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Abstract: Camouflage objects hide information physically based on the feature matching of the texture or
boundary line within the background. Texture matching and similarities between the camouflage objects
and surrounding maps make differentiation difficult with generic and salient objects, thus making
camouflage object detection (COD) more challenging. The existing techniques perform well. However,
the challenging nature of camouflage objects demands more accuracy in detection and segmentation. To
overcome this challenge, an optimized modular framework for COD tasks, named Optimize Global
Refinement (OGR), is presented. This framework comprises a parallelism approach in feature extraction
for the enhancement of learned parameters and globally refined feature maps for the abstraction of all
intuitive feature sets at each extraction block’s outcome. Additionally, an optimized local best feature
node-based rule is proposed to reduce the complexity of the proposed model. In light of the baseline
experiments, OGR was applied and evaluated on a benchmark. The publicly available datasets were
outperformed by achieving state-of-the-art structural similarity of 94%, 93%, and 96% for the Kvasir-SEG,
COD10K, and Camouflaged Object (CAMO) datasets, respectively. The OGR is generalized and can be
integrated into real-time applications for future development.

Keywords: semantic segmentation; global refinement; camouflage objects; graph fusion; edge enhancement;
boundary guidance; graph convolutional network; vision transformer

MSC: 68T07

1. Introduction

In the exploration of different kinds of objects by visual observation and the process
of differentiating them, most objects are efficiently observed and found easily and are
thus classified as generic [1], while some hide their features [2]. Biologists declared that
those objects hide their features, are difficult to recognize by a human visual sensor, and
become “camouflaged”. These camouflage objects, as shown in Figure 1, use the natural
phenomenon of hiding features in objects using the same combination pattern of color, struc-
ture, and material to its surroundings, making its visibility and differentiation difficult—for
example, a polar bear on ice, a red bee on the red carpet, an owl on a tree branch, etc. This
hiding technique deceives the observer from clearly defining and exploring these objects.
Therefore, it requires more boundary information about the objects to be recognized and
similarities between them and their background. Some animals also take advantage of nat-
ural camouflage [3] and change their body color and structure to match their surroundings
to prevent recognition by their predator. A high level of object structure and boundary
information is required to find and explore these camouflage objects using computing
devices as a COD [4] task. Thus, COD is a more challenging task in its data samples and
techniques than salient object detection [5]. Although different applied computer vision
tasks, e.g., semantic analysis, data processing, face object detection and recognition [6], and
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high-level understanding of image [7] and video segmentation [8], etc., helped with deep
learning interpolation to solve the COD challenges.
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and preparing annotations for each sample regarding each class of the camouflaged object 

at the object level, as shown above in Figure 2. 

Figure 1. Example of different camouflage objects [4].

There is still a particular area requiring further improvement regarding different
groups of camouflage objects and techniques. Sometimes camouflage objects consist of
multiple instances that do not have a completely singular and relevant boundary. Thus,
these independent shapes are difficult to understand as a single object, e.g., the chameleon
backed by a leaf as shown in Figure 2, etc.
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Figure 2. Occlusion in camouflage objects: (a) original image (The circle shows that the particular
object sitting on the branch has occlusion); (b) ground truth label; (c) overlaid.

These multiple instances may differ from the other, and the complete object visualiza-
tion using relevant and singular body information becomes difficult. Unlike salient object
detection [5], in camouflage, the object boundary is unclear, and different separate frag-
ments make an object more challenging. These fragments of objects need to be addressed
due to the separate regions of camouflage objects in an image.

To overcome COD dataset challenges [4], many computer vision scientists and biolo-
gists have worked extensively on the goal of high-resolution image dataset collection and
preparing annotations for each sample regarding each class of the camouflaged object at
the object level, as shown above in Figure 2.

In [4], a significant COD10K dataset [4] was presented along with the deep learning
model for a COD task. Afterward, the scientists found the flexibility to explore this dataset
with multiple machine learning and deep learning methods to compare it with the methods
using the generic object and the salient object dataset. In the same year, the parallel attention
model [9] was proposed to speed up its performance. Recently, a modified instance-level
dataset for camouflage objects was presented, and multiple prescribed methods of instance
segmentation were used as frameworks. Therefore, the need for experiments on camouflage
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objects with high-resolution image data in such a challenging task requires the design and
development of a versatile, comprehensive, and optimized approach.

As shown in Figure 3, the proposed framework contains an optimized solution using
a deep learning technique with a complete training flow as described in Algorithm 1, and
the optimization rule is explored in Algorithm 2. This framework follows the modular
approach toward a COD task and is adopted on multiple dataset samples to ensure it
outperforms previous approaches. The following contributions comprised the model’s
components focusing on the optimal solution. Thus, the proposed framework provides the
solution for COD using three modules or sub-frameworks, i.e., global refinement, optimizer,
and parallel convolution.

Algorithm 1. Optimize, Parallel Refinement.

