this paper is made and further
prospective topics are proposed.

2. Multivariate Inverse Series Relations

In this section, we shall present the main results by demonstrating two Theorems 1 and 2.
In particular, two different proofs (one is algebraic and another is by the multiple Cauchy
contour integration) are provided for the crucial algebraic identity (15).

Denote by N0 and C the sets of nonnegative integers and complex numbers, respec-
tively. Their `-fold tensor products are given by N`

0 and C`, with the zero vector being
indicated by 0. Then we write for brevity the usual scalar product and binomial coefficient
product by

〈a, c〉 =
`

∑
i=1

aici and
(

n
k

)
=

`

∏
i=1

(
ni
ki

)
,

where a, c ∈ C` and k, n ∈ N`
0 with 0 ≤ k ≤ n, ordered in component-wise. We shall

use the usual Kronecker symbol δ(k, n), which is equal to one for k = n and zero otherwise.
When k, n ∈ N0, we fix similarly δk,n := δ(k, n) for brevity.

Denote by [`] the set of the first ` natural numbers. For the derivative operator Dxi

with respect to the variable xi, we define the corresponding multivariate form by

Dn =
`

∏
i=1

Dni
xi where n ∈ N`

0.

In addition, let hi := hi(x) = hi(x1, x2, · · · , x`) with i ∈ [`]. Then for n ∈ N`
0, we fix further

the following two notations:

hn =
`

∏
i=1

hni
i and ϑ(n) = det

1≤i,j≤`

[
δi,j −

ni
Dxi

h′ij
hi

]
, (10)

where h′ij := Dxj hi for i, j = 1, 2, · · · , `. Here and forth, ϑ(n) will be coupled with Dn in the
product Dnϑ(n). When the nonzero components of n are specified through their indices
σ ⊆ [`]

n = (n1, n2, · · · , n`) :

{
ni > 0, i ∈ σ;
ni = 0, i 6∈ σ;

the precedent product is explicitly given as follows:

Dnϑ(n) = ∏
i∈σ

Dni−1
xi × det

1≤i,j≤`

[ δi,j, if i 6∈ σ

δi,jDxi − ni
h′ij
hi

, if i ∈ σ

]
.

Now, we are ready to state the main theorems about multivariate inverse series
relations whose connection coefficients are expressed in terms of higher derivatives of
products of the fixed multivariate analytic functions.

Theorem 1. Suppose that w := w(x) = w(x1, x2, · · · , x`) and hi := hi(x) = hi(x1, x2, · · · , x`)
are infinitely differentiable multivariate functions with i = 1, 2, · · · , `. Then the system of equations

f (n) = ∑
0≤k≤n

(
n
k

)
Dn−k

{
ϑ(n− k)hnw

}
g(k), (n ∈ N`

0) (11a)

is equivalent to the system

g(n) = ∑
0≤k≤n

(
n
k

)
Dn−k

{
h−k/w

}
f (k), (n ∈ N`

0). (11b)
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It is curious to notice that the ϑ-factor in the inversions can be switched to the dual
relation. In another phrase, the following “dual” inverse series relations hold either.

Theorem 2. Under the same condition of Thoerem 1, we have the multifold inverse pair:

f (n) = ∑
0≤k≤n

(
n
k

)
Dn−k

{
hnw

}
g(k), (12a)

g(n) = ∑
0≤k≤n

(
n
k

)
Dn−k

{
ϑ(n− k)

hkw

}
f (k). (12b)

Proof. The inverse pair in the above theorem implies that for every identity of the form
(11a) or (11b), there is a companion identity from the dual form. To prove each is equivalent
to prove both. Hence it is enough to show that the latter implies the former. Now, by
substituting (11b) into (11a) and then applying the cross product equality of binomial
coefficients (

n
k

)(
k
m

)
=

(
n
m

)(
n−m
k−m

)
,

we can reformulate the double sum expression as follows:

∑
0≤k≤n

(
n
k

)
Dn−k

{
ϑ(n− k)hnw

}
∑

0≤m≤k

(
k
m

)
Dk−m

{
h−m/w

}
f (m)

= ∑
0≤m≤n

(
n
m

)
f (m) ∑

m≤k≤n

(
n−m
k−m

)
Dk−m

{
h−m/w

}
Dn−k

{
ϑ(n− k)hnw

}
.

