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Abstract

:

The mathematical modelling and optimization of nonlinear problems arising in diversified engineering applications is an area of great interest. The Hammerstein structure is widely used in the modelling of various nonlinear processes found in a range of applications. This study investigates the parameter optimization of the nonlinear Hammerstein model using the abilities of the marine predator algorithm (MPA) and the key term separation technique. MPA is a population-based metaheuristic inspired by the behavior of predators for catching prey, and utilizes Brownian/Levy movement for predicting the optimal interaction between predator and prey. A detailed analysis of MPA is conducted to verify the accurate and robust behavior of the optimization scheme for nonlinear Hammerstein model identification.
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1. Introduction


The identification of nonlinear systems is considered a challenging task because of the inherent stiffness and complex system representation [1,2]. A nonlinear system modelled through the block-oriented Hammerstein structure is relatively a simple approach, where a nonlinear block is followed by a linear dynamical subsystem [3,4]. The identification of Hammerstein models is of the utmost importance owing to their ability to model various nonlinear processes [5,6,7]. The pioneering work for nonlinear Hammerstein systems was presented by Narendra et al., in the 1960s, by proposing an iterative identification algorithm [8]. Chang et al. proposed a non-iterative scheme [9]. Vörös et al. presented a key term separation principle for the identification of a Hammerstein model [10,11]. Ding et al. introduced hierarchical least squares [12,13] and hierarchical gradient descent algorithms [14] for the Hammerstein model. Chaudhary et al. introduced the concept of fractional gradient algorithms for Hammerstein systems by proposing normalized fractional least mean square (FLMS) [15], sign FLMS [16], multi-innovation FLMS [17], hierarchical quasi fractional gradient descent [18], and fractional hierarchical gradient descent [19] algorithms.



Different system identification scenarios have multimodal error surfaces, and traditional gradient descent-based approaches may converge to a sub-optimal solution [20,21]. The system identification may be expressed as an optimization problem that can be solved through a stochastic search methodology such as evolutionary and swarm heuristics [20]. The research community proposed these population-based heuristics for Hammerstein model identification. For example, Raja et al. exploited genetic algorithms [22]; Mehmood et al. presented differential evolution [23], weighted differential evolution [24], and backtracking search heuristics [25]; and Altaf et al. presented adaptive evolutionary heuristics [26]. The swarm-based optimization heuristics for Hammerstein system identification include particle swarm optimization [27], cuckoo search algorithm [28], snake optimizer algorithm [29], and fractional swarming optimization heuristics [30], etc.



Metaheuristics have been applied in different engineering optimization problems. Heuristics are mainly categorized as (a) swarm intelligence, (b) physics-based, or (c) evolutionary algorithms. Swarm intelligence mimics the behavior of herds present in nature. Physics-based methods are inspired by the laws of physics, while evolutionary methods are inspired by biological processes in nature. The significant methods proposed in all of these domains are summarized in Table 1.



Among the various swarm-intelligence-based techniques, the Marine Predator Algorithm (MPA) [59] has recently been proposed and applied in various applications such as optimal power flow [60], economic load dispatch [61], wireless sensor network [62], and path planning [63]. Wadood et al. [64] applied MPA to minimize breakdown in an electrical power system. Lu et al. [65] applied MPA along with the convolutional neural network for the optimal detection of lung cancer. Hoang et al. [66] utilized MPA in the optimization of hyperparameters of support vector machines for remote sensing. Yang et al. [67] applied multi strategy MPA for semi supervised extreme machine learning for classification.



In this study, we explored MPA for effective parameter estimation of the Hammerstein structure. The detailed performance evaluation of the proposed scheme for Hammerstein identification was conducted for different noise conditions. The reliability of the proposed approach in comparison with the other recently introduced metaheuristics was established through detailed analyses based on multiple independent executions and statistical tests.



The remainder of the paper is outlined as follows: Section 2 describes the Hammerstein model structure. Section 3 presents the MPA methodology with a flow chart description. Section 4 provides the results of detailed simulations in terms of graphical and tabular representation. Finally, Section 5 concludes the study by presenting the main findings of the current investigation.