Input:
1. Sample collection in a combined list of samples I and its target GT [I]
2. Hypothesis M with parameters w initialized with random or zero initializer.
3. Optimized process O states the member of the hypothesis function. O ∈M (f(x))
Output:
1. for U← i to E do
2. for L← l to length Itrain do
3. ytrain

pred←M(Itrain, Gi−1), Op
(

Mp
i

)
⇒ i>0 | ! G[φ]

4. etrain
l = ytrain

i − xtrue
i

5. end f or
6. etrain

i /L ≤ etrain
i−1 ∧ Gi−1 | Gb

7. etrain minima.
8. Monitor var
9. ytrain

pred ↔ GT [I], Met [ f , e, s]

10. etrain
i Backpropagate

11. Gi . Update
12. end for
13. In validation do
14. for K← k to length Itest do
15. ytest

pred← h(Itest, Gi, )

16. etest
l = ytest

k − xtrue
k

17. etest
i
L ≤ etest

i−1
18. end for
19. end for

Algorithm 2. Optimization Framework

Input:
1. Initialize parameters. W, N, epochs, etc.
Output:
1. for i← 1 to E do
2. for M← 1 to length Itrain do
3. Convert the system into binary distribution.
4. Preprocess the algorithm’s parameters in all dimensions.
5. Calculate fitness using the upper and lower boundary of the sample space.
6. Calculate fitness by reducing error and the performance measure.
7. Update all the dimensions of all the sample space
8. end for
9. end for
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(c) Optimizer; (d) Parallel Convolution.

The Global Refinement Framework is proposed to utilize the ratio-dependent fusion
of global features for the best alignment of the localized objects on the background map. A
Parallel Convolution Framework is proposed to extract the features in parallel to make the
global optimization from the parallel fused features for the best boundary construction at a
low level with the least number of channels. The Optimizer Framework is proposed for the
best feature channel selection and regularization. Furthermore, it helps to select the best
feature matrices for the linear minimization of the loss function.

This article is composed of the following sections: Section 1 states the introduction of the
domain and the problem statement that results in the proposed solution—the brief history of
the domain is followed by the progressive improvement in the solution. Section 2 relates to
the data, the previous methodology, and its related work. Section 3, Section 4, and Section 5
describe the proposed methodology using the mathematical model. Section 6 comprises the
experiment and its results. Section 7 discusses future work and conclusions.

2. Materials and Methods

Over a decade, object detection and segmentation techniques were encouraged due to
their frequent application to many real-life problems, mainly focused on the image and its
pixel-wise labeling. In generic objects, labeling and prediction are comparatively easy tasks
due to the discreet texture of the object and clear boundary lines to obtain the best annotations.
The image’s resolution is not required to be higher due to the vividness and clarity between
the object and the background. However, for the COD task, the findings of the dataset are not
only the depiction of the problem, but the solution faces challenging conditions in terms of
the camouflage. The algorithm trained on the generic objects fails on the salient object due to
the fewer features that were found, and failed to detect the camouflaged object due to having
faint information of the object boundary. Therefore, the dataset and the model design are to
be explored to better understand this domain and the problem statement.

This domain has a very limited collection of datasets; due to its challenging nature,
the images are difficult to find and prepare, i.e., image collection and GT annotations,
respectively. The CAMO dataset [10] consists of 1250 images of ecological camouflage, and
the Kvasir-SEG [11] has images of medical camouflage, consisting of 1000 images. While
the COD10K dataset has the natural camouflage, consisting of 10,000 images.

Many techniques in deep learning and image processing were proposed and applied
specifically for camouflaged objects, and the special attention of computer vision researchers
was attained. These types of objects are often hard to be recognized by humans themselves due to



Mathematics 2022, 10, 4219 5 of 20

the complexity of their pixels and the boundary line of the distinct surface area contained within
the image pixels. To express the existence of the camouflaged objects, different technologies and
techniques have been promoted, as shown in Figure 4, not only to predict these features from
the known data but to apply them to the unseen data. This task is classified as object detection
and segmentation using specific dataset samples and algorithmic approaches.
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2.1. Search and Identification

This method [4] is biologically inspired by the living predator in which, initially, a
required object is searched out using the biological boundary space, having sensitive infor-
mation, then the object is identified as a target for the predator. The search module uses a
convolutional neural network-based inference and encloses and reduces the feature dimension
of the network stream. The identification module used the block for object identification
concerning the multiple evaluation functions. For this purpose, searching the identification
network has resnet-50 architecture followed by the receptive field (RF) component.

The extracted features are divided for the identification module through multiple
up-sampling and down-sampling serial units to be passed into the RELU activation func-
tion. The identification module has a partial decoder component (PDC) that performs
element-wise multiplication to decrease the gap between the same-level features in the
dual stream [12]. Hence, the designed model was accomplished with the achievement of
dense feature extraction.

According to the latest research, the medical COD was explored in polyp segmenta-
tion [13], as shown in Figure 4, when a parallel reverse attention-based network [9] was
utilized. Like an ordinary semantic segmentation network, it has two modules of parallel
decoding and reverses the attention mechanism. The parallel decoder takes the input from
a skipped serial connection of the down-sampled stream in the network, while the reverse
attention is the featured mask multiplication and reversed matrix pixel decomposition
followed by an up-sampled stream. The actual size is achieved after a series of up-sampled
streams followed by a reverse attention module.

2.2. Boundary Guidance and Edge Enhancement

A denoised model [14] for the COD involves the removal of noise and its effects from
the camouflage map in the form of uncertainty and is validated in the noisy ground truth.
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The noisy labeling leads to the prediction of uncertain conditions for all types of objects
and is not limited to camouflage objects. Camouflage has the particular scope to be cleaned,
and handles the input and predicted weights more carefully for semantic inheritance. To
achieve semantic inheritance and boundary guidance [15], as shown in Figure 5, the high-
level features fused with the low-level features. These features were extracted from the
independent layer and transformed into a residual channel attention block with the serial
feature link to the module for each connection. Two predictions with the feature maps
3–5 and 2, with 6–8 repeating the above-mentioned process, computed the ŷini and ŷref,
respectively, in the 0–1 range, knowing that the ŷref is the final predictor. A UNet-based
model [16] was proposed using the leaky ReLU [17] activation function called CODNet [18].
It uses both the predictor of ŷini and ŷref for the concatenation with the input to create a
feature map as a confidence map. This confidence map is followed by the prediction of
COD and ground truth of camouflage y.
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The final prediction is the dynamic uncertainty precision, composed of the pixel-by-
pixel distance between the actual ground truth and the confidence map of the predictor of
CODNet that has two input branches. These inputs are used to adapt pixel-wise multiplica-
tion and concatenating two convolution operations following the residual block focusing
on the foreground map instead of the background map. The prior edge gains the shape of
the 64 channels used for the recalibration unit, and this unit is used for the refinement of
the input in the decoder block instead of the fusion mechanism.