In order to show that the above double sum reduces to f (n), it is sufficient to prove
the following orthogonal relation:

∑
m≤k≤n

(
n−m
k−m

)
Dk−m

{
h−m/w

}
Dn−k

{
ϑ(n− k)hnw

}
= δ(m, n). (13)

Observe that there holds the following expansion for the ϑ-factor:

ϑ(n) = ∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ni
Dxi

det
i,j∈σ

[h′ij
hi

]
, (14)

where |σ| stands for the cardinality of σ ⊆ [`]. The left member of (13) can consequently be
manipulated, through the Leibniz rule, as follows:

∑
m≤k≤n

(
n−m
k−m

)
Dk−m

{
h−m/w

}
Dn−k

{
ϑ(n− k)hnw

}
= ∑

σ⊆[`]
(−1)|σ| ∑

m≤k≤n

(
n−m
k−m

)
∏
i∈σ

(ni − ki)

×Dk−m
{

h−m/w
} Dn−k

∏i∈σDxi

{
hnw det

i,j∈σ

[h′ij
hi

]}
= ∑

σ⊆[`]
(−1)|σ|∏

i∈σ

(ni −mi)
Dn−m

∏i∈σDxi

{
hn−m det

i,j∈σ

[h′ij
hi

]}
.

Therefore, we may restate (13) as the following equivalent algebraic identity:

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

(ni −mi)
Dn−m

∏i∈σDxi

{
hn−m det

i,j∈σ

[h′ij
hi

]}
= δ(m, n). (15)
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This identity is clearly true for m = n. Without loss of generality, it suffices to show
that it is also valid for n−m ≥ e where e ∈ N`

0 with all the components of e equal to one.
The corresponding identity may be reformulated as

Dn−m−e ∑
σ⊆[`]

(−1)|σ|∏
i∈σ

(ni −mi)∏
j 6∈σ

Dxj

{
hn−m det

i,j∈σ

[h′ij
hi

]}
= 0.

However, there holds the following even stronger relation that we shall confirm:

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

(ni −mi)∏
j 6∈σ

Dxj

{
hn−m det

i,j∈σ

[h′ij
hi

]}
= 0. (16)

For n ∈ N`
0, let [(y− x)n]φ(y) be the coefficient of ∏`

i=1(yi− xi)
ni in the multivariate formal

power series φ(y) := φ(y1, y2, · · · , y`) expanded at y = x. Then we have the following
relation:

[(y− x)n]φ(y) =
Dn

n!
φ(x) where n! =

n

∏
i=1

ni!.

From this relation, we can further reformulate (16) as follows:

[(y− x)e] ∑
σ⊆[`]

(−1)|σ|∏
i∈σ

(ni −mi)(yi − xi)

{
hn−m(y) det

i,j∈σ

[h′ij(y)

hi(y)

]}
= 0.

For the sake of brevity, let φi(y) := hni−mi
i (y) with i = 1, 2, · · · , `. Applying (14) to the

last equation, we get the following equivalent identity of (16):

[(y− x)e] det
1≤i,j≤`

[
φi(y)δi,j − (yj − xj)

∂φi(y)
∂yj

]
= 0. (17)

Making further the following substitutions in the last relation:

yk := xk + 1/zk and ψk(z) := zkφk(y) for k = 1, 2, · · · , `,

we can express it as the multiple residue of the Jacobian determinant

[z−1
1 z−1

2 · · · z
−1
` ] det

1≤i,j≤`

[
∂ψi(z)

∂zj

]
= 0. (18)

Denote by Ak the cofactor of ∂ψ1(z)
∂zk

in
[

∂ψi(z)
∂zj

]
1≤i,j≤`

. According to Jacobi’s lemma

(see Turnbull ([20], p. 125) for example)

`

∑
k=1

∂Ak
∂zk

= 0,

we can expand the determinant in (18) through the Laplace formula

det
1≤i,j≤`

[
∂ψi(z)

∂zj

]
=

`

∑
k=1

Ak
∂ψ1(z)

∂zk
=

`

∑
k=1

∂{ψ1(z)Ak}
∂zk

.

Then the multiple residue identity on the Jacobian determinant in (18) follows from the fact
that ∂ψ(z)

∂zk
contains no terms in z−1

k for any Laurent series ψ(z), as observed by Gessel [21].
This proves orthogonal relation (13) and Theorem 1 consequently.
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Similarly, substituting (12b) into (12a) results in the following orthogonal relation:

∑
m≤k≤n

(
n−m
k−m

)
Dk−m

{
ϑ(k−m)

hmw

}
Dn−k

{
hnw

}
= δ(m, n).

This is substantially equivalent to (13), which can be justified by making the replacements
k→ m + n− k and w→ h−m−n/w.

Instead, if we substitute (11a) into (11b), we would come across another orthogonal
relation

∑
m≤k≤n

(
n−m
k−m

)
Dn−k

{
h−k/w

}
Dk−m

{
ϑ(k−m)hkw

}
= δ(m, n). (19)

However, it would become much more tedious to prove this orthogonal relation.
Considering the elegance of the algebraic identity (15) and its importance for validating

Theorem 1, we offer, in addition, the following alternative proof for it through multiple
Cauchy contour integrals. Now that the identity displayed in (15) is obviously true for
m = n, we have to show that it is also valid for n−m = k with k ∈ N`

0 and k 6= 0. The
corresponding identity may be restated as

∑
σ⊆[`]

(−1)|σ|Dk ∏
i∈σ

ki
Dxi

{
hk det

i,j∈σ

[h′ij
hi

]}
= 0. (20)

Let e ∈ N`
0 with all the components equal to one. According to the Cauchy residue

theorem, for a multivariate holomorphic function φ(y), the following expressions are held:

φ(x) =
1

(2πi)`

∮ ∮
· · ·
∮

|X−x|=ε

φ(X)
(X− x)e dX,

Dkφ(x) =
k!

