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Abstract: This article studies the estimation of the precision matrix of a high-dimensional Gaussian 
network. We investigate the graphical selector operator with shrinkage, GSOS for short, to maximize 
a penalized likelihood function where the elastic net-type penalty is considered as a combination of 
a norm-one penalty and a targeted Frobenius norm penalty. Numerical illustrations demonstrate 
that our proposed methodology is a competitive candidate for high-dimensional precision matrix 
estimation compared to some existing alternatives. We demonstrate the relevance and efficiency of 
GSOS using a foreign exchange markets dataset and estimate dependency networks for 32 different 
currencies from 2018 to 2021.
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1. Introduction

In recent years, covariance and precision matrix estimates have been studied exten-
sively under high-dimensional scenarios. The motivation for these investigations is the
argument that traditional likelihood-based techniques perform inaccurately or do not even
exist. Examples of these include the graphical lasso algorithm and its extensions ([1–7]),
and the ridge regularization-driven approach for the log-likelihood function ([8–11]). In
addition to considering single L1 (graphical lasso) and Frobenius (graphical ridge) penalties
for the precision matrix, some studies have proposed combining both, resulting in an elastic
net-type penalty. For instance, the following articles can be mentioned [10,12–14].

Despite the vast number of reported studies in the literature on the estimation of
precision matrices, there are few reported studies concerning generalization to allow for
the incorporation of prior knowledge of a precision matrix. For the Frobenius penalized
case we can mentioned [9–11]. The only proposals for incorporating target matrices (prior
knowledge) for the L1 and elastic net penalty are those of [10,15]. In this paper, we propose
the graphical selector operator with shrinkage (GSOS) as a combination of the generalized
ridge (ridge with target matrix) and L1 penalty. The main aim of this paper is to present and
compare the new precision matrix estimator and propose a novel algorithm for Gaussian
graphical models. The numerical study shows that the GSOS estimator is comparable with
other available estimators and performs better in most cases than others.

Estimation, Literature Review

In graphical models, Gaussian graphical models are frequently used for modeling
conditional dependencies in multivariate data. Dependency structures are determined by
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estimating the precision matrix through standard methodologies, for instance, a maximum
likelihood or the regularized type of maximum likelihood in high-dimensional cases.

Consider random vector z ∼ Np(µ, Σ); it follows a multivariate Gaussian distribution
with mean vector µ ∈ Rp and positive definite covariance matrix Σ ∈ Rp × Rp corre-
sponding to conditional independence graph G. In terms of mathematics, a pair (z,G) is a
Gaussian graphical model. In these models, the graph G and the precision matrix Θ := Σ−1

are intimately related. That means that the zeroes in the precision matrix correspond to
pairs of conditionally independent features, given all the other variables. In other words,
there is no edge between these two variables (nodes) in a graph G. Furthermore, two
coordinates zk and z

′
k are independent if, in the graph G, there is no edge between them.

Maximum likelihood estimation is a logical technique to estimate the precision matrix for
the positive definite matrix Θ; this estimator is expressed as

Θ̂ = arg min
Θ�0
{− log det(Θ) + tr(SΘ)}, (1)

where S = zTz/n is the sample covariance matrix and the maximum likelihood estimator
Θ is equal to S−1. However, two issues might emerge when utilizing this maximum
likelihood technique to estimate Θ. First, in the high dimension case p > n, the empirical
covariance matrix S is singular and hence cannot be inverted to provide an estimate of Θ.
Even if p and n are almost equal and S is singular, the maximum likelihood estimate for
Θ will have a relatively high variance. Second, it is frequently valuable to identify pairs
of disconnected variables in a graphical model that are conditionally independent; these
correspond to zeroes in Θ. However, in general, (1) will produce an estimate of Θ with no
elements equal to zero.