2. System Model


Considering the Hammerstein output error (HOE) model, whose output is written as


   y m   ( t )  = y  ( t )  + ε  ( t )  ,  



(1)




where   y  ( t )    is the noise free output and   ε  ( t )    is the additive white noise. The noise free output of HOE model is presented in (2)


  y  ( t )  +   ∑   s = 1    n g     g s  y  (  t − s  )  =   ∑   s = 0    n h     h s    μ ¯    (  t − s  )  ,  



(2)




where     μ ¯    ( t )    is the output of nonlinear block with basis (k1, k2, …, kp) and    o 1  ,  o 2  , … ,      o   p    are the corresponding parameters represented as


    μ ¯    ( t )  =   ∑   l = 1  p   o l   k l   (  μ  ( t )   )  .  











By choosing     μ ¯    ( t )    as the keyterm and applying the keyterm separation principle [18,19], and letting    h 0  = 1 ,   then (2) can be expressed as


      y  ( t )  = −    ∑   s = 1    n g      g s  y  (  t − s  )  +    ∑   s = 0    n h      h s    μ ¯    (  t − s  )  ,       y  ( t )  = −    ∑   s = 1    n g      g s  y  (  t − s  )  +  h 0    μ ¯    ( t )  +    ∑   s = 1    n h      h s    μ ¯    (  t − s  )  ,       y  ( t )  = −    ∑   s = 1    n g      g s  y  (  t − s  )  +    ∑   s = 1    n h      h s    μ ¯    (  t − s  )  +    ∑   l = 1  p    o l   k l   (  μ  ( t )   )  .      



(3)







The parameter vectors    g  ,  h  ,  o    and information vector     δ   g    (  t  )  ,     δ   h    (  t  )   ,    k   (  t  )    are presented in (4) and (5), respectively


    g  =  [       g 1         g 2           ⋮       g   n g             ]  ∈  R   n g      ,   h =  [       h 1         h 2           ⋮       h   n h             ]  ∈  R   n h      ,      o  =  [       o 1         o 2           ⋮       o p           ]  ∈  R p  ,   



(4)






     δ   g    (  t  )  =  [      − y  (  t − 1  )        − y  (  t − 2  )           ⋮      − y  (  t −  n g   )           ]  ∈  R   n g      ,     δ   h    (  t  )  =  [        μ ¯    (  t − 1  )          μ ¯    (  t − 2  )           ⋮        μ ¯    (  t −  n h   )           ]  ∈  R   n h      ,    k   (  t  )  =  [       k 1   (  μ  ( t )   )         k 2   (  μ  ( t )   )           ⋮       k p   (  μ  ( t )   )           ]  ∈  R p  .   



(5)







Then, (3) can be expressed as presented in (6)


  y  ( t )  =   δ   g     T   ( t )   g  +   δ   h     T   ( t )   h  +   k  T   ( t )   o  .  



(6)








3. Methodology


In this section, the MPA-based methodology for the parameter estimation of the Hammerstein model is presented.



3.1. Marine Predator Algorithm


The MPA is a population-based metaheuristic inspired from the behavior of predators when catching prey [59]. It utilizes Brownian and Levy movement for the optimal interaction between predator and prey. Its mathematical model, pseudocode, and algorithm flowchart are presented below.



3.1.1. Formulation


MPA starts with the initialization of the population uniformly distributed over the search space, as presented in (7).


   J 0  =  J  min   +  rand     (   J  max   −  J  min    )  .  



(7)







Two matrices were also constructed, the Elite matrix (EM) and Prey matrix (PM), which consist of the position vector with the best fitness and the proposed random positions during initialization, respectively, as presented in (8) and (9).


  EM =    [       J I     1 , 1      ⋯     J I     1 , b        ⋮   ⋱   ⋮       J I      N p  , 1      ⋯     J I      N p  , b        ]     N p  × b    



(8)






  PM =    [       J  1 , 1      ⋯     J  1 , b        ⋮   ⋱   ⋮       J   N p  , 1      ⋯     J   N p  , b        ]     N p  × b   ,  



(9)




where    J I    represents the top predator and    J  a , b     is the dimension of the prey.




3.1.2. Optimization


The optimization of MPA consists of three phases, as presented below.