Edge-enhancement-based [19] COD tasks differentiate the traditional model approaches
by modifying the sample data. The purpose is to enhance the edge information with differ-
ent feature engineering techniques. A sub-edge decoder (SED) [20] is used in between the
two square fusion decoders (SFD). SED uses both features, i.e., the original feature map
and the fused feature map. Like most of the COD tasks, this model also uses the resnet-50
model and borrows its residual behavior to transfer to the new design. Second SFD is
treated as the final camouflage map for the interaction of the loss function.

Like other COD algorithms [4,9,18], the loss function remains cooperative with the
binary cross-entropy and IoU. This edge enhancement further undergoes feature-based
optimization with respect to the object. The binary pixel-wise classification algorithms have
the potential to be estimated by the edge dataset. The notable COD10K dataset [4] contains
the edge information for all the camouflage objects and instances. These samples are to be
used with edge-based classification or boundary regression using the values of the edge.

2.3. Vision Transformer in COD

The latest research found the transformer-based model’s [21] interaction with the
computer vision tasks led to the basic encoder and decoder network in semantic or instance



Mathematics 2022, 10, 4219 7 of 20

segmentation to the transformer module. The process modified the basic design of the
feed-forward neural network with the refinement of feedback [22] that was attained from
the loss function after the complete input inferences. The feed-forward block utilized the
transformer model, and the training went iteratively backward, followed by the refinement
of the effect of the loss function. A pyramid vision transformer [23] was used for the feature
extraction and fed to the feedback block in which the layer is concatenated with the input.
These feedback blocks were followed by some basic blocks.

The basic block consists of the convolutional layer in series with the multiplication
of the fully connected layer. This output is provided to the iteration feedback module in
which the data flow is controlled by the loss function with the Intersection over Union (IoU)
and binary-weighted cross-entropy, as shown in [4,9,18,20].

2.4. Graph and Search Fusion in COD

A graph convolutional network (GCN) was mutually applied for edge- and region-
based feature learning. The image features populated for the mutual graph learning [24]
technique have a task-specific block of the extracted feature. A graph fusion [25] was
implied between the inference stream of the extracted feature tensor F1 followed by the
basic block and the definite forward iteration Yin of the network to obtain a resultant named
Y′. These resultants were forwarded to the loss function and named iterative feedback loss
to evaluate the network and update the training.

The instance-level method to separate the object in a single frame needs more attention
and technical methodology. Camouflage fusion learning was performed to efficiently
solve instance segmentation tasks. For this purpose, a search-based model was used
with all the samples of the input images. The instance-level methodology was achieved
using a vision transformer as well as multiple well-known methods, including Mask
RCNN [26], Cascade Mask RCNN [27], MS RCNN [28], RetinaMask [29], CenterMask [30],
YOLACT [31], SOLO [32], BlendMask [33] with ResNet50 [34], ResNet101-FPN [34] and
ResNetXt101-FPN [35]. The framework [36] completes its task in two stages. Firstly, the
instance segmentation model is trained using this loss function, and secondly, the search
algorithm trained the predictor to choose the best instance in the segmentation model.

Hence, these techniques are for camouflage object and instance detection tasks. For
this purpose, remarkable work also has been observed in the dataset collection and its
preparation. However, there is still a need to fill the gap in the dataset collection and
algorithm design to solve the task of COD. The search-based model combines instance
search model implementations with the dual loss binary cross-entropy. The search for the
best weightage of the image sample is imposed for updating the waiting list of the sample
image, in this instance, with the use of the segmentation model.

3. Parallel Convolution Framework (PCF)

The PCF acquires the group convolution blocks input and surpasses it to the global
refinement and optimizer. In PCF, the group convolved input gconv is separated in two paral-
lel paths for discreet structural feature extraction, and the channel outputs are concatenated
in the Conc1 states as shown in Equation (1).

Conc1 = (P1 C P2) (1)

P1 = ϕ (Bn( Max( 4× Conv (gconv)))) (2)

P2 = ϕ ((8× Conv (gconv)) + Bn) (3)

P1 shows the pooled and batch normalization path that is concatenated with the un-
pooled path P2, as shown in Equations (2) and (3). The Conc1 is responsible for the serial
path v3 That is activated with the ELU activation function E and initial features f1. v3 is
followed by the batch normalization layer and its pooled and convolved Conc1 input as
shown in Equation (6).
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Conc2 = ( f1 C v3) (4)

f1 = P2 − ϕ ( Bn(.)) (5)

v3 = E (Bn( Max( Conc1) + Conv)) (6)

In Equation (4), Conc2 is the concatenated output of the serial path v3 and initial
features f1. Initial features f1 are composed of 8× Conv of a group of convolved input
gconv, as shown in Equations (3) and (5). The final output of the ρ is retrieved after the series
of convolution operations, as described in Equation (7).