The likelihood function is complemented with a penalty function in high-dimensional
settings, which yields the maximum regularized likelihood estimator. Graphical lasso adds
an L1 penalty to log-likelihood and induces sparsity of Θ due to maximizing the penalized
log-likelihood:

Θ̂Glasso(ρ) = arg min
Θ�0
{− log det(Θ) + tr(SΘ) + ρ||Θ||1}, (2)

where ρ is a non-negative tuning parameter and ||Θ||1 denotes the sum of the absolute val-
ues of the elements of Θ. This approach was considered almost simultaneously by [1,16–18].
Due to the ensuing sparse answer, the graphical lasso estimate has gained significant inter-
est and has become popular; it is still is an active area of research (cf. [6,19–21]). In contrast
to circumstances where sparsity is advantageous, there are cases when more exact represen-
tations of the high-dimensional precision matrix are fundamentally desirable. Furthermore,
the genuine (graphical) model does not have to be (very) sparse in terms of having many
zero elements. In these situations, we may use a regularization approach that shrinks the
estimated precision matrix elements instead of forcing them to be zero. The ridge precision
estimator maximizes the log-likelihood augmented by a Frobenius norm, [9] in the most
general form presented the ridge estimator as follows

Θ̂Ridge(λ) = arg min
Θ�0
{− log det(Θ) + tr(SΘ) +

1
2

λ||Θ− T ||2F}, (3)

where λ is the penalty parameter, T is a known symmetric and semi-positive definite target
matrix, and ||A||2F denotes the Frobenius norm, the sum of the square values of the elements
of the matrix A. Before estimating, the target matrix is set as an initial guess, toward which
the precision estimate is shrunk. Estimator (3) is called the alternative Type I ridge precision
estimator, and when the target matrix is equal to zero matrices, the alternative Type II ridge
precision estimator. It should be mentioned that [11] considered the estimator mentioned in
(3) independently and concurrently, and called it a ridge-type operator for precision matrix
estimation (ROPE).
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In a recent study in this area, Ref. [10] generalized the ridge inverse covariance
estimator to allow for entry-wise penalization. Their proposed estimator shrinks toward a
user-specified non-random target matrix and is shown to be positive definite and consistent.
Furthermore, they obtained a generalization of the graphical lasso estimator and its elastic
net counterpart. Recently, ref. [15] considered elastic net-type penalization (gelnet) for
precision matrix estimation in the presence of a diagonal target matrix. They showed that it
is possible to adopt the iterative procedure of [10] for the elastic net problem, but it is not
computationally attractive.

Under the continuity property of the ridge estimator and apart from sparsity, esti-
mations of the precision matrix with (3) can be far from the actual value Θ. Hence, the
motivation of our approach to find a closer estimator. We use the Frobenius norm penalty
to penalize the deviation between any primary or initial target estimator and Θ, and tune it
to improve the accuracy of the final estimation. Furthermore, the L1 penalty is added to
account for sparsity, returning to the well-known elastic net with some added refinement.
Therefore, in this paper, we consider combining the estimation approaches (2) and (3) to
propose an elastic net-type estimator for the precision matrix: the GSOS.

2. The Proposed Method

Let Xn×p be the data matrix, including n observations of a p−dimensional Gaussian
distribution with zero mean and positive definite covariance matrix Σ. Consider the
following type of estimation problem for estimating the unknown precision matrix Θ = Σ−1

based on n observations:

Θ̂(α, λ, T) = arg min
Θ�0
{− log det(Θ) + tr(SΘ) + λ(α||Θ||1 +

(1− α)

2
||Θ− T ||2F)}, (4)

where Tp×p is a known symmetric and semi-positive definite target matrix. Additionally,
λ ≥ 0, α ∈ [0, 1] are tuning parameters. Note that if α = 0, the precision matrix estimator
(4) becomes the ridge estimator that is mentioned in (3).