Phase I


In this phase, the predator moves faster than the prey by using Brownian movement for first third of the iterations. The prey matrices are updated as presented in (10) and (11)


      SS  →   i  =    R →   B  ⊗  (      EM  →   i  −  (     R →   B  ⊗       PM  →   i   )   )  , i = 1 , 2 , … ,  N p  ,  



(10)






      PM  →   i  =     PM  →   i  +  (  C .   R →   ⊗     SS  →   i   )  ,  



(11)




where    R B    is the normal distributed vector representing the Brownian movement,   C = 0.5 ,   and  R  is a vector   ∈  [  0.1  ]   .




Phase II


In this phase, both the prey and predator are moving at the same pace. The prey moves on Levy movement, while the predator moves using Brownian movement between one third and two third of the maximum iterations. The updated matrices are presented in (12)–(15)


      SS  →   i  =   R →  L  ⊗  (      EM  →   i  −  (    R →  L  ⊗       PM  →   i   )   )  , i = 1 , 2 , … ,  N p  / 2 ,  



(12)






      PM  →   i  =     PM  →   i  +  (  C .   R →   ⊗     SS  →   i   )  ,  



(13)






      SS  →   i  =    R →   B  ⊗  (     R →   B  ⊗  (      EM  →   i  −     PM  →   i   )   )  , i = 1 , 2 , … ,  N p  ,  



(14)






      PM  →   i  =     EM  →   i  +  (  C . DF ⊗     SS  →   i   )  ,  



(15)




where   DF =    (  1 −   It  T   )     (  2   It  T   )      is adaptive factor to control stepsize of the predator movement.




Phase III


In this phase, the predator is moving faster than the prey. The predator moves by using Levy movement and the prey matrix is updated as presented in (16) and (17)


      SS  →   i  =    R →   L  ⊗  (     R →   L  ⊗  (      EM  →   i  −     PM  →   i   )   )  , i = 1 , 2 , … ,  N p  ,  



(16)






      PM  →   i  =     EM  →   i  +  (  C . DF ⊗     SS  →   i   )  .  



(17)









3.1.3. Fish Aggregating Devices’ (FAD’s) Effect


The fish aggregating devices’ (FAD’s) effect is added in MPA to simulate the natural behavior of fish, as they spend 80% of their time in immediate locations and 20% of the time searching for other spaces [59], as presented in (18) and (19)


      PM  →   i  =  {      ( 18 )        PM  →   i  + DF  [   J  min   +   R →   ⊗  (   J  max   −  J  min    )   ]  ⊗   U →   , if   q ≤ FAD ’ s      ( 19 )        PM  →   i  +  [   FAD  ’ s  (  1 − q  )  + q  ]   (      PM  →    q 1   −     PM  →    q 2    )  , if   q > FAD ’ s         








where    FAD  ’ s = 0.2  ,    U →    is a binary vector,  q  is a random number   ∈  [  0 , 1  ]   ,    J  max        and   J    min     are the upper and lower bounds, respectively,    q 1       and   q   2    are subscripts of the prey matrix. The flowchart for MPA is shown in Figure 1.






4. Performance Analysis


The detailed performance analysis of MPA for the HOE model is presented in this section. HOE model identification was conducted on numerous noise levels, several generations, and population sizes. The proposed scheme is examined in terms of accuracy, and is measured by the fitness function presented in (20)


  Fitness   Function =  1 J    ∑   w = 1  J     [   y m   (   t w   )  −    y m   ˜   (   t w   )   ]   2  ,  



(20)




here,      y m   ˜    is the estimated response through MPA, and    y m    is the actual response of the HOE model.



4.1. Case Study 1


For the simulation study, we considered the following HOE model


       y m   ( t )  = y  ( t )  + ε  ( t )  ,       y  ( t )  +  g 1  y  (  t − 1  )  +  g 2  y  (  t − 2  )  =  h 0    μ ¯    ( t )  +  h 1    μ ¯    (  t − 1  )  +  h 2    μ ¯    (  t − 2  )  ,      h   0  = 1 ,      



(21)






    μ ¯    ( t )  =  o 1   k 1   (  μ  ( t )   )  +  o 2   k 2   (  μ  ( t )   )  +  o 3   k 3   (  μ  ( t )   )  =  o 1  μ  ( t )  +  o 2   μ 2   ( t )  +  o 3   μ 3   ( t )   