(2πi)`

∮ ∮
· · ·
∮

|X−x|=ε

φ(X)
(X− x)k+e dX;

where dX = dx1dx2 · · · dx` and the integrals run over the polydisk |X− x| = ε defined by
{X ∈ C` | |Xi − xi| = εi} for ε = (ε1, ε2, · · · , ε`) with each εi > 0.

Then we can accordingly express (20) as an integral equation

k!
(2πi)` ∑

σ⊆[`]
(−1)|σ|

∮ ∮
· · ·
∮

|X−x|=ε

hk

(X− x)k+e det
i,j∈σ

[h′ij
hi

]
∏
i∈σ

(Xi − xi) dX = 0.

Interchanging the order between sum and integral and then evaluating the sum, we reduce
(20) to the following equivalent equation:

k!
(2πi)`

∮ ∮
· · ·
∮

|X−x|=ε

hk

(X− x)k+e det
1≤i,j≤`

[
δi,j −

h′ij
hi

(Xi − xi)
]
dX = 0. (21)

For the same k ∈ N`
0 with k ≥ 0, it is trivial to see from the residue theorem that

k!
(2πi)`

∮ ∮
· · ·
∮

|Y−y|=ϑ

dY
(Y− y)k+e = 0,
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where the contour |Y − y| = ϑ is similarly defined as |X − x| = ε before. Making the
changes of variables Yi − yi = (Xi − xi)/hi(X) for i = 1, 2, · · · , `, and then computing the
corresponding Jacobian determinant∣∣∣∣ ∂(y1, y2, · · · , y`)

∂(x1, x2, · · · , x`)

∣∣∣∣ = det
1≤i,j≤`

[
δi,j −

h′ij
hi

(Xi − xi)
]/ `

∏
i=1

hi,

which results in predominantly diagonal (see Good [15]), and we find that the last integral
becomes exactly the integral in Equation (21).

3. MacMahon’s Master Theorem

In this section, the rotated form of Theorem 2 is stated and then utilized to present a
new proof for MacMahon’s master theorem.

Suppose that the following linear relations are inverse each other.

f (n) = ∑
0≤k≤n

A(n, k) g(k) ⇐⇒ g(n) = ∑
0≤k≤n

B(n, k) f (k).

Then we have the corresponding inverse pair of the lower triangular matrices
A :=

[
A(n, k)

]
and B :=

[
B(n, k)

]
formed by the connection coefficients. According

to Riordan [22] (§2.2), the new inverse pair of the transposes of A and B yields another pair
of reciprocal relations:

f (n) = ∑
k≥n

A(k, n) g(k) ⇐⇒ g(n) = ∑
k≥n

B(k, n) f (k).

Therefore, we obtain the “rotated form” of the inverse series relations displayed in Theorem 2.

Theorem 3 (Multifold inverse series relations).

f (n) = ∑
k≥n

(
k
n

)
Dk−n{hkw

}
g(k), (22a)

g(n) = ∑
k≥n

(
k
n

)
Dk−n

{ϑ(k− n)
hnw

}
f (k). (22b)

For n ∈ N`
0 and a multivariate formal power series φ(y) := φ(y1, y2, · · · , y`), denote

by [yn]φ(y) the coefficient of yn in φ(y). Then we have the following relation:

[yn]φ(y) =
Dn

0
n!

φ(x) where Dn
0 φ(x) = Dnφ(x)

∣∣
x=0.

Let {xi, yi}`i=1 be the two sets of variables related by the equations

xi = yi/hi(y) with hi(y) := exp
( `

∑
j=1

bijyj

)
for i = 1, 2, · · · , `.

Consider the formal power series expansion of {xi} in {yj}:
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xn det
[

δi,j − yi
h′ij(y)

hi(y)

]
= ∑

k≥n
yk [yk] xn det

[
δi,j − yibij

]
= ∑

k≥n
yk [yk]

yn

hn(y)
det

[
δi,j − yibij

]
= ∑

k≥n
yk [yk−n]

det
[
δi,j − yibij

]
hn(y)

= ∑
k≥n

yk Dk−n
0

(k− n)!

{det
[
δi,j − ki−ni

Dxj
bij
]

hn(x)

}
.

