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Abstract: Parkinson’s disease primarily affects people in their later years, and there is no cure for
this disease; however, the proper medication of patients can lead to a healthy life. Appropriate
care and treatment of Parkinson’s disease can be improved if the disease is detected in its early
phase. Thus, there is an urgent need to develop novel methods for early illness detection. With this
aim for the early detection of Parkinson’s disease, in this study, we utilized hand-drawn images
by Parkinson’s disease patients to effectively reduce the clinical experimental costs for poor people.
Initially, discrete wavelet coefficients were extracted for each pattern of images; thereafter, on top
of that, histograms of oriented gradient features were also extracted to refine the level of features.
Thereafter, the fusion approach-based features were fed to various machine learning algorithms.
The proposed work was validated on two different datasets, each of which consisted of various
patterns, including spiral, wave, cube, and triangle images. The main contribution of this work is
the fusion of two feature extraction techniques, which are histograms of oriented gradient features
and discrete wavelet transform coefficients. The extracted features were then provided as input into
different machine learning algorithms. In our experiment(s) on two datasets, the results achieved an
accuracy of 79.7% and 97.8%, respectively, for all four discrete wavelet transform coefficients. This
work demonstrates the utilities of fusion-based features for all four discrete wavelet transformation
coefficients to detect Parkinson’s disease, using image processing and machine learning techniques.

Keywords: Parkinson’s disease; image analysis; histogram of oriented gradients; discrete wavelet
transformation; machine learning algorithms

MSC: 68T01; 68T10; 68T45

1. Introduction

Parkinson’s disease (PD) is the second most common age-related neurodegenerative
disease only after Alzheimer’s disease. It occurs when people get older. It affects their
nervous system, causing them to tremble and stiffen, and resulting in difficulty in walking,
standing, and organizing their actions [1]. It also has an impact on the voice and causes other
cognitive issues. Both motor and non-motor signs are present in Parkinson’s disease. Motor
symptoms include tremors, slowness of movement due to muscle stiffness, gait issues,
and speech difficulties. Non-motor symptoms, on the other hand, include sleep, mood,
and cognitive disorders, such as memory loss, sleep difficulties, and impaired abstract
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thought, problem-solving, vocabulary, and visual emotional capacities. The disease is
caused by the degeneration of a brain area called the “substantia nigra” in the thalamic
region. The dopamine hormone, a synaptic information-relaying neurotransmitter, is in
charge of brain and body coordination. PD is characterized by a decrease in dopamine
hormone production, which impairs brain–body coordination.

Because there is no treatment for Parkinson’s disease unless it is discovered early,
numerous researchers have been working in this sector for the past few years to develop
a method for early detection. Utilizing the PD dataset from the University of California-
Irvine’s (UCI) deep learning database of speech signals, M. Hariharan et al. developed a
hybrid approach for identifying PD using three supervised classifiers. Least squares support
vector machines, probabilistic neural networks, and general regression neural networks
were the classifiers used in [2]. Using a combination of feature pre-processing approaches,
such as Gaussian mixture modelling (GMM), and efficient feature reduction/selection
methods, such as principal component analysis (PCA) and linear discriminant analysis,
the Parkinson’s dataset achieved a cumulative classification accuracy of 100%. With an
accuracy of 97.57%, Satyabrata et al. used voice data to distinguish the PD population from
the control group, utilizing feature sets based on PCA and a non-linear-based classification
approach [3]. Peker et al. utilized a hybrid model to achieve 98.25% accuracy, selecting
features based on minimal redundancy maximum significance (mRMR) and putting them
into a complex-valued artificial neural network [4].