(22)






   g  =    [   g 1  ,  g 2   ]   T  =    [  − 1.100 ,   0.900  ]   T   



(23)






   h  =    [   h 1  ,  h 2   ]   T  =    [  − 0.800 , − 0.600  ]   T   



(24)






   o  =    [   o 1  ,  o 2  ,  o 3   ]   T  =    [  − 0.900 ,   0.600 ,   0.200  ]   T   



(25)






   ω  =    [   g 1  ,  g 2  ,  h 1  ,  h 2  ,      o   1  ,  o 2  ,  o 3   ]   T  =    [  − 1.100 ,   0.900 , − 0.800 , − 0.600 , − 0.900 ,   0.600 ,   0.200  ]   T   



(26)







The input is taken as zero mean unit variance random signal with the data length as 25 and the number of generations taken as 500 and 1000. The performance of MPA is assessed by introducing AWGN noise with five variations, i.e., [60 dB, 50 dB, 40 dB, 30 dB, 10 dB] to the HOE model for two variations of generation (T) [500, 1000] and populations (Np) [50, 100], and the fitness plots are demonstrated in Figure 2.



The fitness curves in Figure 2a correspond to the best fitness of the MPA algorithm for generation T = 500, while Figure 2b correspond to same variation for generation T = 1000. It is noted from Figure 2a,b that the fitness of MPA for the two generation variations, i.e., [500, 1000], reduces with the increase in population sizes.



The performance of MPA is also evaluated in terms of the generation variations as demonstrated by the fitness curves in Figure 3.



The fitness curves in Figure 3a correspond to the best fitness of the MPA algorithm for population size Np = 50, whereas Figure 3b is related to the same variation for population Np = 100. It is noted from Figure 3a,b that the fitness of MPA for the two population sizes, i.e., [50, 100], is reduced significantly with the increase in generations.



The behavior of MPA for different noise variations is evaluated by fixing the population size [50, 100] and changing the generation size [500, 1000] for five values of noise levels [60 dB, 50 dB, 40 dB, 30 dB, 10 dB], and the fitness plots are presented in Figure 4.



It is noted from the fitness plots demonstrated in Figure 4a–d that for a fixed population size and number of generations, the fitness achieved by MPA for a low level of noise, i.e., [60 dB], is quite a lot less compared with the fitness for a high noise level, i.e., [50 dB, 40 dB, 30 dB, 10 dB]. Yet, MPA achieves the minimum value of fitness for the smallest value of noise, i.e., [60 dB] for Np = 100 and T = 1000. Therefore, it is confirmed from the curves in Figure 4 that the performance of MPA is lower for higher noise values.



To further investigate MPA, it is compared with other metaheuristics, namely the prairie dog optimization (PDO) [68], sine cosine algorithm (SCA) [69], and whale optimization algorithm (WOA) [70], for Np = 100 and T = 1000, and noise levels of [60 dB, 50 dB, 40 dB, 30 dB, 10 dB] are presented in Figure 5.



Figure 5a–e demonstrates the convergence of MPA with SCA, WOA, and PDO at Np = 100 and T = 1000 over all of the noise levels, i.e., [60 dB, 50 dB, 40 dB, 30 dB, 10 dB]. It is noted from Figure 5a–e that with the increase in noise level, the fitness value also increases. However, MPA achieves the lowest fitness compared with SCA, WOA, and PDO for all of the noise levels.



MPA is further evaluated statistically against PDO, WOA, and SCA at Np = 100 and T = 1000 for 20 independent runs. Figure 6 shows the fitness value of MPA, SCA, WOA, and PDO on run#1, run#10, and run#20 for all of the noise levels.



It is noted from Figure 6a–e that MPA achieves the lowest fitness compared with SCA, WOA, and PDO for different independent runs for all of the noise levels. Moreover, it is also observed that fitness increases with the increase in noise levels for all of the methods. Further statistical analysis on all of the independent runs is demonstrated in Figure 7.



It is noted from Figure 7a–e that MPA outperforms SCA, WOA, and PDO for noise levels of [60 dB, 50 dB, 40 dB, 30 dB, 10 dB] in all of the independents runs. Moreover, it is also observed that there is an increase in fitness values for high noise levels for all of the methods.