Rewriting this relation in terms of (22b)

xn

n!
= ∑

k≥n

(
k
n

)
Dk−n

0

{ϑ(k− n)
hn(x)

}yk

k!
det−1[δi,j − yibij

]
, (23a)

we get the dual relation of {yi} in {xj} corresponding to (22a)

yn

n!
det−1[δi,j − yibij

]
= ∑

k≥n

(
k
n

)
Dk−n

0
{

hk(x)
}xk

k!
. (23b)

Recalling the exponential functions hi(y) for i = 1, 2, · · · , `, we can deduce the follow-
ing relations:

hk(y) = exp
( `

∑
j=1

yj

`

∑
i=1

kibij

)
,

Dk
0
{

hk(x)
}
=

`

∏
j=1

( `

∑
i=1

kibij

)kj
.

Then we recover from the particular case n = 0 of (23b) the expansion formula due to
Carlitz [23]:

det−1[δi,j − yibij
]
= ∑

k≥0

yk

k!

`

∏
j=1

{
h−1

j (y)
`

∑
i=1

kibij

}kj
. (24)

Note further the expansion

xk

k!
=

yk

k!

/
hk(y) = ∑

m≥k
(−1)|m−k|

(
m
k

)
ym

m!

`

∏
j=1

( `

∑
i=1

kibij

)mj−kj
,

where |k| denotes the coordinate sum for k ∈ N`
0. By interchanging the order of summation,

we can reformulate (24) as follows:

det−1[δi,j − yibij
]
= ∑

k≥0

xk

k!
Dk

0
{

hk(x)
}

= ∑
m≥0

ym

m! ∑
0≤k≤m

(−1)|m−k|
(

m
k

) `

∏
j=1

( `

∑
i=1

kibij

)mj
.

Observing that the last multiple sum results in a multivariate difference of order m in
x for a multivariate polynomial ∏`

j=1
(

∑`
i=1 xibij

)mj of degree |m|, we assert that it is equal
to m! times the coefficient of xm in the same polynomial. This leads us to the following
celebrated master theorem.
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Theorem 4 (MacMahon’s master theorem [14] (§64)).

det−1[δi,j − yibij
]
= ∑

m≥0
ym [xm]

`

∏
j=1

( `

∑
i=1

xibij

)mj
.

Different proofs and applications of this theorem may be found, for example, in
Carlitz [23], Chu [24,25], Good [26,27], and Goulden–Jackson [28] (§1.2.11–12).

4. Multivariate Lagrange Expansion Formula

In this section, we shall review the celebrated multivariate Lagrange expansion for-
mula discovered by Good [15] by making use of the rotated form of Theorem 1.

Analogous to the consideration of Theorem 2 in the last section, the inverse series
relations displayed in Theorem 1 admit the following rotated form.

Theorem 5 (Multifold inverse series relations).

f (n) = ∑
k≥n

(
k
n

)
Dk−n{ϑ(k− n)hkw

}
g(k), (25a)

g(n) = ∑
k≥n

(
k
n

)
Dk−n{h−n/w

}
f (k). (25b)

Let W(y) and hi(y) be formal power series with W(0) 6= 0 and hi(0) 6= 0 for
i = 1, 2, · · · , `. For the two sets of variables {xi, yi}`i=1 related by the equations xi = yi/hi(y),
consider the formal power series expansion in {yj}:

xn

W(y)
= ∑

k≥n
yk [yk]

xn

W(y)

= ∑
k≥n

yk [yk]
{ yn

W(y)
h−n(y)

}
= ∑

k≥n
yk [yk−n]

{
h−n(y)/W(y)

}
= ∑

k≥n
yk Dk−n

0
(k− n)!

{
h−n(x)/W(x)

}
.

Equating the first and the last expressions, we may state the resulting equation as

xn

n!
= ∑

k≥n

(
k
n

)
Dk−n

0

{
h−n(x)/W(x)

}yk

k!
W(y). (26a)

Comparing this relation with (25b), we get the dual relation corresponding to (25a)

yn

n!
W(y) = ∑

k≥n

(
k
n

)
Dk−n

0

{
ϑ(k− n)hk(x)W(x)

}xk

k!
. (26b)

Observing the equation

Dk−n
0

{
ϑ(k− n)hk(x)W(x)

}
= Dk−n

0

{
det

[
δi,j − yi

h′ij(y)

hi(y)

]
hk(x)W(x)

}
,
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we find from (26b) the following elegant formal power series expansion:

yn

n!
W(y) = ∑

k≥n

(
k
n

)
Dk−n

0

{
det

[
δi,j − yi

h′ij(y)

hi(y)

]
hk(x)W(x)

}
xk

k!
, (27)

where the condition W(0) 6= 0 imposed initially can be removed now since it is just a
formal power series equation.

Letting n = 0 in (27) leads us to the multivariate Lagrange expansion formula.

Theorem 6 (Good [15,29]). Let {xi, yi}`i=1 be the two sets of variables related by the equations
xi = yi/hi(y) with hi(y) being formal power series and hi(0) 6= 0 for i = 1, 2, · · · , `. Then these
equations determine implicit functions yj := yj(x) with j = 1, 2, · · · , `. For any formal power
series W(y), there holds the following expansion formula:

W(y) = ∑
k≥0

Dk
0

{
det

[
δi,j − yi

h′ij(y)

hi(y)

]
hk(x)W(x)

}
xk

k!
.