Hand tremor is the most frequent symptom used by PD patients to detect the disorder
from hand-drawn images/sketches/handwriting, along with many of the other symptoms
of Parkinson’s disease. A lot of study has been conducted in the last several years to
classify PD using handwriting and hand-drawn pictures. Drotár et al. [5] used the PaHaW
Parkinson’s disease handwriting database, which comprised 37 PD patients and 38 healthy
persons who completed eight different handwriting tasks, such as drawing an Archimedean
spiral and orthographically writing basic syllables, phrases, and sentences. This study
used three classifiers—k-nearest neighbor (KNN), support vector machine (SVM), and
AdaBoost—to predict PD using conventional kinematic and handwriting pressure data,
with an accuracy of 81.3%. Loconsole et al. [6] investigated a novel method for integrating
ElectroMyoGraphy data with machine vision algorithms, such as morphological operators
and image segmentation. In this investigation, the accuracy of ANN was 95.81% and
95.52%, respectively, for two different situations (dataset 1 with two dynamic and two
static characteristics and dataset 2 with only two dynamic features). Using data from a
pen with several sensors, Pereira et al. [7] used a convolutional neural network (CNN)
to discriminate between PD patients and stable patients. Spiral and meander designs
generated by both PD and healthy people made up the findings. Folador et al. [8] employed
the histogram of oriented gradients (HOG) descriptor in conjunction with a random forest
classifier to accurately distinguish between persons with Parkinson’s disease and those
who are healthy. In our previous work, Das et al. [9] evaluated the performance of different
machine learning algorithms, using only the features extracted from HOG descriptors for
hand-drawn images.

This paper proposes an efficient hybrid fusion-based approach for the early detection
of Parkinson’s disease using hand-drawn images. The goal of this work was to use hand-
drawn artworks to detect Parkinson’s disease patients, using the fusion of discrete wavelet
transform (DWT) coefficients and HOG features, and several classification techniques
were utilized to test the efficacy of the proposed model. HOG features are widely used in
computer vision tasks for object detection. The HOG descriptor focuses on the structure or
the shape of an object. The working dataset consisted of spiral and wave images, where
investigation requires not only edge features, but also edge direction, which can be extracted
by the HOG descriptor only using the gradients in both the x and y directions. Wavelet
transforms are useful for image processing to accurately analyze the abrupt changes in the
image that localize means in time and frequency. Wavelets exist for a finite duration, and
they have different sizes and shapes. This work also evaluated the performance of various
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classifiers, using a variety of performance metrics, such as accuracy, precision, specificity,
sensitivity, and F-score. The main contribution of this paper lies in the following aspects:

• The main focus is on the early detection of Parkinson’s disease with the help of hand-
drawn images, which will reduce the high cost of laboratory examinations and will be
useful for poor people who cannot bear the extreme cost of clinical examinations.

• In continuation from our earlier work, in this work, along with HOG features, DWT
coefficients were also explored, and a fusion strategy of feature refinement was exploited.

• The proposed models were evaluated on two different datasets composed of various
types of patterns.

• The targets were to first identify which type of image was more useful, the impact of
higher number of images, which dataset gave better results, and which classification
technique would be more useful for this work.

This study is structured as follows: Section 2 explains the database along with the
proposed mechanism. Section 3 explains the experimental results of the proposed model,
followed by the discussion in Section 4. Finally, the conclusion of the paper is presented in
Section 5.

2. Materials and Methods

This section explains the databases that were used for this study. It also briefly
describes the proposed model, along with the importance of the features that were extracted,
as well as the classification algorithms with their set parameters.

2.1. Database Description

Two different datasets were used in this study. There is currently no comprehensive
database for Parkinson’s disease cases, particularly for various types of drawings created
by PD sufferers. As a result, for dataset 1, a publicly accessible collection of data was
employed in this study. This dataset may be found in the Kaggle repository. In their work,
Zham et al. [10] also validated dataset 1. Dataset 2 was obtained with mutual permission
from Bernardo et al. [11] for this study. Dataset 2 was created with the help of grants
no. 304315/2017-6 and 430274/2018-1 from the Brazilian National Council for Research
and Development (CNPq). There are two sorts of photographs in dataset 2. One type
of picture is dilated pictures, which include both dilated and processed skeletal pictures.
The comprehensive description of both datasets can be found in Table 1. Figure 1 shows
examples of photos from both datasets.