Table 2, Table 3, Table 4, Table 5 and Table 6 show the performance of all of the algorithms in terms of the average fitness, best fitness, and estimated weights for the [60 dB, 50 dB, 40 dB, 30 dB, 10 dB] noise levels. It is noted that for lower noise levels, i.e., 60 dB, MPA gives better results compared with higher noise levels. Moreover, at a low noise level, the estimated weights are closer to the true value. It is also observed from Table 2 that the best fitness achieved for noise level = 60 dB is   2.6 ×   10   − 7    . Similarly, the best fitness value for noise levels = [50 dB, 40 dB, 30 dB, 10 dB], provided in Table 3, Table 4, Table 5 and Table 6, are [  2.6 ×   10   − 6   ,   2.9 ×   10   − 5   ,   2.4 ×   10   − 4   , 2.6 ×   10   − 2    ], respectively. Therefore, it is validated from Table 2, Table 3, Table 4, Table 5 and Table 6 that the fitness of MPA increases with the increase in noise levels and it decreases by increasing the population size and number of generations.




4.2. Case Study 2


The performance of the MPA is also considered for another Hammerstein model based on the autoregressive exogenous input structure, i.e., H-ARX [13,14], with the same model parameters as considered in case study 1. The H-ARX model is mathematically defined as


  y  ( t )  =   H  ( q )    G  ( q )      μ ¯    ( t )  +  1  G  ( q )    ε  ( t )  ,  



(27)




where G(q) and H(q) are polynomials in the shift operator, and rearranging (27) gives the following


      G  ( q )  y  ( t )  = H  ( q )   μ ¯   ( t )  + ε  ( t )       y  ( t )  = −  g 1  y  (  t − 1  )  −  g 2  y  (  t − 2  )  +  h 0    μ ¯    ( t )  +  h 1    μ ¯    (  t − 1  )  +  h 2    μ ¯    (  t − 2  )  + ε  ( t )  ,      h   0  = 1 ,     



(28)






    μ ¯    ( t )  =  o 1   k 1   (  μ  ( t )   )  +  o 2   k 2   (  μ  ( t )   )  +  o 3   k 3   (  μ  ( t )   )  =  o 1  μ  ( t )  +  o 2   μ 2   ( t )  +  o 3   μ 3   ( t )   










   ω  =    [   g 1  ,  g 2  ,  h 1  ,  h 2  ,      o   1  ,  o 2  ,  o 3   ]   T  =    [  − 1.100 ,   0.900 , − 0.800 , − 0.600 , − 0.900 ,   0.600 ,   0.200  ]   T  .  











The input data are generated in the same way as mentioned in case study 1, while the noise in the ARX model is taken as white Gaussian with constant variance, i.e., [0.01, 0.05, 0.10]. Two variations of generation (T) [500, 1000] and population Np = 50 are considered. The fitness for case study 2 is calculated through (20) by using y instead of    y m   , and the fitness plots are demonstrated in Figure 8.



The fitness curves in Figure 8 correspond to the best fitness of the MPA algorithm for population size Np = 50. It is noted from Figure 8 that the fitness of MPA reduces significantly with the increase in generations.



The behavior of MPA for different noise variations is evaluated at population size Np = 50 and changing the generation size [200, 500] for three values of noise levels [0.01,0.05,0.10], and the fitness plots are presented in Figure 9.



It is noted from the fitness plots demonstrated in Figure 9a,b that for a fixed population size and number of generations, the fitness achieved by MPA for a low level of noise, i.e., [0.01], is quite a lot less compared with the fitness for a high noise level, i.e., [0.05,0.10]. Yet, MPA achieves the minimum value of fitness for the smallest value of noise, i.e., [0.01] for Np = 50 and T = 500. Therefore, it is confirmed from the curves in Figure 9 that the performance of MPA is lower for higher noise values.



Similar to example 1, it is further compared with the prairie dog optimization (PDO) [68], sine cosine algorithm (SCA) [69], and whale optimization algorithm (WOA) [70] for Np = 50 and T = 500, and noise levels of [0.01,0.05,0.10] are presented in Figure 10.