Using sub-gradient notation and rules from [22], we obtain the following optimal
conditions for (4)

−Θ−1 + S + λαΓ− λ(1− α)(T −Θ) = 0

i.e., −Θ−1 + S + λαΓ− λ(1− α)T + λ(1− α)Θ = 0

i.e., −Θ−1 + A + λαΓ + λ(1− α)Θ = 0, (5)

where A := A(S, α, λ, T) = S−λ(1− α)T , and the matrix Γ = [γkk′ ] denotes the component-
wise signs of Θ with γkk′ ∈ [−1, 1] for Θkk′ = 0. The solution of the normal equations (5) is
found by iteratively running over the columns/rows, considering the remaining ones fixed.
The update requires that each matrix in (5) is partitioned as follows:

Θ =

(
Θ11 θ12
θ21 θ22

)
, Γ =

(
Γ11 γ12
γ21 γ22

)
, A =

(
A11 a12
a21 a22

)
, (6)

where Θ11 is a square matrix, θ12 is a vector, and θ22 is a scalar. Γ and A are partitioned
similarly. Consider W = Θ−1; using the properties of inverses of block-partitioned matrices,
we have that

W =

(
W11 w12
w21 w22

)
=

Θ−1
11 +

Θ−1
11 θ12θ21Θ−1

11
(θ22−θ21Θ−1

11 θ12)
− Θ−1

11 θ12

θ22−θ21Θ−1
11 θ12

− θ21Θ−1
11

θ22−Θ21Θ−1
11 θ12

1
θ22−θ21Θ−1

11 θ12

. (7)
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Considering the pth column of (5), we obtain

−w12 + a12 + λαγ12 + λ(1− α)θ12 = 0. (8)

By substituting w12 and w22 into (7), we have that

Θ−1
11 θ12

θ22 − θ21Θ−1
11 θ12

+ a12 + λαγ12 + λ(1− α)θ12 = 0

i.e., Θ−1
11 θ12w22 + a12 + λαγ12 + λ(1− α)θ12 = 0

i.e., (Θ−1
11 w22 + λ(1− α)Ip−1)θ12 + a12 + λαγ12 = 0. (9)

Consider q̃12 := abs(θ12) and γ̃ := λαγ12; then, (9) is equivalent to

(Θ−1
11

w22

αλ
+

1− α

α
Ip−1)q̃12 ∗ γ̃ + a12 + γ̃ = 0,

q̃12 ∗ (abs(γ̃)− λα1p−1) = 0, (10)

||γ̃||∞ ≤ λα,

where ∗ denotes the element-wise multiplication of two vectors. The conditions men-
tioned in (10) are KKT optimality conditions for the following box-constrained problem for
γ ∈ Rp−1

minimize
||γ̃||∞≤λα

1
2
(a12 + γ̃)T(Θ−1

11
w22

αλ
+

1− α

α
Ip−1)

−1(a12 + γ̃). (11)

By solving the optimization problem (11) and finding the optimum point λ∗, θ12 can
be updated as follows for all α ∈ (0, 1]

θ̂12 = −(Θ−1
11

w22

αλ
+

1− α

α
Ip−1)

−1(a12 + γ∗). (12)

For the diagonal elements of the precision matrix θ22, we consider (5) for diagonal
elements

− w22 + a22 + λα + λ(1− α)θ22 = 0. (13)

From (7), we have that w22 = 1/(θ22− θ21Θ−1
11 θ12); this implies that (13) is equivalent to

1 + (a22 + λα + λ(1− α)θ22)(θ21Θ−1
11 θ12 − θ22) = 0. (14)

Let C := θ21Θ−1
11 θ12; therefore, we have this quadratic equation

− λ(1− α)θ2
22 + (λ(1− α)C− a22 − λα)θ22 + C(a22 + λα) + 1 = 0. (15)