Table 1. Summary of the two datasets.

Subject
Dataset 1 Dataset 2

Spiral Wave Spiral Cube Triangle

Parkinson 51 51 54 54 58
Healthy 51 51 54 54 58
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2.2. Proposed Methodology

In this paper, images of various shapes were utilized to verify which shape of images
is good for recognition, as well as which algorithm is suitable for the proposed model
with higher accuracy for the two different datasets. Initially, single-level 2-D discrete
wavelet transform was applied on the input images. It returned the horizontal, vertical, and
diagonal detail coefficients’ matrices, as well as the approximation coefficient matrix. These
coefficients were extracted using the Haar wavelet. On top of each coefficient-based image,
HOG features were extracted. The extracted features were then fed into various machine
learning algorithms for classification. A comparison was performed to verify the effect of
these coefficients. Two types of experiments were performed in this paper. One was with
the approximation coefficient with HOG-based features, and another was the combination
of all four DWT coefficient-based HOG features. These experiments were performed for
the KNN, random forest (RF), SVM, Naïve Bayes (NB), and multilayer perceptron (MLP)
algorithms. The aim of this work was to utilize the hand-drawn images from the PD
patients and to find out which shape of images is effective to achieve the highest accuracy.
Figure 2 gives a clear overview of the proposed methodology.

2.2.1. Feature Extraction

• Histogram of oriented gradients

Various variations of attributes and classifiers may be used to recognize an image
in a photograph. Several common feature forms have been identified in the literature,
including Haar wavelets [12,13] and Gabor filter outputs [14], which are both primarily
concerned with appearance; edge templates [15], HOG [16,17], and edgelets [18], which
are both primarily concerned with appearance; and shapelets [19], which are all primarily
concerned with structure. Shape and form methods are appealing, since they just use one
image and can identify both moving and stationary objects. Shape-based applications are
thought to have a stronger discriminative impact than appearance-based characteristics.
The HOG approach’s shape-based algorithms are among the most accurate for visual
classification issues in the domain of shape-based algorithms. HOG has been coupled with
color characteristics and explicit form templates to identify any item despite the presence
of multiple occlusions, proving the ability to recognize objects despite the presence of
multiple occlusions.

In this work, we only employed the HOG feature set to extract crucial information
from hand-drawn pictures. The use of vision-based algorithms to analyze the orientation of
spiral, wave, cube, and triangle forms in photos was suggested [12–14], which we focused
on in this work. According to the concept by Dalal and Triggs [16], the detector generates a
binary output, indicating if a specific region of an image includes an instance of the targeted
item (in our case, various shapes of images). Each picture input into the detector is first
converted to a set of spatially discretized gradients. A sub-image of a certain size is taken
from this gradient histogram and converted into a function vector (the HOG). This feature
vector is then put into a number of machine learning algorithms, which recognize and
classify the item as being drawn by a healthy individual or a diseased patient. The major
contribution of this work is a detailed investigation of how a set of HOG-based classifiers
may be used to determine whether a person has Parkinson’s disease. Figure 3 shows the
HOG descriptor for spiral and wave images from dataset 1.
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• Discrete wavelet transform (DWT) coefficients

In signal processing applications such as picture watermarking, the DWT has sparked
a lot of attention. The DWT was inspired by multiresolution analysis, which entails dividing
an image into frequency channels with constant bandwidth on a logarithmic scale. It has
benefits such as a comparable data structure in terms of resolution and deconstruction at
every level. The DWT can be utilized as a multistage transformation. An image is divided
into four sub-bands at level 1 in the DWT domain, labelled LL, LH, HL, and HH, where
LH, HL, and HH represent the finest scale wavelet coefficients, while LL represents the
coarse-level coefficients. The LL sub-band can be decomposed to obtain a higher degree
of decomposition. On the LL sub-band, the decomposition process continues until the
application’s intended number of levels is attained. Because human eyes are significantly
more sensitive to the low-frequency component, the watermark can be placed in the other
three sub-bands to maintain superior picture quality (the LL sub-band).