ρ = Conc2 + Max (Conv) + Conv2
k=1 (7)

Here, ρ is transferred to the global refinement and optimizer module independently.
In the global refinement, the parallel convolved input is mixed with the average pooled
input and passed to the optimizer.

4. Global Refinement Framework (GRF)

In this section, a global refinement framework is presented that employs the feature
refinement of pooled input Pi and the convolved input Ci states from the average of gconv
and ρ, respectively, as shown in Equation (8). This Pi is composed of the average of the
group convolution feature gconv, as shown in Equation (9).

<G (Pi ⊕ Ci) (8)

Pi= avg (gconv) (9)

<G is the refined global function that handles two flows of stream, i.e., normal flow νin
and the vectorized flow Φin. The normal flow is activated with the ReLU and surpasses the
batch normalization layer. Both flows are multiplied with the 1× 1 index ratio, as shown in
Equation (10).

v1 =
l

∑
i=1

νi
in � Φi

in (10)

The first serial part v1 shows the partial vectorized multiplication, and the output is
converted to the global average pooling layer, taking the νin as convolved input stream and
Φin as the pooled input stream is explored in Equations (11) and (12).

νin = ϕ (Conv (Ci) + Bn) (11)

Φin = ℵavg (Conv (Pi)) (12)

ϕ shows the activation function on the convolved input flow after convolution as
Conv, and batch normalization as Bn make the output as νin. ℵavg shows the global average
pooling after the convolution on the pooled input. v1 is reshaped from the vector to two-
dimensional vector space R2 to apply the convolution with the concatenation of activated
convolved input as νin − Bn is shown in Equations (14) and (15).

v2 =
(

νp C Φp
)

(13)

νp = Conv( (νin − Bn) (14)

Φp = ℵavg

(
R2 (v1 )

)
(15)

The second serial part v2 shows the output from the concatenation of partial convolved
and partial pooled inputs as νp and Φp, respectively, as shown in Equation (13). The final
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output of this framework is attained after passing the batch normalization Bn and sigmoid
activation S ig to v2, as shown in Equation (16).

<G = S ig ( Bn (v2)) (16)

The objective of the global refinement module is to expand the global features by
index-wise multiplication in a two-dimensional vector space and normalization of features
with the average pooling and sigmoid activation function. The globally refined output is
transferred to the optimizer module and the cost function. In the optimizer module, the
best channels are selected for the best position of the feature matrices.

5. Optimizer Framework (OF)

In OF, channel-wise optimization is proposed for the best channel selection to avoid
the overfitting and complexity of the training model. The optimizer framework O is
composed of three major tasks, i.e., binomial distribution, selective search, and optimal
channel selections.

ı = R
∣∣∣∑ ρ +<G + Conv

∣∣∣ (17)

It takes the input ı from the parallel convolved ρ, globally refined <G and simple
convolution input as shown in Equation (17) and the input is transformed to the linear
vector space R .

The binomial distribution β having a lower boundary `d and the upper boundary `u,
takes the vectorized input ı and formats the values in 0 and 1, as shown in Equation (18).
The purpose of these binary values transformation is to make the decision effectively for
the selective search. This selective search works efficiently on the one-dimensional binary
values β by ordering the distribution in ascending order 0 ≤ i ≤ n, λn

0 ∵ λi εβ.

β = ϕ (ı, [`d, `u]) (18)

The optimal feature selection takes the inner boundary values from β and calculates
the fitness function Y for the searched instances λn

0 as shown in Equation (19). The Y
calculates the error e of λn

0 and updates the cost using the objective function o as shown
in Equations (21) and (22). For error calculation in λn

0 , mean squared error (MSE) for the
regression values and the objective function is expanded using the best instance value
raisebox1
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Y =
l

∑
k=1

(e + o), λn
k =
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e = MSE (a + bλn
k ) (21)

o = a× e + (1− a)×
(
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dim0
(
λn

k
)) (22)

l shows the number of iterations for the fitness function, composed of the error
calculation and the objective function. The samples at a higher position, correspond to the
fitness evaluation and are selected from β. The best features fb from the λn

k are selected
based on high boundary values as shown in Equation (23).

fb =

{
βi = 1 λn

k = 1
βi = 1 otherwise

(23)
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The fb and Conv are transferred to the convolutional transpose layer and added to
make a single flow τf as shown in Equation (24) to the cost function. The MAE is used as a
cost function Cm of the model in which τf and ground truth G, as shown in Equation (25).

τf = transConv ( fb) ⊕ transConv (Conv) (24)

Cm = MAE
(

τf , G
)

(25)

transConv is transpose convolution that is applied to the best feature’s output and
convolved output to get the contracted feature map.

6. Experiments and Results

The proposed model is applied in the experimental setup by using PyTorch with the
Adam Optimizer. The training batch size was experienced on the 8 and 12 and found the
results were better on batch size 8 with the initial learning rate of 1 × 10−4. The whole
training time was almost 60 min for the 10 epochs. The experiment was performed on the
platform of 12 CPUs and 1280-core graphic processors on all the datasets, and the image
size was maintained at 352 × 352 × 3. This input size of the model is further used in
preprocessing, cleaning, and enhancement of the model. The preprocessing was performed
for data normalization and defining the parameter of the input shape from the raw data.
A pixel value normalization was also used on the model input gate from its minimum to
maximum range. This input was forwarded to the model for feature extraction, and the
results were compared with the predefined results to train the model. The evaluation time
on this framework is 83.3 ms/sample.