This theorem is very important in combinatorial computation and enumerative com-
binatorics. Gessel [21] has provided a combinatorial proof, where a useful survey has
also been given for variants of the multivariate Lagrange inversion formula due to Ab-
hyankar [30], Jacobi [9], Joni [31,32], and Stieltjes [33]. Different proofs and applications
can be found in Refs. [29,30,34–41].

5. Multivariate Derivative Identities

For the two derivative identities (1) and (3) discovered by Pfaff ([1], 1795) and Cauchy
([3], 1826), we shall derive their multivariate generalizations in this section. This is accom-
plished by utilizing the tensor product of the Leibniz rule and the multivariate inverse series
relations established in the second section. However for the third identity (4) of Jensen
type [42], our effort has unfortunately failed to fulfill analogous multivariate generalization
to Theorems 7 and 8 for (1) and (3), respectively.

5.1. Extension of Pfaff’s Derivative Identity

For the identities of (1) and (2), their common multivariate extension is given as in the
theorem below.

Theorem 7 (Derivative identity). Suppose that u := u(x), v := v(x) and hκ := hκ(x) are the
n-times differentiable functions with respect to x (hence, nı-times differentiable functions with
respect to each xı for ı, κ = 1, 2, · · · , `). Then, the following derivative formula holds:

Dn(uv
)
= ∑

0≤k≤n

(
n
k

)
Dk{hku

}
Dn−k

{
ϑ(n− k)

hk v
}

.

When hκ ≡ 1, this identity turns out to be the tensor product of the Leibniz formula.
Its univariate case is recorded as follows:

Dn(uv
)
=

n

∑
k=0

(
n
k

)
Dk(hku

)
Dn−k

{(
1− n− k

D
h′

h

) v
hk

}
.

Replacing v by hnv and keeping in mind the equality

D
(
hn−kv

)
= (n− k)hn−k−1h′v + hn−kv′,

we can rewrite the last identity in the following manner:
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Dn(hnuv
)
=

n

∑
k=0

(
n
k

)
Dk(hku

)
Dn−k−1

{
hn−kv′

}
,

which is evidently the same as (2) after having made the involution k→ n− k.

Proof. It is not hard to verify that the derivative identity stated in Theorem 7 matches
exactly (12b) under the following specifications:

w = 1/v, f (k) = Dk{hku
}

and g(n) = Dn(uv
)
.

Then to prove the identity enunciated in the theorem, it is enough to validate the following
dual relation corresponding to (12a):

Dn{hnu
}

= ∑
0≤k≤n

(
n
k

)
Dk(uv

)
Dn−k{hn/v

}
.

This follows immediately from the tensor product of the Leibniz rule.

5.2. Extension of Cauchy’s Derivative Identity

Making the substitution v by hnv in Theorem 7, we derive the following equivalent
expression:

Dn
(

hnuv
)

= ∑
0≤k≤n

(
n
k

)
Dk{hku

}
Dn−k

{
ϑ(n− k)hn−kv

}
. (28)

This is further applied, in turn, for calculating the following derivatives:

Dn
{

ϑ(n)hnuv
}

= Dn
{

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ni
Dxi

det
i,j∈σ

[h′ij
hi

]
hnuv

}

= ∑
σ⊆[`]

(−1)|σ| ∑
0≤k≤n

(
n
k

)
Dk
{

∏
i∈σ

ki
Dxi

det
i,j∈σ

[h′ij
hi

]
hku

}
Dn−k

{
ϑ(n− k)hn−kv

}
.

Interchanging the order of summation, we may reformulate the last double sum as

∑
0≤k≤n

(
n
k

)
Dk
{

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ki
Dxi

det
i,j∈σ

[h′ij
hi

]
hku

}
Dn−k

{
ϑ(n− k)hn−kv

}
.

Keeping in mind the definition of ϑ-function, we derive the following symmetric
counterpart of (28), which gives the multivariate extension of Cauchy’s identity (3).

Theorem 8 (Derivative identity). Suppose that u := u(x), v := v(x) and hκ := hκ(x) are the
n-times differentiable functions with respect to x (i.e., nı-times differentiable functions with
respect to xı for ı, κ = 1, 2, · · · , `). Then the following formula holds:

Dn
{

ϑ(n)hnuv
}

= ∑
0≤k≤n

(
n
k

)
Dk
{

ϑ(k)hku
}

Dn−k
{

ϑ(n− k)hn−kv
}

.