Quadratic Equation (15) has two distinct real roots: positive (acceptable) and negative
(unacceptable). Hence, we can update the diagonal elements of the precision matrix with
the positive root. Finally, w12 and w22 are updated using normal Equation (5). Our method
here is similar to the dpglasso estimator proposed by [5]. Furthermore, we can follow
the glasso approach to solve the problem. The fundamental distinction between glasso
and dpglasso is that in glasso, W is not equal to the inverse of Θ. Furthermore, glasso
deals with W , whereas dpglasso considers its inverse Θ. Finally, Algorithm 1 shows the
procedure for α ∈ (0, 1].
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Algorithm 1 GSOS based on dpglasso approach
1. Initialize Θ, a diagonal matrix with the diagonal elements as follows, for k = 1, . . . , p

θkk =
−(akk + λα) +

√
(akk + λα)2 + 4λ(1− α)

2λ(1− α)

and W = A + λαIp + λ(1− α)Θ,
2. Focus on the columns and repeatedly perform the following steps till convergence.

(A) Rearrange the rows/columns so that the target column is last (according to (6));
(B) Solve (11) and update

θ̂12 = −(Θ−1
11

w22

αλ
+

1− α

α
Ip−1)

−1(a12 + γ∗);

(C) Solve (15) to obtain θ̂22;
(D) Update ŵ12 = a12 + γ∗;
(E) Update ŵ22 = a22 + λα + λ(1− α)θ̂22.

Glasso Scenario

The following relationship between W and Θ is established in glasso

W =

(
W11 w12
w21 w22

)
=

(
(Θ11 − θ12θ21

θ22
)−1 −W11

θ12
θ22

− θ21
θ22

W11
1

θ22
+ θ21W11θ12

θ2
22

)
. (16)

Consider the pth column of (5) and substitute w12 from (16):

−w12 + a12 + λαγ12 + λ(1− α)θ12 = 0,

W11
θ12

θ22
+ a12 + λαγ12 + λ(1− α)θ12 = 0.

Define β = − θ12
θ22

; therefore

W11β− a12 − λαγ12 + λ(1− α)θ22β = 0. (17)

Letting W11 = V , a12 = u and γ12 = ρ, then, for every i = 1, . . . , p, we have that

Viiβi +
p−1

∑
k 6=i

Vkiβk − ui − λαρi + λ(1− α)θ22βi = 0. (18)

Subsequently, the update has the following form

β̂i ←
S(ui −∑

p−1
k 6=i Vkiβk, αλ)

Vii + λ(1− α)θ22
, (19)

where S is the soft-threshold operator S(x, t) = sign(x)(|x| − t)+. We cycle through the
predictors until convergence. β̂ is the optimum point of the following quadratic problem

minimize
β∈Rp−1

1
2

βTW11β− βTa12 − λα||β||1 +
λ(1− α)

2
θ22βT β, (20)

which corresponds to the normal equations (17). After solving this quadratic problem and
finding β̂, we can update ŵ12. From (5) for the diagonal elements of θ22 of the precision
matrix, we have that

− w22 + a22 + λα + λ(1− α)θ22 = 0. (21)
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From (16) we have that w22 = 1
θ22

+ θ21W11θ12
θ2

22
= 1

θ22
+ βTW11β; hence, (21) is equivalent

to
λ(1− α)θ2

22 − (βTW11β− a22 − αλ)θ22 − 1 = 0. (22)

Equation (22) has two distinct real roots with positive (acceptable) and negative (unaccept-
able) signs. Hence, we can update the diagonal elements of the precision matrix with the
positive root. Finally, θ̂12 and ŵ22 are updated by (5). Algorithm 2 briefly outlines these
steps.

Algorithm 2 GSOS based on glasso approach
1. Initialize Θ, a diagonal matrix with the diagonal elements as follows, for k = 1, . . . , p

θkk =
−(akk + λα) +

√
(akk + λα)2 + 4λ(1− α)

2λ(1− α)

and W = A + λαIp + λ(1− α)Θ.
2. Focus on the columns and repeatedly perform the following steps till convergence.