The CAMO dataset [10] consists of generic camouflage objects that are dependent upon
the specific situation or condition, as shown in Figure 6a. COD10K [4] contains 10,000 images,
as shown in Figure 6b, in which 5066 are defined as camouflaged, 3000 background, and
1934 as non-camouflaged. It occupies the 78 sub-classes of biological camouflage. The
collection of the 10,000 images includes 6000 for training and the remaining 4000 samples
for testing purposes. The Kvasir-SEG dataset [11] is the medical camouflage dataset
with a gastrointestinal binary segmented area designed for polyp segmentation. It has
1000 samples with the ground truth provided, a very small dataset of images. The provided
annotations were generated for the images as shown in Figure 6c, and the images were
collected through biomedical sources. This dataset was beyond consideration in the COD
domain, but due to its application in the medical field, it is an important camouflage dataset,
and researchers have been utilizing it for experiments.

Mean absolute error (MAE) [37] is the simplest cost function to evaluate the two values,
i.e., predicted and actual. As shown in Equation (26), the formula is the qualitative measure-
ment of the two values concerning the observed samples. The formula explains the difference
between the actual and predicted value and the mean to the total number of observations.

MAE =
∑n

i=1| yi − xi|
n

(26)

The precision [38] formula is modified with the average précised class on the predicted
class with the True Positive TP and False Positive FP.

S−Measure (x, y) =

(
2 µx µy + c1

)(
2 σxy + c2

)(
µ2

x, µ2
y + c1

)(
σ2

x + σ2
y + c2

) (27)
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Figure 6. Camouflage Dataset Image Samples (a) COD10K (b) CAMO (c) Kvasir-SEG. 

Mean absolute error (MAE) [37] is the simplest cost function to evaluate the two val-

ues, i.e., predicted and actual. As shown in Equation (26), the formula is the qualitative 

measurement of the two values concerning the observed samples. The formula explains 

the difference between the actual and predicted value and the mean to the total number 

of observations. 

𝑀𝐴𝐸 =
∑ | 𝑦𝑖 − 𝑥𝑖|   𝑛

𝑖=1

𝑛
 (26) 

The precision [38] formula is modified with the average précised class on the pre-

dicted class with the True Positive TP and False Positive FP. 
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Figure 6. Camouflage Dataset Image Samples (a) COD10K (b) CAMO (c) Kvasir-SEG.

The structure similarity index measure [39] is described in Equation (27) as the
S-Measure uses the average of x, y position as µx µy, variance of x, y and covariance
of x and y σ2

x , σ2
y , σxy. L as dynamic range, c1 and c2 constant as bits per pixel, 0.01 and

0.03 by default, respectively. This is a performance metric of two binary maps of predicted
and true to find the similarity of the structure.

Fβ =
(

1 + β2
) Precision .Recall

β2.Precision + Recall
(28)

The F-measure beta [40] is denoted by Fβ, the binary map using the Precision (avg) and
Recall as described in Equation (28). It uses the beta constant β to control the complete and
detection co-factors. The beta constant is 1 by default in order to have smoothness detection.

E−measure =
1

w× h

w

∑
x=1

h

∑
y=1

∅FM. (x, y) (29)

It [41] is a binary map performance metric denoted by E-Measure dependent on the
ground truth GT and foreground map FM bias metric ∅FM as shown in Equation (29).
With the weight w and height h of the foreground map, the alignment measurement is
accomplished at the x and y position of the pixel.

The experimental procedure was initially adopted and performed using the benchmark
publicly available dataset and the pre-trained model. Furthermore, all the datasets are
trained and tested using the proposed framework and compared with the existing methods.
The experiments and comparative results are presented in the following order:

1. Experiments on benchmark datasets using baseline and pretrained methods;
2. Experiments on benchmark datasets using the proposed method;

• Comparison of the proposed method with baseline and pretrained results;
• Comparison of the proposed method with the state-of-the-art method’s results.
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6.1. Experiment 1 on Pretrained Models
6.1.1. CAMO + COD10K Datasets—In the Light of Composite Experiments

These large-scale datasets need to explore predefined random methods. Firstly, the
dataset is tested with binary accuracy and the Dice coefficient with the binary cross-entropy
loss function. The model used for these performance measures was polyp segmentation
based on the area color.

Experiments show that the results are about 10% in the ten epochs, even when transfer
learning is performed. Furthermore, the cost function is very high. The efficient segmentation
net has also been used to tackle these problems. The dataset is measured upon the binary
accuracy performance metric as well. The loss or the cost function was still binary cross-entropy.

The graph in Figure 7a,b shows that the dice coefficient increases after 20+ epochs,
while the loss is reduced, as shown in the figure, which is more costly than the model
taking a significant amount of time to be trained, as one iteration takes 30 min to 60 min
due to a large number of samples in the dataset. The same behavior has been identified
in the other performance metric and the loss function applied to this model. The UNET
model [16] and FCN [42] with the VGG16 pre-trained backbone [43] are also used with
this dataset, but the same behavior of the model was observed. This limitation needs to
be addressed to explore the dataset’s nature. The proposed model and its experiments
are conducted to understand that refinement is needed for some spatial feature extraction
processes and optimization. The experiment as mentioned above shows the behavior of the
dataset before the benchmark pre-trained models.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 21 
 

 

It [41] is a binary map performance metric denoted by E-Measure dependent on the 

ground truth 𝐺𝑇 and foreground map 𝐹𝑀 bias metric ∅𝐹𝑀 as shown in Equation (29). 

With the weight 𝑤 and height ℎ of the foreground map, the alignment measurement is 

accomplished at the 𝑥 and 𝑦 position of the pixel. 