Figure 10a–c demonstrates the convergence of MPA with SCA, WOA, and PDO at Np = 50 and T = 500 over all the noise levels, i.e., [0.01,0.05,0.10]. It is noted from Figure 10a–c that with the increase in noise level, the fitness value also increases. However, MPA achieves the lowest fitness compared with SCA, WOA, and PDO for all of the noise levels.



MPA is further evaluated statistically against PDO, WOA, and SCA at Np = 50 and T = 500 for 20 independent runs. Figure 11 shows the fitness value of MPA, SCA, WOA, and PDO on run#1, run#10, and run#20 for all of the noise levels.



It is noted from Figure 11a–c that MPA achieves the lowest fitness compared with SCA, WOA, and PDO for different independent runs for all noise levels. Moreover, it is also observed that the fitness increases with the increase in noise levels for all of the methods. Further statistical analysis on all independent runs is demonstrated in Figure 12.



It is noted from Figure 12a–c that MPA outperforms SCA, WOA, and PDO for noise levels of [0.01,0.05,0.10] in all of the independents runs. Moreover, it is also observed that there is an increase in fitness value for high noise levels for all of the methods



Table 7, Table 8 and Table 9 show the performance of all of the algorithms in terms of the average fitness, best fitness, and estimated weights for [0.01,0.05,0.10] noise levels at Np = 50. It is noted that for lower noise levels i.e., 0.01, MPA gives better results compared with the higher noise levels. Moreover, at a low noise level, the estimated weights are closer to the true value. It is also observed from Table 7 that the best fitness achieved for noise level = 0.01 is     5.2 ×   10   − 5    . Similarly, the best fitness value for noise levels = [0.05,0.10] provided in Table 8 and Table 9 are [  1.3 ×   10  3  ,   5.3 ×   10   − 3   ,  ], respectively. Therefore, it is validated from Table 7, Table 8 and Table 9 that the fitness of MPA increases with the increase in noise levels and it decreases by increasing the number of generations.



The results of the detailed simulations imply that the MPA-based swarming optimization heuristics efficiently approximates the parameters of the Hammerstein systems.





5. Conclusions


The main findings of the investigation are as follows:



The parameter optimization of the nonlinear mathematical model represented through the Hammerstein structure is studied using the marine predator algorithm, MPA, and the key term separation principle. The mathematical model and working principle of the MPA are inspired from the behavior of predators when catching prey. The optimal interaction between the predator and prey is modelled using Brownian and Levy movement. The key term separation is a technique used to avoid redundancy in the estimation of Hammerstein model parameters, thus making the MPA more efficient. The accuracy and robustness of the MPA based optimization scheme with key term separation technique is established for HOE and H-ARX estimation through the simulation results for different noise scenarios.



Future work may extend the application of MPA to optimize the muscle fatigue systems [71,72] and solve fractional order problems [73,74,75].
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Figure 1. MPA flowchart. 
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Figure 2. Fitness plots for MPA w.r.t population sizes for case study 1. 






Figure 2. Fitness plots for MPA w.r.t population sizes for case study 1.



[image: Mathematics 10 04217 g002]







[image: Mathematics 10 04217 g003 550] 





Figure 3. Fitness plots for MPA w.r.t generation variations for case study 1. 
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Figure 4. Fitness plots for MPA w.r.t noise levels for case study 1. 
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Figure 5. Fitness plot comparison of MPA with PDO, SCA, and WOA at Np = 100 and T = 1000 for case study 1. 
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Figure 6. Run# fitness comparison of MPA with PDO, SCA and WOA at Np = 100 and T = 1000 for case study 1. 
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Figure 7. Statistical comparison of MPA with PDO, SCA, and WOA at Np = 100 and T = 1000 for case study 1. 
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Figure 8. Fitness plots for MPA w.r.t generation variations for case study 2. 
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Figure 9. Fitness plots for MPA w.r.t noise levels for case study 2. 
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Figure 10. Fitness plots comparison of MPA with PDO, SCA, and WOA at Np = 50 and T = 500 for case study 2. 
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Figure 11. Run# fitness comparison of MPA with PDO, SCA, and WOA at Np = 50 and T = 500 for case study 2. 
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Figure 12. Statistical comparison of MPA with PDO, SCA, and WOA at Np = 50 and T = 200 for case study 2. 
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Table 1. Classification of metaheuristics.
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Domain