When hκ ≡ 1, this identity becomes the tensor product of the Leibniz formula.
Analogous to the proof of Theorem 7, we can also show Theorem 8 through the inverse

pair (12a) and (12b). First, under the replacement v by v/hn, we obtain, from Theorem 8,
the equality:

Dn
{

ϑ(n)uv
}

= ∑
0≤k≤n

(
n
k

)
Dk
{

ϑ(k)hku
}

Dn−k
{

ϑ(n− k)
hk v

}
.
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Then by making a comparison between the last equation and (12b), we affirm that it suffices
to prove the following dual relation corresponding to (12a):

Dn
{

ϑ(n)hnu
}

= ∑
0≤k≤n

(
n
k

)
Dk{ϑ(k)uv

}
Dn−k{hn/v

}
.

According to the Leibniz rule, we can finally confirm it as follows:

∑
0≤k≤n

(
n
k

)
Dk{ϑ(k)uv

}
Dn−k{hn/v

}
= ∑

0≤k≤n

(
n
k

)
Dk
{

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ki
Dxi

det
i,j∈σ

[h′ij
hi

]
uv
}

Dn−k{hn/v
}

= Dn
{

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ni
Dxi

det
i,j∈σ

[h′ij
hi

]
hnu

}
= Dn

{
ϑ(n)hnu

}
.

As a byproduct of Theorem 8, we can even establish the multifold inverse series pair
with more symmetric expressions, as in the following theorem.

Theorem 9 (Multifold inverse series relations). Suppose that w := w(x) = w(x1, x2, · · · , x`)
and hκ := hκ(x) = hκ(x1, x2, · · · , x`) are infinitely differentiable multivariate functions. Then the
following inverse series relations hold:

f (n) = ∑
0≤k≤n

(
n
k

)
Dn−k

{
ϑ(n− k)hn−kw

}
g(k), (29a)

g(n) = ∑
0≤k≤n

(
n
k

)
Dn−k

{
ϑ(n− k)hn−k/w

}
f (k). (29b)

Proof. Taking into account the symmetric form, we can indiscriminately assume one of the
two relations and prove another. Analogous to the proof of Theorem 1, by first substituting
(29a) into (29b), and then exchanging the order of summation, we can readily verify that
the inverse pair displayed in the theorem is equivalent to the following orthogonality:

∑
m≤k≤n

(
n−m
k−m

)
Dn−k

{
ϑ(n− k)hn−k/w

}
Dk−m

{
ϑ(k−m)hk−mw

}
= δ(m, n).

For m = n, this is obviously true. Otherwise, the sum on the left hand side can be
expressed, by means of Theorem 8, as

Dn−m{ϑ(n−m)hn−m} =Dn−m
{

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ni −mi
Dxi

det
i,j∈σ

[h′ij
hi

]
hn−m

}
.

According to (15), the above difference vanishes for m 6= n with m ≤ n.

6. Multiple Convolution Formulae Due to Carlitz

Utilizing these derivative identities derived in the last section, this section will review
the multiple convolution formulae of Abel and Hagen–Rothe type due to Carlitz [16,17].

Throughout this section, we shall further fix the following notations. Let a :=
(a1, a2, · · · , a`), c = (c1, c2, · · · , c`) ∈ C` and B := [bij]1≤i,j≤` ∈ C`×`. Denote by ib :=
(bi1, bi2, · · · , bi`) and bj := (b1j, b2j, · · · , b`j) the i-th row and j-th column of B, respectively.
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6.1. Multiple Convolutions of Abel Type

Define the exponential functions

u := e〈a,x〉, v := e〈c,x〉, hκ := e〈bκ ,x〉.

Then it is not hard to compute

hk = exp
{ `

∑
ı=1
〈ıb, k〉xı

}
and Dk{hku

}
= hku

`

∏
ı=1

(aı + 〈ıb, k〉)kı

as well as

Dk{ϑ(k)hku
}

= Dk
{

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ki
Dxi

det
i,j∈σ

[h′ij
hi

]
hku

}

=Dk
{

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ki
Dxi

det
i,j∈σ

[
bij
]

exp
(
〈a, x〉+

`

∑
ı=1
〈ıb, k〉xı

)}

=hku va(k)
`

∏
ı=1

(aı + 〈ıb, k〉)kı ,

where

va(k) := det
1≤i,j≤`

[
δi,j −

bijki

ai + 〈ib, k〉

]
. (30)

Substituting these relations into Theorems 7 and 8, and then removing the common
exponential function factors, we recover the multiple convolution identities below.

Corollary 1 (Carlitz [16,17]).

∑
0≤k≤n

va(k)
`

∏
ı=1

(aı + 〈ıb, k〉)kı

kı!

`

∏
ı=1

(cı + 〈ıb, n− k〉)nı−kı

(nı − kı)!
(31a)

=
`

∏
ı=1

(aı + cı + 〈ıb, n〉)nı

nı!
; (31b)

∑
0≤k≤n

va(k)
`

∏
ı=1

(aı + 〈ıb, k〉)kı

kı!
vc(n− k)

`

∏
ı=1

(cı + 〈ıb, n− k〉)nı−kı

(nı − kı)!
(32a)

= va+c(n)
`

∏
ı=1

(aı + cı + 〈ıb, n〉)nı

nı!
. (32b)

Different proofs of these identities via the generating function method can be found
in Chu [36]. When ` = 1, these identities reduce to the following well–known formulae
originally due to Abel [43] (cf. [8,36] (§3.1), [22,44] (§1.5) also):

n

∑
k=0

a(a + bk)k−1

k!