The experimental procedure was initially adopted and performed using the bench-

mark publicly available dataset and the pre-trained model. Furthermore, all the datasets 

are trained and tested using the proposed framework and compared with the existing 

methods. The experiments and comparative results are presented in the following order: 

1. Experiments on benchmark datasets using baseline and pretrained methods; 

2. Experiments on benchmark datasets using the proposed method; 

• Comparison of the proposed method with baseline and pretrained results; 

• Comparison of the proposed method with the state-of-the-art method’s results. 

6.1. Experiment 1 on Pretrained Models 

6.1.1. CAMO + COD10K Datasets—In the Light of Composite Experiments 

These large-scale datasets need to explore predefined random methods. Firstly, the 

dataset is tested with binary accuracy and the Dice coefficient with the binary cross-en-

tropy loss function. The model used for these performance measures was polyp segmen-

tation based on the area color. 

Experiments show that the results are about 10% in the ten epochs, even when trans-

fer learning is performed. Furthermore, the cost function is very high. The efficient seg-

mentation net has also been used to tackle these problems. The dataset is measured upon 

the binary accuracy performance metric as well. The loss or the cost function was still 

binary cross-entropy. 

The graph in Figure 7a,b shows that the dice coefficient increases after 20+ epochs, 

while the loss is reduced, as shown in the figure, which is more costly than the model 

taking a significant amount of time to be trained, as one iteration takes 30 min to 60 min 

due to a large number of samples in the dataset. The same behavior has been identified in 

the other performance metric and the loss function applied to this model. The UNET 

model [16] and FCN [42] with the VGG16 pre-trained backbone [43] are also used with 

this dataset, but the same behavior of the model was observed. This limitation needs to be 

addressed to explore the dataset's nature. The proposed model and its experiments are 

conducted to understand that refinement is needed for some spatial feature extraction 

processes and optimization. The experiment as mentioned above shows the behavior of 

the dataset before the benchmark pre-trained models. 

C
A

M
O

 +
 C

O
D

10
K

 D
at

as
et

s 

  

 (a) (b) 

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 21 
 

 

K
v

as
ir

-S
E

G
 D

at
as

et
 

  

 (c) (d) 

Figure 7. CAMO + COD10K, and Kvasir-SEG Datasets, Combined Experiments on training and val-

idation dataset: (a) dice coefficient; (b) binary cross-entropy loss; (c) specificity; (d) binary cross-

entropy loss. 

6.1.2. Kvasir-SEG—In the Light of Composite Experiments 

The experimental results on the ground truth and texture of the sample were 

achieved due to less complexity. The dataset was trained on the same set of hyperparam-

eters and other dataset behavior such as sample size, batch size, and the transformation 

applied. The tabular data show the experiments based on the three datasets and their 

training with the composite and proposed model architecture, as shown in Table 1. The 

specificity was used as the performance metric with built-in accuracy metric binary accu-

racy and the loss function of binary cross-entropy due to the binary segmentation of the 

dataset using the image samples and binary ground truth, as shown in Figure 7c,d. The 

analyses of all of the experiments using different deep-learning algorithms and the pro-

posed model indicate the achievement of optimization. 

Table 1. Comparison of the proposed method with pre-trained UNet and VGG-16. 

Algorithm 
Epochs 

Dataset Remarks 
6 10 20 20+ 

UNET (Modified) 

4% 2% 8% 12%+ CAMO - 

3% 2% 7% 10%+ COD10K - 

52% 60% 67% 70%+ Kvasir-SEG - 

VGG 16 pretrained 

backbone 

1% 3% 6% 12%+ CAMO - 

2% 4% 5% 10%+ COD10K - 

55% 56% 65% 70%+ Kvasir-SEG - 

Optimize Global 

Refinement 

70% 96% - - CAMO 

Optimized 91% 94% - - COD10K 

87% 93% - - Kvasir-SEG 

6.2. Experiment 2 Using OGR Framework 

The training and validation graph based on the performance and the loss function is 

to be demonstrated to visualize the experimental achievements. The proposed model was 

applied to the three datasets, including CAMO, COD10K, and Kvasir–Seg, respectively. 

These datasets are from different branches of image segmentation. 

6.2.1. Experiments on CAMO Dataset 

The benefit of an average number of samples with the binary generated a mask of 

almost ~1250 and was trained with the proposed architecture and attained the desired 

results. In the preprocessing stage, the transformation was used on the image samples to 

exploit the flip, translate, and rotate parameters. The image samples were then passed to 

the proposed architecture of the semantic segmentation model to train the samples with 

Figure 7. CAMO + COD10K, and Kvasir-SEG Datasets, Combined Experiments on training and validation
dataset: (a) dice coefficient; (b) binary cross-entropy loss; (c) specificity; (d) binary cross-entropy loss.

6.1.2. Kvasir-SEG—In the Light of Composite Experiments

The experimental results on the ground truth and texture of the sample were achieved
due to less complexity. The dataset was trained on the same set of hyperparameters and
other dataset behavior such as sample size, batch size, and the transformation applied.
The tabular data show the experiments based on the three datasets and their training with
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the composite and proposed model architecture, as shown in Table 1. The specificity was
used as the performance metric with built-in accuracy metric binary accuracy and the loss
function of binary cross-entropy due to the binary segmentation of the dataset using the
image samples and binary ground truth, as shown in Figure 7c,d. The analyses of all of the
experiments using different deep-learning algorithms and the proposed model indicate the
achievement of optimization.

Table 1. Comparison of the proposed method with pre-trained UNet and VGG-16.