On the different types of input images, the DWT transformation was applied. Ap-
proximation and detailed reconstruction wavelet coefficients were the outputs of these
transformations. The Haar wavelet was used as the mother wavelet to recreate the co-
efficients. The approximation output was the input signal component’s low-frequency
material, as well as the multidimensional output, which provides high-frequency com-
ponents, including horizontal, vertical, and diagonal components. These bands are often
referred to as low-low (LL), low-high (LH), high-low (HL), and high-high (HH). The HOG
feature descriptor counted the number of times a gradient orientation occurred in a specific
area of an image. It calculated the gradient orientation of each of the decomposed images’
small square regions. Figure 4 depicts all DWT coefficients from Figure 4a–d and their
HOG representations from Figure 4e–h for a spiral image from dataset 1.

2.2.2. Classification Algorithms for Evaluation

To validate the performance of the suggested model and to determine which type of
image is best for achieving the maximum accuracy, a variety of machine learning algorithms
were used. The following are the settings for various simulation approaches. For KNN, the
value of K was set to 2, while the number of trees in the forest was set to 100 for RF. The
regularization parameter was set to 0.025 and the kernel function to “linear” for SVM. The
hidden layer size for the MLP network was set to 100, the activation to “relu”, the weight
optimization to “adam”, the alpha value to 1, the learning rate to 0.001, the maximum
number of iterations to 1000, and the epsilon value to 1 × 10−8. For the experiment, default
values for NB were taken into account.
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3. Results

To confirm the efficacy of each picture form, the proposed experimental investigation
was conducted in two phases. Comparable images from many categories, such as spiral,
wave, triangle, and cube, were trained and assessed in the first phase. The model was then
evaluated using a random figure in the second stage, which used a combination of various
categories of images from the relevant dataset in the training phase.

For the classification task, we used the following metrics to check the performance of
each classifier. From the confusion matrix, we obtained the following parameters: (a) true
positives (TP), (b) false negatives (FN), (c) true negatives (TN), and (d) false positives (FP).
Table 2 shows the various performance metrics evaluated to check the efficiency of the
proposed model in this work.

Table 2. Assessment of performance measures.

Performance
Metrics Formulae

Accuracy
True Positive+True Negative

True Positive+True Negative+False Positive+False Negative

Sensitivity
True Positive

True Positive+False Negative

Specificity
True Negative

True Negative+False Positive

Precision
True Positive

True Positive+False Positive

F-score (2 ∗ Precision ∗ Sensitivity)
(Precision+Sensitivity)

3.1. Using Only Approximation Coefficient of DWT with HOG
3.1.1. Dataset 1

Tables 3–7 contain the result sets for spiral and wave images, as well as a mixture of
spiral and wave images, from when HOG features were extracted from only the approxima-
tion coefficient. From Tables 3 and 4 of spiral and wave images, the spiral images showed a
maximum possible recognition rate of 81.3%, and from Figures 5 and 6, it can be seen that
the overall RF algorithm gave the most accurate result, with an accuracy of 78.9%.