{
c + b(n− k)

}n−k

(n− k)!
=

(a + c + bn)n

n!
;

n

∑
k=0

a(a + bk)k−1

k!
c
{

c + b(n− k)
}n−k−1

(n− k)!
=

(a + c)(a + c + bn)n−1

n!
.
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6.2. Multiple Convolutions of Hagen–Rothe Type

Instead, we define the binomial functions

u :=
`

∏
ı=1

(1 + xı)
aı , v :=

`

∏
ı=1

(1 + xı)
cı , hκ :=

`

∏
ı=1

(1 + xı)
bıκ .

Then it is not hard to compute

hk =
`

∏
ı=1

(1 + xı)
〈ıb,k〉 and Dk{hku

}
= hku

`

∏
ı=1

kı!
(1 + xı)kı

(
aı + 〈ıb, k〉

kı

)
as well as

Dk{ϑ(k)hku
}

= Dk
{

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ki
Dxi

det
i,j∈σ

[h′ij
hi

]
hku

}

=Dk
{

∑
σ⊆[`]

(−1)|σ|∏
i∈σ

ki
Dxi

det
i,j∈σ

[ bij

1 + xi

] `

∏
ı=1

(1 + xı)
aı+〈ıb,k〉

}

=hku ∑
σ⊆[`]

(−1)|σ| det
i,j∈σ

[ kibij

ai + 〈ib, k〉

] `

∏
ı=1

kı!
(1 + xı)kı

(
aı + 〈ıb, k〉

kı

)

=hku va(k)
`

∏
ı=1

kı!
(1 + xı)kı

(
aı + 〈ıb, k〉

kı

)
.

Substituting these relations into Theorems 7 and 8, and then making some routine
simplifications, we arrive at the following multiple convolution identities.

Corollary 2 (Carlitz [16,17]).

∑
0≤k≤n

va(k)
`

∏
ı=1

(
aı + 〈ıb, k〉

kı

) `

∏
ı=1

(
cı + 〈ıb, n− k〉

nı − kı

)
(33a)

=
`

∏
ı=1

(
aı + cı + 〈ıb, n〉

nı

)
; (33b)

∑
0≤k≤n

va(k)
`

∏
ı=1

(
aı + 〈ıb, k〉

kı

)
vc(n− k)

`

∏
ı=1

(
cı + 〈ıb, n− k〉

nı − kı

)
(34a)

= va+c(n)
`

∏
ı=1

(
aı + cı + 〈ıb, n〉

nı

)
. (34b)

Chu and Hsu [45] gave different analytic proofs of these identities. We remark that the
above identities are, in fact, multifold extensions of the Hagen–Rothe formulae (see Chu [36],
Gould [46,47], and Rothe [48]):

n

∑
k=0

a
a + bk

(
a + bk

k

)(
c + b(n− k)

n− k

)
=

(
a + c + bn

n

)
;

n

∑
k=0

a
a + bk

(
a + bk

k

)
c

c + b(n− k)

(
c + b(n− k)

n− k

)
=

a + c
a + c + bn

(
a + c + bn

n

)
.

7. Further Multivariate Inverse Series Relations

In this section, we shall review some of the author’s work in comparison with those in
Theorems 1 and 2. Some related works are briefly commented in the sequel. Egorychev
produced numerous formulae exclusively by making use of the Cauchy residue method in
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his monograph [49]. Three multifold inverse relations [49] (§3.3) were recorded in Ref. [50].
They were further extended in quite a different manner by the author [51] to the revisiting
multifold identities of Handa and Mohanty [52,53].

Let {a(k)}k∈N0 and {B(k)}k∈N0 be two sequences of the vectors and the matrices
with a(k) :=

(
a1(k), a2(k), · · · , a`(k)

)
∈ C` and B(k) :=

[
bij(k)

]
1≤i,j≤` ∈ C`×`. De-

note as before the i-th row and j-th column of matrix B(k), respectively, by ib(k) :=(
bi1(k), bi2(k), · · · , bi`(k)

)
and bj(k) :=

(
b1j(k), b2j(k), · · · , b`j(k)

)
.

Extending Gould–Hsu [54] inversions, Chu [18,19,55] found the following multivariate
inverse series relations. Define ϕ(x; n) and ω(x; n), respectively, by

ϕ(x; n) :=
`

∏
i=1

ni−1

∏
k=0

{
ai(k) + 〈ib(k), x〉

}
, (35a)

ω(x; n) := det
1≤i,j≤`

[
δi,j −

(xi − ni)bij(n)
ai(ni) + 〈ib(ni), x〉

]
; (35b)

with the convention that the empty product is equal to one. Then there hold the following
inverse series relations:

f (n) = ∑
0≤k≤n

(−1)|k|
(

n
k

)
ϕ(k; n)g(k), (36a)

g(n) = ∑
0≤k≤n

(−1)|k|
(

n
k

)
ω(n; k)
ϕ(n; k)

f (k). (36b)

Applications and q-analogue of this inverse pair can be found in Abderrezzak [56].
The above inverse pair clearly has a very different nature from that stated in Theorem 1.
However, it is not hard to verify that the multivariate reciprocal pairs in the sequel are
contained as their common particular cases.