(A) Rearrange the rows/columns so that the target column is last;
(B) Solve (20) and update ŵ12 = W11β̂;
(C) Solve (22) to update θ̂22;
(D) Update θ̂12 = −θ̂22β̂;
(E) Update ŵ22 = a22 + λα + λ(1− α)θ̂22.

3. Simulation

In this section, the statistical performance of GSOS is compared to some other popular
estimators (glasso [1], ROPE or alternative ridge [9,11], and graphical elastic net [15]).
We simulate the data from a multivariate Gaussian distribution Np(0, Σ), where Σ = [σk,k′ ]

and Θ = Σ−1 = [θk,k′ ] are p× p positive definite matrices. Six different models are used to
compare the methods (see Appendix A for precision matrices). We evaluate these estimators
on the six network structures with p = 20, 50, 100 nodes and sample size of n = 50 by
implementing Algorithm 2.

• Network 1: A model with compound symmetry structure where σk,k = 1 and σk,k′ =

0.62 for k 6= k
′
. In this model, the covariance matrix is structured and non-sparse;

• Network 2. The prototype matrix Θ0 is used to standardize the precision matrix Θ

to possess a unit diagonal. Let Θ0 = A + aI, where each off-diagonal entry in A is
generated independently and equals 0.5 with probability 0.1, or 0 with probability 0.9.
a is chosen such that the condition number of the matrix is equal to p. Here we have
an unstructured and sparse precision matrix;

• Network 3. The precision matrix is defined Θ = 1
n YTY , where Y = [ykk′ ] is an n× p

matrix with n = 10, 000 and ykk′ comes from N (0, 1). The precision matrix of this
model is unstructured and non-sparse;

• Network 4. A star model with θk,k = 1, θ1,k = θk,1 = 0.1 and θk,k′ = 0 otherwise. This
local area network has a structured and sparse precision matrix;

• Network 5. A moving average (MA) model with σk,k′ = 1, σk,k−1 = σk−1,k = 0.2 and
σk,k−2 = σk−2,k = 0.22. This covariance matrix is structured and sparse;

• Network 6. A diagonally dominant model. Consider B = 1
2 (A + AT), where A is a

p× p matrix with zero diagonal elements. Each off-diagonal element of A is drawn
from a standard uniform distribution. Compute a matrix D = 1

γ B, where D = [dk,k′ ]
and γ is the largest row sum of the absolute values of the elements of the matrix B.
Finally, each off-diagonal element of Σ is chosen as σk,k′ = dk,k′ and σk,k = 1 + ei,
where ei is drawn from uniform distribution with minimum 0 and maximum 0.1. This
covariance matrix is unstructured and non-sparse.
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To calculate the performance measures for all the methods, 100 independent simula-
tions for each network are performed and the average of several loss functions is calculated.
The optimal tuning parameter λ for each method is determined for each simulation run
using five-fold cross-validation. For glasso, gelnet, and ROPE, we use the five-fold cross-
validation found in the R-package “GLassoElnetFast” with a set value of λ of 50 elements
varying from 0.01 to 10, and α with 20 elements varying from 0.01 to 0.99 for gelnet and
our estimators. As a target matrix, assume identity matrix I and a scalar matrix νI, where
ν = p2/tr(S).

3.1. Performance Measures

To calculate the performance of a given estimator Θ̂, we consider four loss functions
that have been used widely in other research in this area (see, e.g., [7,11,14,15]).

Loss Functions

• The Kullback–Leibler loss: KL = tr(ΣΘ̂)− logdet(ΣΘ̂)− p;
• The L2 loss: L2 = ||Θ− Θ̂||F;
• The quadratic loss: QL = tr(ΣΘ̂− Ip)2;
• The spectral norm loss: SP = d1, where d2

1 is the largest eigenvalue of the matrix
(Θ− Θ̂)2.

To provide risk measures, the averages of these losses are determined for each method
from 100 simulations. Figures 1–4 show the final findings. The plot layout is taken from [11];
the columns that go along the little black dots represent loss means. The bars at the top of
each column represent standard errors (mean± SD).