Table 3. Results of five machine learning algorithms using spiral images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 73.3 76.7 81.3 73.3 56.7
Sensitivity 80.0 80.0 70.7 73.3 86.7
Specificity 66.7 73.3 85.3 73.3 26.7
Precision 70.6 75.0 83.1 73.3 54.2
F-score 75.0 77.4 76.3 73.3 66.7
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Table 4. Results of five machine learning algorithms using wave images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 80.0 70.0 80.3 66.7 43.3
Sensitivity 86.7 73.3 86.7 66.7 40.0
Specificity 73.3 66.7 62.7 66.7 46.7
Precision 76.5 68.8 68.4 66.7 42.9
F-score 81.3 71.0 76.5 66.7 41.4
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Table 5. Results of five machine learning algorithms using spiral images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 79.2 95.8 87.5 95.8 87.5
Sensitivity 100 100 100 100 83.3
Specificity 16.7 83.3 50.0 83.3 100
Precision 78.2 94.7 85.7 94.7 100
F-score 87.8 97.3 92.3 97.3 90.9

Table 6. Results of five machine learning algorithms using cube images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 100 100 100 100 100
Sensitivity 100 100 100 100 100
Specificity 100 100 100 100 100
Precision 100 100 100 100 100
F-score 100 100 100 100 100

Table 7. Results of five machine learning algorithms using triangle images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 94.8 94.7 91.7 91.7 91.6
Sensitivity 100 100 100 100 100
Specificity 83.3 66.7 73.3 66.7 66.7
Precision 94.7 90.0 91.9 90.0 90.0
F-score 97.3 94.7 95.7 94.7 94.7

3.1.2. Dataset 2

From Tables 5–7, it is clearly visible that, for the approximation coefficient, cube images
are the most suitable ones, and from Figures 7 and 8, it can be concluded that overall SVM
performed best for dataset 2, with an accuracy of 95.6%.
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3.2. Using All Four DWT Coefficients with HOG

Tables 8–12 contain the result sets for spiral, cube, and triangle images, as well as a
mixture of spiral, cube, and triangle images, from when HOG features were extracted from
all four DWT coefficients, which are approximation, horizontal, vertical, and diagonal.

3.2.1. Dataset 1

From Tables 8 and 9 of spiral and wave images, the spiral images showed a maximum
possible recognition rate of 82.7%, and from Figures 9 and 10, we can conclude that overall
RF achieved 79.7% accuracy.

Table 8. Results of five machine learning algorithms using spiral images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 70.0 76.7 82.7 76.7 53.3
Sensitivity 53.3 80.0 73.3 80.0 93.3
Specificity 86.7 73.3 86.7 73.3 13.3
Precision 80.0 75.0 84.6 75.0 51.8
F-score 64.0 77.4 78.6 77.4 66.7

Table 9. Results of five machine learning algorithms using wave images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 73.3 73.3 76.7 73.3 53.3
Sensitivity 60.0 66.7 80.0 66.7 53.3
Specificity 86.7 80.0 73.3 80.0 53.3
Precision 81.8 76.9 75.0 76.9 53.3
F-score 69.2 71.4 77.4 71.4 53.3



Mathematics 2022, 10, 4218 11 of 15

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 16 
 

 

Figure 8. Performance summary of dataset 2 (%). 

3.2. Using All Four DWT Coefficients with HOG 

Tables 8–12 contain the result sets for spiral, cube, and triangle images, as well as a 

mixture of spiral, cube, and triangle images, from when HOG features were extracted 

from all four DWT coefficients, which are approximation, horizontal, vertical, and diago-

nal. 

3.2.1. Dataset 1 

From Tables 8 and 9 of spiral and wave images, the spiral images showed a maximum 

possible recognition rate of 82.7%, and from Figures 9 and 10, we can conclude that overall 

RF achieved 79.7% accuracy. 

Table 8. Results of five machine learning algorithms using spiral images. 

 KNN (%) SVM (%) RF (%) MLP (%) NB (%) 

Accuracy 70.0 76.7 82.7 76.7 53.3 

Sensitivity 53.3 80.0 73.3 80.0 93.3 

Specificity 86.7 73.3 86.7 73.3 13.3 

Precision 80.0 75.0 84.6 75.0 51.8 

F-score 64.0 77.4 78.6 77.4 66.7 

Table 9. Results of five machine learning algorithms using wave images. 