7.1. Inverse Series Relations of Abel Type

Letting ai(k) ≡ ai and bij(k) ≡ bij be constant for 1 ≤ i, j ≤ `, then we find from (36a)
and (36b) the following inverse series relations.

Corollary 3 (Inverse pair of Abel type).

f (n) = ∑
0≤k≤n

(−1)|k|
(

n
k

) `

∏
i=1

(ai + 〈ib, k〉)ni g(k), (37a)

g(n) = ∑
0≤k≤n

(−1)|k|
(

n
k

)
ρ(n; k)

∏`
i=1(ai + 〈ib, n〉)ki

f (k); (37b)

where

ρ(n; k) := det
1≤i,j≤`

[
δi,j −

(ni − ki)bij

ai + 〈ib, n〉

]
.

This inverse pair follows by specifying hk = e〈bk ,x〉 and w = e〈a,x〉 in Theorem 1.

7.2. Inverse Series Relations of the Hagen—Rothe Type

Letting ai(k) := k + ai and bij(k) ≡ bij for 1 ≤ i, j ≤ `, then we find from (36a) and
(36b) another inverse pair.
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Corollary 4 (Inverse pair of Hagen–Rothe type).

f (n) = ∑
0≤k≤n

(−1)|k|
(

n
k

) `

∏
i=1

(ai + 〈ib, k〉)ni g(k), (38a)

g(n) = ∑
0≤k≤n

(−1)|k|
(

n
k

)
$(n; k)

∏`
i=1(ai + 〈ib, n〉)ki

f (k); (38b)

where

$(n; k) := det
1≤i,j≤`

[
δi,j −

(ni − ki)bij

ai + ki + 〈ib, n〉

]
with the rising factorial being given by

(x)0 = 1 and (x)n = x(x + 1) · · · (x + n− 1) for n ∈ N.

It can be verified without much difficulty that the last inverse series relations result
from Theorem 1 under hk = ∏`

i=1(1 + xi)
bik+δi,k and w = ∏`

i=1(1 + xi)
ai .

7.3. Two Further Inverse Series Relations

Under the previous two settings for h and w functions, we can further derive from
Theorem 9 the following two pairs of multivariate inverse series relations, where the
v-function is defined in (30).

Corollary 5 (Two quasi–symmetric inverse pairs).

f (n) = ∑
0≤k≤n

(
n
k

)
va(n− k)

`

∏
i=1

(ai + 〈ib, n− k〉)ni−ki g(k), (39a)

g(n) = ∑
0≤k≤n

(
n
k

)
v−a(n− k)

`

∏
i=1

(−ai + 〈ib, n− k〉)ni−ki f (k); (39b)

f (n) = ∑
0≤k≤n

(
n
k

)
va(n− k)

`

∏
i=1

(ai + 〈ib, n− k〉)ni−ki
g(k), (40a)

g(n) = ∑
0≤k≤n

(
n
k

)
v−a(n− k)

`

∏
i=1

(−ai + 〈ib, n− k〉)ni−ki
f (k). (40b)

However, both inverse pairs do not seem to be obtainable from (36a) and (36b). This
fact shows that the inversion theorems established in the present paper are not completely
covered by the previous ones displayed in (36a) and (36b).

8. Concluding Remarks

By employing the algebraic calculus, we have established two multiple derivative
inverse pairs (Theorems 1 and 2) in this paper. They are then utilized to review MacMa-
hon’s master theorem [14] (§64) and Good’s multivariate Lagrange formula [15]. Sample
applications include multivariate extensions of derivative identities due to Pfaff [1] and
Cauchy 28, as well as multiple convolution formulae due to Carlitz [16,17].

It is widely recognized that Gould–Hsu inversions [54], their variants and multifold
analogues (cf. [11,12,18,19,44,50,51,55]) have important applications in binomial identities
[16,17,46,47] and hypergeometric series evaluations [45,57–59], as well as special functions
and orthogonal polynomials [2,4]. Therefore, it is plausible that the multiple derivative
inverse pairs established in this paper can find significant applications in combinatorial
enumeration [28,29,41], multinomial convolution formulae [27,38,52,53], special functions,
and polynomials of several variables [2,31,37,40], as well as multiple contour integrals



Mathematics 2022, 10, 4234 17 of 18

(see [49] (Chapter 5) and [60] (Chapter 3)). The interested readers are encouraged to make
further explorations.
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