Algorithm
Epochs

Dataset Remarks
6 10 20 20+

UNET (Modified)
4% 2% 8% 12%+ CAMO -
3% 2% 7% 10%+ COD10K -
52% 60% 67% 70%+ Kvasir-SEG -

VGG 16 pretrained backbone
1% 3% 6% 12%+ CAMO -
2% 4% 5% 10%+ COD10K -
55% 56% 65% 70%+ Kvasir-SEG -

Optimize Global Refinement
70% 96% - - CAMO

Optimized91% 94% - - COD10K
87% 93% - - Kvasir-SEG

6.2. Experiment 2 Using OGR Framework

The training and validation graph based on the performance and the loss function is
to be demonstrated to visualize the experimental achievements. The proposed model was
applied to the three datasets, including CAMO, COD10K, and Kvasir–Seg, respectively.
These datasets are from different branches of image segmentation.

6.2.1. Experiments on CAMO Dataset

The benefit of an average number of samples with the binary generated a mask of almost
~1250 and was trained with the proposed architecture and attained the desired results. In
the preprocessing stage, the transformation was used on the image samples to exploit the
flip, translate, and rotate parameters. The image samples were then passed to the proposed
architecture of the semantic segmentation model to train the samples with masks. The MAE
was a loss function for the model backpropagation and updating the weights.

In some experiments, the loss function was reduced by the iteration or epochs, but
the accuracy was not attained. Additionally, in the iteration where the trainable param-
eters do not reduce the loss function, validation accuracy of >90% was achieved. Such
behavior of the loss function on training and validation shows the inconsistency in the
data samples. The CAMO dataset [10] has generalized camouflage, which is not only
limited to natural camouflage but also contains situational or other camouflage. The Adam
optimizer initialized with zero gradients showed the independent behavior of the model
inference. The model’s training sample showed some accuracy reduction, but on the test
set, remarkable model behavior was observed. The strategy was observed in that the MAE
was working independently, and the model parameter metrics were saying something
else. The validation of the situation-based camouflage has the same impact on the model
behavior in terms of inference and learning. The model was repeatedly trained on this
dataset, wherein the Adam optimizer, variational accuracy and loss are better than the
training accuracy and loss, which is very common.

The graph as shown in Figure 8 describes that the model validation accuracy has sudden
behavioral learning, which is somehow a fair condition and the cause of dataset complexity,
as well as learning rate (initially 0.001) for 10 epochs, and the 70|30% train–test ratio.
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Figure 8. Training and validation graph on CAMO, COD10K, Kvasir-SEG on training and validation
dataset: (a) binary accuracy; (b) mean absolute error loss.

6.2.2. Experiments on COD10K

This is a large dataset with high-resolution images for training (352 × 352), and the
Adam optimizer was used for the learning rate control. With the loss function of MAE, the
network was trained in 10 iterations. This dataset is complex in that the predefined model,
such as UNeT, only brings an accuracy of 50%. The technique of parallel convolution
and the optimizer function caused the dataset to have the highest accuracy. The learning
parameters of the model remained at zero for each batch size until the model obtained the
best results independent of the iterations. In another setting, the model optimizer became
iterative of the previous epoch. The batch size of 2 and 3 was the only possible option for
the machine to have an offline experiment of the proposed model.

The training results of the proposed model were explored in graph form, and the
quantitative analysis of this dataset with the previous technique was in tabular form. The
data was in the binary polyp segmentation type despite multiple instances. The concept of
the existence and non-existence of the camouflage was used to keep the model smooth and
less burdened. The data loader identified with the normalization and the preprocessing of
the input sample image. The model is trained on the condition to reduce the loss function
and the performance measurement. The training direction is independent of the metrics
used in this model. The graph shows the accuracy, the losses, and the effect of the reducing
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loss function, which was very low on this dataset. The constant lowering of the cost
function can result in accuracy loss independent of the iterations and dependent on the
data samples. As shown, the proposed model was trained on this dataset with the Adam
optimizer, a variational learning rate initially at 0.001 with ten epochs, and 70|30% and
80|20% train–test ratios.

6.2.3. Experiments on Kvasir–Seg Dataset

The rarely used dataset used as camouflage is the polyp segmentation of gastroin-
testinal with the relevant segmentation mask. This dataset is based on binary polyp
segmentation and was passed to the proposed model. The data is biological, so the be-
havior is different for the validation. The settings of the model hyperparameters were not
changed to see the model’s behavior for each dataset under the same circumstances. The
preferred input size was 256 × 256 instead of 352 × 352. The optimizer was changed to
RMSProp to show the dataset variations and the effect of the dataset sample on the model.

The comparison of multiple datasets is shown in Table 2. The binary segmentation
was performed with batch sizes of 2 and 3, respectively. The learning iteration was 10, and
the train–test ratios were 80|20% and 90|10% due to the 1000 samples.

Table 2. Comparison of the proposed OGR w.r.t Baselines Camouflage models and datasets.