3.2. Simulation Results

The results for different networks are displayed in Figures 1–4. We summarize some
observations based on the results as follows:

• In general, as mentioned in [15], it is advantageous to include a target in the methods,
since each approach works better with the appropriate target;

• Compared to other alternatives, GSOS is often a considerable contender for high-
dimensional precision matrix estimation;

• The question of which target is more effective remains. However, in most cases, our
simulations suggest that the identity target matrix works better.
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4. Real Data

In the following section, we study market data provided by the Pacific Exchange Rate
Service dataset (PERS), which is available on https://fx.sauder.ubc.ca/, accessed on 13
September 2022. PERS provides daily values of the currencies and commodities priced in
various base currencies, known as numeraire. We consider 32 different currencies for the
four years between 2018 and 2021. The names of these 32 currencies and their abbreviations
are listed in Table 1.

We gather the data initially with the US dollar (USD) as numeraire and then, according
to the initial data, calculate all currency exchange rates (for more detail, see [23,24]). After
determining all exchange rates, using each of the 32 currencies as a numeraire, we compute
the daily log returns of the remaining 31 currencies. We estimate the related covariance and
precision matrices based on all possible exchange currencies (496 different exchanges). We
apply our proposed estimator GSOS, with the scalar matrix as a target for four-year and
annual data separately (the five-fold cross-validation is considered in selecting the tuning
parameters). The estimated networks are presented in Figures 5–9; it should be mentioned
that we consider 50 of the strongest partial correlations.
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Table 1. List of abbreviations of the considered currencies.

Currencies

AUD Australian dollar MXN Mexican peso
BRL Brazilian real MYR Malaysian ringgit
CAD Canadian dollar NOK Norwegian krone
CHF Swiss franc NZD New Zealand dollar
CNY Chinese renminbi PEN Peruvian nuevo sol
CZK Czech koruna PHP Philippines peso
DKK Danish krone PLN Polish zloty
EUR Euro RUB Russian ruble
GBP British pound SAR Saudi Arabian riyal
HKD Hong Kong dollar SEK Swedish krona
HRK Croatian kuna SGD Singapore dollar
HUF Hungarian forint THB Thailand baht
IDR Indonesian rupiah TRY Turkish lira
ISK Icelandic krona TWD Taiwanese dollar
INR Indian rupee USD US dollar
JPY Japanese yen ZAR South African rand

Real Data Results

To report the analytical results, we consider the different thresholds for partial corre-
lation to explain the most important relations between considered currencies. We apply
filtering by considering only ones that exceed those thresholds to explain how these net-
works are formed.

• 2018–2021 network: First, strong partial correlations appear between European curren-
cies: DKK, HRK, CZK, PLN, HUF, CHF, and EUR. Additionally, we find a cluster that
consists of HKD, SAR, CNY, TWD, SGD, and USD. Considering a smaller threshold,
one notices the partial correlation between the Oceania couple of AUD and NZD and
CAD, and the joining of EUR to the USD-based cluster, which connects European
currencies to this cluster. Finally, a rather interesting cluster centered around a Latin
American currency, MXN, appears, which consists of BRL, ZAR, and RUB;

• 2018 network: We observe strong correlations between European currencies: DKK,
HRK, CZK, PLN, HUF, and EUR. The USD-based cluster here consists of HKD, PEN,
TWD, SGD, CNY, THB, and MYR. The EUR currency connects these two major clusters.
We find the relation between the Oceania couple AUD and NZD and CAD for a
smaller threshold. In addition, a cluster between the Latin American, African, and
Asian currencies MXN, ZAR, and RUB is noteworthy;