 KNN (%) SVM (%) RF (%) MLP (%) NB (%) 

Accuracy 73.3 73.3 76.7 73.3 53.3 

Sensitivity 60.0 66.7 80.0 66.7 53.3 

Specificity 86.7 80.0 73.3 80.0 53.3 

Precision 81.8 76.9 75.0 76.9 53.3 

F-score 69.2 71.4 77.4 71.4 53.3 

 

 

 

(a) KNN (b) SVM 

 

 

(c) RF (d) NB 

 

(e) MLP 

Figure 9. Confusion matrices (a–e) for all DWT coefficients from dataset 1. Figure 9. Confusion matrices (a–e) for all DWT coefficients from dataset 1.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 10. Performance summary of dataset 1 (%). 

3.2.2. Dataset 2 

From Tables 10–12, we can conclude that for all four coefficients, the cube images 

achieved maximum accuracy, and from Figures 11 and 12, it can be seen that overall SVM 

achieved an accuracy of 97.8%. 

Table 10. Results of five machine learning algorithms using spiral images. 

 KNN (%) SVM (%) RF (%) MLP (%) NB (%) 

Accuracy 87.5 95.8 95.8 95.8 95.8 

Sensitivity 100 100 100 100 100 

Specificity 50.0 83.3 83.3 83.3 83.3 

Precision 85.7 94.7 94.7 94.7 94.7 

F-score 92.3 97.2 97.2 97.2 97.2 

Table 11. Results of five machine learning algorithms using cube images. 

 KNN (%) SVM (%) RF (%) MLP (%) NB (%) 

Accuracy 100 100 100 100 100 

Sensitivity 100 100 100 100 100 

Specificity 100 100 100 100 100 

Precision 100 100 100 100 100 

F-score 100 100 100 100 100 

Table 12. Results of five machine learning algorithms using triangle images. 

 KNN (%) SVM (%) RF (%) MLP (%) NB (%) 

Accuracy 95.8 91.7 91.7 91.7 91.7 

Sensitivity 100 100 100 100 100 

Specificity 83.3 66.7 66.7 66.7 66.7 

Precision 94.7 90.0 90.0 90.0 90.0 

F-score 97.2 94.7 94.7 94.7 94.7 

 

Accuracy

Sensitivity

Specificity

Precision

F-score

0 20 40 60 80 100

 NB  MLP  RF  SVM  KNN

Figure 10. Performance summary of dataset 1 (%).

3.2.2. Dataset 2

From Tables 10–12, we can conclude that for all four coefficients, the cube images
achieved maximum accuracy, and from Figures 11 and 12, it can be seen that overall SVM
achieved an accuracy of 97.8%.



Mathematics 2022, 10, 4218 12 of 15

Table 10. Results of five machine learning algorithms using spiral images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 87.5 95.8 95.8 95.8 95.8
Sensitivity 100 100 100 100 100
Specificity 50.0 83.3 83.3 83.3 83.3
Precision 85.7 94.7 94.7 94.7 94.7
F-score 92.3 97.2 97.2 97.2 97.2

Table 11. Results of five machine learning algorithms using cube images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 100 100 100 100 100
Sensitivity 100 100 100 100 100
Specificity 100 100 100 100 100
Precision 100 100 100 100 100
F-score 100 100 100 100 100

Table 12. Results of five machine learning algorithms using triangle images.

KNN (%) SVM (%) RF (%) MLP (%) NB (%)

Accuracy 95.8 91.7 91.7 91.7 91.7
Sensitivity 100 100 100 100 100
Specificity 83.3 66.7 66.7 66.7 66.7
Precision 94.7 90.0 90.0 90.0 90.0
F-score 97.2 94.7 94.7 94.7 94.7
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4. Discussion

From the experimental results, it can be concluded that the fusion-based features
surpassed the result obtained using only the approximation coefficient. Folador et al. [8]
utilized the HOG descriptor in conjunction with a random forest classifier to accurately
distinguish between persons with Parkinson’s disease and those who are healthy. They
achieved a highest accuracy, sensitivity, and specificity classification success rates of 83%,
85%, and 81%, respectively. In our previous work [9], we evaluated the performance
of different machine learning algorithms using only the features extracted from HOG
descriptors for hand-drawn images. It was found that for dataset 1 and dataset 2, the
proposed model was able to achieve a highest accuracy of 74.7% and 96.8%, respectively.