Baseline Dataset
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PraNET 
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CubeNet 
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Baseline Dataset Smeasure Emeasure Fmeasure MAE 
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CAMO 0.751 0.771 0.606 0.100 

COD10K 0.869 0.891 0.740 0.044 

Kvasir-SEG - - - - 

PraNET 

CAMO - - - - 

COD10K - - - - 

Kvasir-SEG 0.915 0.948 0.915 0.030 

CubeNet 

CAMO 0.788 0.850 0.788 0.085 

COD10K 0.795 0.864 0.644 0.041 

Kvasir-SEG - - - - 

CANet 
CAMO 0.799 0.770 0.865 0.075 

COD10K 0.809 0.885 0.703 0.035 

MAE

SiNet
CAMO 0.751 0.771 0.606 0.100

COD10K 0.869 0.891 0.740 0.044
Kvasir-SEG - - - -

PraNET
CAMO - - - -

COD10K - - - -
Kvasir-SEG 0.915 0.948 0.915 0.030

CubeNet
CAMO 0.788 0.850 0.788 0.085

COD10K 0.795 0.864 0.644 0.041
Kvasir-SEG - - - -

CANet
CAMO 0.799 0.770 0.865 0.075

COD10K 0.809 0.885 0.703 0.035
Kvasir-SEG - - - -

Pyvit+GCN
CAMO 0.544 0.902 0.801 0.057

COD10K 0.868 0.932 0.798 0.024
Kvasir-SEG - - - -

Proposed
CAMO 0.962 0.951 0.8952 0.0362

COD10K 0.94 0.9353 0.8426 0.0402
Kvasir-SEG 0.936 0.957 0.922 0.0258

Figure 9 shows the experiment results performed using three different datasets and
validation and the training graphs that were generated. The loss function is also presented
for comparative analysis of all the metrics. In this section, tables and charts are shown
concerning the different datasets and the comparison with the previous benchmark tech-
niques/algorithms based on the standard performance measures. The detailed information
in the form of the graph is shown in Figure 9a–c, showing the performance of the proposed
model and the dominancy of all the previously proposed algorithms for accuracy gain and
cost reduction, while Figure 10 shows the prediction result on the COD10K dataset.

For a comprehensive analysis, a discussion of the different performance metrics is
shown in Table 2. In light of the following experiments and discussion, the loss function
and MAE analysis found that accuracy was not attained, despite lowering the cost function.
The lowering of MAE should increase the accuracy of the model. In the model’s controlling
phase of the training, only the cost function can play a role in updating the gradient of the
model’s parameters. The cost function is responsible for the model training control and
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the parameters update. The observations indicate that lowering the cost function led to
sudden changes in accuracy, which is very dangerous.
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6.3. Comparison Results

Due to the very small number of samples in the past, the accuracy achievement and
the deep learning strategy were hard to be accomplished. The large-scale working of the
COD10K shows the way of interaction in the different parameters of exploration. A fully
convolutional-based network has been applied so far in this type of dataset due to the
image and the ground truth availability. The results indicated that the SINet achieved
results of almost 86%, 86%, 75%, and 77% for the CHAMELEON, CAMO, and COD10K,
respectively, with the different experiments of dataset generalization, meaning the different
combinations of the multiple datasets, as shown in Table 3.

Another experiment was conducted but without the large-scale dataset (COD10K); it
involved the internal body camouflage (Kvasir-SEG), and the results could reach91%. Then,
multiple models, e.g., parallel attention-based, Pyramid transformer-based, and pre-trained
backbone with resnet50, were used with the multiple datasets, and average scores of 91.5%,
[92%, 84%, 86%, 87%], [87%, 78%] were achieved. Comparing these results with this study to
further analyze this method is necessary. The proposed framework attained accuracy results
of 96.2%, 94.1%, and 93.4% on the CAMO, COD10K, and Kvasir-SEG datasets, respectively.

This section described the results of the previous study with another study in terms of
quantitative analysis. The methods used in previous research were useful to this study by
way of comparison.
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Table 3. Comparison of different state-of-the-art methods, datasets, and their results.

References Methods Dataset Results

[4] A resnet50-CNN model with Search
and Identification deep models

CHAMELEON, CAMO,
COD10K

86.9%,
75.1%,
77.1%

[9] PraNet Kvasir-SEG 91.5%

[18] A resnet50-CNN model with CANet

CHAMELEON
CAMO,

COD10K,
NC4K

90.1%,
80.7%,
83.2%,
85.7%

[24] Mutual GCN
CHAMELEON

CAMO,
COD10K

89.3%,
77.5%,
81.4%

[20] A resnet50-CNN model with CubeNet
CHAMELEON

CAMO,
COD10K

87.3%,
78.8%,
79.5%

[25]
Pyramid vision Transformer

+
GCN fusion

CHAMELEON
CAMO,

COD10K,
NC4K

92.2%,
84.4%,
86.8%,
87.0%

[36] ResNet50,101-FPN, ResNetXt101-FPN
with CFL

CAMO++,
COD10K (Instance)

33.6%
31.4%

Proposed Model Optimized Parallel Refinement
CAMO

COD10K
Kvasir-SEG

96.2%
94.1%
93.4%

7. Conclusions and Future Work

This study presents an optimization technique for COD tasks and a comparative
analysis with the previous study. The dataset was used with the same parameters as
previously used. The preprocessing techniques, e.g., transformation, image enhancement,
noise removal, etc., are used in some experiments. The proposed model works efficiently
and provides an optimal solution to the problem of camouflaged object detection. The
performed experiments used to benchmark and publicly available datasets on pre-trained
models, benchmark models, and the proposed model, indicating that the proposed model
was the best in terms of the mentioned datasets concerning performance optimization and
accuracy of the model. The training epochs, efficient learning, and optimization are best
for the previously defined architecture. This study explored the comparative results of the
experiment of the previous study with the performance of the proposed model.

The identification of the loss function is very important for model performance.
It can be further improved by selecting the best loss function for the specific model.

The model can be generalized further, and the combined dictionary keys in the model
can be modified for a better solution. This technique can also be optimized by combining
supervised and unsupervised methods. The advancement in the run-time inference and
the comparative analysis of the samples can also be enhanced.
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