	
Technique






	
Swarm Intelligence

	
Particle swarm optimization (PSO) [31,32]




	
Dwarf Mongoose optimization (DMO) [33,34]




	
Ant Colony optimization (ACO) [35,36]




	
Cuckoo search [37,38]




	
Aquila Optimizer (AO) [39]




	
Spider monkey optimization [40]




	
Physics based

	
Simulated Annealing [41,42]




	
Gravitational search algorithm [43,44]




	
Circle search algorithm [45,46]




	
Colliding bodies optimizer [47]




	
Transient search optimizer [48]




	
Big bang big crunch [49]




	
Evolutionary

	
Differential Evolution [50,51]




	
Genetic algorithm [52,53]




	
Tree growth algorithm [54]




	
Arithmetic optimization algorithm [55,56]




	
Genetic programming [57]




	
Evolutionary strategy [58]
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Table 2. Estimated weight analysis w.r.t generation and population sizes at 60 dB noise for case study 1.
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Methods

	
T

	
Np

	
Design Parameters

	
Best Fitness

	
Avg Fitness




	
      g  1     

	
      g  2     

	
      h  1     

	
      h  2     

	
      o  1     

	
      o  2     

	
      o  3     






	
MPA

	
500

	
50

	
−1.0999

	
0.9003

	
−0.7999

	
−0.6007

	
−0.8994

	
0.5998

	
0.1998

	
   3.6 ×   10   − 7     

	
   6.6 ×   10   − 7     




	
100

	
−1.1004

	
0.9004

	
−0.8003

	
−0.5999

	
−0.8983

	
0.6010

	
0.1999

	
   4.3 ×   10   − 7     

	
   5.5 ×   10   − 7     




	
1000

	
50

	
−1.0997

	
0.8997

	
−0.7998

	
−0.5993

	
−0.9028

	
0.5992

	
0.2003

	
   3.5 ×   10   − 7     

	
   5.2 ×   10   − 7     




	
100

	
−1.0999

	
0.9000

	
−0.7997

	
−0.5998

	
−0.9003

	
0.6002

	
0.2002

	
   2.6 ×   10   − 7     

	
   4.9 ×   10   − 7     




	
PDO

	
500

	
50

	
−1.0518

	
0.8524

	
−0.6261

	
−0.7220

	
−0.9588

	
0.5851

	
0.2329

	
0.0097

	
0.1631




	
100

	
−1.0600

	
0.8566

	
−0.7128

	
−0.6272

	
−1.0817

	
0.5417

	
0.2249

	
0.0059

	
0.1618




	
1000

	
50

	
−1.0701

	
0.8637

	
−0.6899

	
−0.8059

	
−0.8724

	
0.5222

	
0.1791

	
0.0119

	
0.1677




	
100

	
−1.0730

	
0.8670

	
−0.7100

	
−0.6694

	
−0.9522

	
0.5646

	
0.2155

	
0.0039

	
0.1848




	
SCA

	
500

	
50

	
−1.1554

	
0.8944

	
−1.2713

	
−0.3910

	
−1.3633

	
0.2760

	
0.0024

	
0.0785

	
0.1676




	
100

	
−1.0469

	
0.8100

	
−0.9144

	
−0.3546

	
−1.8413

	
0.2371

	
0.2565

	
0.0719

	
0.1567




	
1000

	
50

	
−0.9063

	
0.6642

	
−0.8466

	
−0.6712

	
−1.7836

	
−0.0064

	
0.0990

	
0.1167

	
0.1977




	
100

	
−1.0292

	
0.8255

	
−1.0403

	
−0.3248

	
−1.2033

	
0.5034

	
0.1878

	
0.0464

	
0.1285




	
WOA

	
500

	
50

	
−1.1307

	
0.9794

	
−1.0294

	
−0.7458

	
−0.0103

	
0.8304

	
0.2124

	
0.1346

	
0.3724




	
100

	
−1.1050

	
0.9013

	
−0.8204

	
−0.7087

	
−0.8466

	
0.5344

	
0.1570

	
0.0042

	
0.3019




	
1000

	
50

	
−1.0270

	
0.8621

	
−0.4477

	
−0.6913

	
−0.7818

	
0.8436

	
0.3795

	
0.0294

	
0.3219




	
100

	
−0.9356

	
0.7506

	
−0.5725

	
−0.6927

	
−1.4624

	
0.4017

	
0.2705

	
0.0521

	
0.2748




	
True Values

	
−1.1000

	
0.9000

	
−0.8000

	
−0.6000

	
−0.9000

	
0.6000

	
0.2000

	
0

	
0
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Table 3. Estimated weights analysis w.r.t generation and population sizes at 50 dB noise for case study 1.
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Methods