To further enhance the previous results, in this work, two different approaches were
compared. The key feature of this work is that DWT coefficients were extracted first, and
on top of that, HOG features were extracted for feature refinement; thereafter, the extracted
features were fed to the different machine learning algorithms. In DWT coefficients,
there are also various types of coefficients; therefore, in this work, the efficiency of those
coefficients was also evaluated. One experimental approach was to extract using the
approximation coefficient, and the other one was with all the four coefficients. An analysis
was performed for the approximation coefficient against all coefficients. From the findings,
it can be concluded that the second approach outperformed the first approach. Table 13
shows the accuracy performance comparison of the proposed approaches with other state-
of-the-art techniques.

Table 13. Comparison of proposed approaches with the state-of-the-art techniques.

Approach Accuracy (%)

DWT (1 coefficient) + HOG (Proposed) [Dataset 1] 78.90
DWT (4 coefficients) + HOG (Proposed) [Dataset 1] 79.70
DWT (1 coefficient) + HOG (Proposed) [Dataset 2] 95.60
DWT (4 coefficients) + HOG (Proposed) [Dataset 2] 97.80

Folador et al. [8] (2019) [Dataset 1] 83.00
Das et al. [9] (2020) [Dataset 1] 74.70
Das et al. [9] (2020) [Dataset 2] 96.80
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5. Conclusions

In this work, we adopted a fusion technique, combining discrete wavelet transform
coefficients and histograms of oriented gradient features to detect Parkinson’s disease from
the hand-drawn images drawn by Parkinson’s disease-affected patients. It outperformed
the same experiment that was performed with only histograms of oriented gradient fea-
tures. The main purpose of this research was to extract relevant information from discrete
wavelet transform coefficients and identify the most important coefficients. In addition,
a fusion technique was used to compare the performance of the approach to previous
work that exclusively used histograms of oriented gradient characteristics. The results
of the experiments show that fusion-based features outperform the outcome produced
using merely the approximation coefficient. In our earlier work, we examined the effec-
tiveness of several machine learning techniques for hand-drawn pictures, using just the
features retrieved from histograms of oriented gradient descriptors. For datasets 1 and
2, an accuracy of 74.7% and 96.8%, respectively, was attained solely using histograms of
oriented gradient features on various machine learning methods. In order to improve on
the prior findings, two distinct methodologies were examined in this research. The main
characteristic of this work is that discrete wavelet transform coefficients were extracted first,
followed by histograms of oriented gradient features for feature refinement, and finally,
the extracted features were fed as input to various machine learning methods. There are
numerous sorts of coefficients in the discrete wavelet transform; thus, the effectiveness of
various coefficients was also investigated in this work. The first method was to extract
using only the approximation coefficient, and the second method was to extract using
all four coefficients. The approximation coefficient was compared against other discrete
wavelet transform coefficients, such as horizontal, vertical, and diagonal. According to
the findings of the experiments, the second strategy obtained 76.7% and 97.4% accuracy
for dataset 1 and dataset 2, respectively. Another conclusion is that random forest and
support vector machine classifiers had the most promising outcomes when compared
to other classifiers; out of different kinds of hand-drawn figures, spiral pattern images
showed the best performance. The suggested method has a restriction because there is not
as much data for the hand-drawn images. With a larger amount of data, the robustness of
the proposed models could have been tested. While the experimental results for the small
dataset scenario are encouraging, more work can be performed to expand the datasets
using augmentation techniques. With more image classes being available, we may develop
deep learning models for the better detection of features.
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