• 2019 network: Similar to the 2018 network, we have strong and connected European
currencies: DKK, HRK, CZK, PLN, and HUF. The USD-based cluster is formed by
HKD, SAR, TWD, SGD, CNY, and MYR at first; by considering a smaller threshold,
we find other currencies such as PEN and THB. We observe that EUR connects these
two clusters, and another cluster consists of AUD, NZD, NOK, and SEK;

• 2020 network: This year, we observe the USD cluster as follows: HKD, SAR, TWD,
SGD, and CNY. We can see MYR, PHP, and THB as a disjointed clique (every two
distinct vertices are adjacent). Regarding European currencies, EUR and CHF have
a connecting role between this cluster and the USD-based cluster. The European
currency cluster consists of DKK, HRK, CZK, PLN, and HUF. In addition, we observe
two other clusters: the Oceania couple AUD and NZD with CAD and GBP, and MXN,
BRL, ZAR, and RUB. These two clusters have a connection to European currencies
by SEK;

• 2021 network: As previously, we observe that the USD-based cluster consists of HKD,
SAR, TWD, CNY, and SGD. DKK, HRK, CZK, HUF, PLN, CHF, SEK, and EUR form a
European currency cluster, which is connected to the USD cluster by EUR. In addition,
we discover an interesting cluster centered around AUD consisting of NZD, CAD,
NOK, and GBP. Considering a smaller threshold, we find more relations in the last
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cluster and considerable partial correlations between AUD, NZD, NOK, and SEK. This
year, we see a strong partial correlation between GBP and SGD, which has never been
observed before. Finally, we have a small cluster consisting of three Latin American,
Asian, and African currencies: MXN, RUB, and ZAR.

5. Discussion

This section provides a summary of the paper and highlights the results. Additionally,
we address some limitations of the research and gaps for future research. Finally, we review
the findings and the results of the proposed method: GSOS.

5.1. Summary

In this paper, we proposed two methods to estimate a precision matrix in multivariate
Gaussian settings. Estimating a precision matrix is one of the most critical tools for recon-
structing an undirected graphical model expressing conditional dependencies between
variables. Furthermore, obtaining an estimated network of partial correlations with a
suitable rescaling of the precision matrix is possible.

We focused on the high-dimensional case to obtain regularized and sparse estimates
considering the elastic net-type penalty. This penalty is a combination of the Frobenius
norm when a target matrix is taken into account and the L1 norm penalty to create sparsity.
The first method, Algorithm 1, employs the dpglasso technique proposed by [5] to find
penalized log-likelihood estimation. The second method, Algorithm 2, follows a similar
approach to glasso, as studied by [1], and solves optimization problems by turning them
into quadratic problems.

We conducted a simulation study to test the proposed algorithms using three different
sample sizes and six common network structures reflecting various forms of conditional
dependence. To calculate the performance measures for all the methods, we considered
100 independent simulations for each network; we presented the average of the Kullback–
Leibler, L2, quadratic, and spectral norm loss functions. The optimal tuning parameters for
each method were determined using five-fold cross-validation for each simulation run.

Lastly, we presented an empirical study of the network between 32 currencies for the
years between 2018 and 2021. We estimated annual and four-year networks according to
these years. We evaluated the high-dimensional precision matrix in every yearly network
in this real data study.

5.2. Contributions

We added sparsity to the alternative ridge estimator by considering the L1 norm as
an additional penalty. In this area, [15] also focused on the elastic net-type penalties for a
Gaussian log-likelihood-based precision matrix estimation called gelnet. However, they
simultaneously considered the target matrix for the L1 and Frobenius norm. Therefore,
we cannot obtain our estimator from gelnet when considering nonzero target matrices.
These relations encouraged us to choose glasso, alternative ridge, and gelnet as competitor
estimators to compare with our proposed estimator, GSOS.

We used the R programming language [25] and the “GLassoElnetFast” package for the
simulation study; the codes are available on https://github.com/Azamkheyri/GSOS.git,
accessed on 27 October 2022. In terms of simulation results, GSOS outperformed alternative
ridge with most of the underlying structures in the high-dimensional case for all considered
sample sizes. GSOS and gelnet, in most cases, behaved almost similarly, but in Network 4
for the Kullback–Leibler and L2 risk measures, GSOS significantly outperformed gelnet.

On glasso: according to the Kullback–Leibler risk measure, GSOS and glasso per-
formed similarly, except in Networks 1 and 2, where GSOS performed better. For the
L2 measure, GSOS performed better in Network 1, while for the quadratic risk measure,
their behaviors are different; in three networks, GSOS outperformed glasso and for the
remainder, glasso was better. Therefore, our proposed estimator is an efficient way to
estimate precision matrices for the high-dimension Gaussian graphical models.

https://github.com/Azamkheyri/GSOS.git
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Finally, we added a real data example, the PERS dataset, and estimated four annual
and one four-year dependency networks from 2018 to 2021. Since the log returns must
be calculated using data from two consecutive days, we removed from our research those
currencies for which there were at least ten missing values for exchange rates with the USD.
Therefore, we estimated high-dimension precision matrices with GSOS for 32 currencies
worldwide.

5.3. Strengths and Limitations

As we mentioned before, we considered the elastic net-type penalty for the Gaussian
log-likelihood problem to estimate the precision matrix. The most important strength of
our proposal is that this kind of penalty could help simultaneously obtain the advantages
of the Frobenius norm and L1-penalized estimations. We could not prove that our proposed
estimator mathematically outperforms the known methods; this might be considered
as a limitation. However, we illustrated the performance of the GSOS estimator with a
simulation study under six different frequently used dependency networks in the literature.

Our simulation results are related to the considered network’s structure and per-
formance measures; hence, they are not general. Furthermore, despite our proposed
estimator’s considerable statistical performance, there is no overall winner.

Finally, because of the presence of missing data in the foreign exchange markets and
the fact that log returns of the data have to be calculated from two consecutive days, only
those currencies in which there were less than ten missing values for exchange rates based
on USD were considered.

5.4. Future Work

For future research, we will consider studying the asymptotic behavior of our suggested
estimators. In addition, while all the recommended estimators depend on the multivariate
Gaussian assumption, we might also consider ways to do away with it by proposing distribution-
free approaches or looking at other distributions to capture the data’s properties better. The
relationship between the values of two tuning parameters—α and λ—might be worthwhile to
investigate.

Moreover, the considered real data example has more potential for further study, for
instance, considering long-term studies and interpreting the results based on geographic,
economic, or political factors.

6. Conclusions

The proposed precision estimator is based on the L1 penalty for sparsity on Gaussian
log-likelihood and penalization with Frobenius norm shrinkage to an arbitrary non-random
target value. We proposed two algorithms based on gradient descent (glasso) and the box-
constrained quadratic program (dpglasso). Our approach is similar to gelnet by [15], but
with some refinement; the estimator proposed here cannot be obtained from gelnet. Com-
pared to other alternatives, the simulation study illustrated that our proposed strategy
is a good competitor for high-dimensional precision matrix estimation. Additionally, we
presented an empirical analysis of a network of 32 popular currencies and estimated yearly
and four-year dependency networks.
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Abbreviations
The following abbreviations are used in this manuscript:

GLASSO Graphical lasso with zero target matrix
GLASSO-I Graphical lasso with identity target matrix
GLASSO-vI Graphical lasso with scalar target matrix
GELNET Graphical elastic net with zero target matrix
GELNET-I Graphical elastic net with identity target matrix
GELNET-vI Graphical elastic net with scalar target matrix
ROPE ROPE with zero target matrix
ROPE-I ROPE with identity target matrix
ROPE-vI ROPE with scalar target matrix
GSOS GSOS with zero target matrix
GSOS-I GSOS with identity target matrix
GSOS-vI GSOS with scalar target matrix

Appendix A

Figure A1 shows the precision matrices of the considered networks in the simulation study.
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