	
T

	
Np

	
Design Parameters

	
Best Fitness

	
Avg Fitness




	
      g  1     

	
      g  2     

	
      h  1     

	
      h  2     

	
      o  1     

	
      o  2     

	
      o  3     






	
MPA

	
500

	
50

	
−1.0990

	
0.8998

	
−0.7971

	
−0.6027

	
−0.9000

	
0.6006

	
0.2000

	
   3.5 ×   10   − 6     

	
   5.4 ×   10   − 6     




	
100

	
−1.1007

	
0.9007

	
−0.8010

	
−0.6005

	
−0.8976

	
0.5999

	
0.1995

	
   3.2 ×   10   − 6     

	
   4.7 ×   10   − 6     




	
1000

	
50

	
−1.1007

	
0.9007

	
−0.8016

	
−0.6004

	
−0.9021

	
0.5988

	
0.1989

	
   3.1 ×   10   − 6     

	
   4.6 ×   10   − 6     




	
100

	
−1.0999

	
0.8996

	
−0.7972

	
−0.6010

	
−0.9034

	
0.5994

	
0.2006

	
   2.6 ×   10   − 6     

	
   4.2 ×   10   − 6     




	
PDO

	
500

	
50

	
−1.0989

	
0.8856

	
−0.6730

	
−0.8708

	
−0.8491

	
0.4867

	
0.1613

	
0.0122

	
0.2468




	
100

	
−1.0950

	
0.8850

	
−0.7609

	
−0.6493

	
−1.0193

	
0.5226

	
0.1898

	
0.0026

	
0.1971




	
1000

	
50

	
−1.0568

	
0.8489

	
−0.6975

	
−0.6522

	
−1.0537

	
0.5183

	
0.2255

	
0.0070

	
0.2406




	
100

	
−1.0821

	
0.8792

	
−0.6982

	
−0.7261

	
−0.8873

	
0.5679

	
0.2011

	
0.0031

	
0.1237




	
SCA

	
500

	
50

	
−1.0086

	
0.7452

	
−0.4993

	
−0.7635

	
−1.4064

	
0.4192

	
0.2437

	
0.0902

	
0.1928




	
100

	
−1.1220

	
1.0084

	
−0.3534

	
−1.1780

	
−0.1565

	
0.8028

	
0.2544

	
0.0801

	
0.1949




	
1000

	
50

	
−1.1596

	
0.8947

	
−1.0397

	
−0.4481

	
−1.0611

	
0.3793

	
0.1573

	
0.0295

	
0.1382




	
100

	
−0.9708

	
0.7561

	
−0.4713

	
−0.7527

	
−1.2920

	
0.4789

	
0.2752

	
0.0588

	
0.1212




	
WOA

	
500

	
50

	
−1.0691

	
0.8544

	
−0.9376

	
−0.4316

	
−1.1141

	
0.5184

	
0.2023

	
0.0104

	
0.3667




	
100

	
−0.9926

	
0.8132

	
−0.6119

	
−0.6398

	
−1.0712

	
0.6237

	
0.2896

	
0.0216

	
0.3111




	
1000

	
50

	
−1.0723

	
0.9288

	
−0.2641

	
−0.9755

	
−0.2221

	
0.9602

	
0.3590

	
0.0657

	
0.4094




	
100

	
−1.0765

	
0.8998

	
−0.3190

	
−1.1725

	
−0.5884

	
0.6273

	
0.2237

	
0.0370

	
0.2990




	
True Values

	
−1.1000

	
0.9000

	
−0.8000

	
−0.6000

	
−0.9000

	
0.6000

	
0.2000

	
0

	
0
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Table 4. Estimated weight analysis w.r.t generation and population sizes at 40 dB noise for case study 1.






Table 4. Estimated weight analysis w.r.t generation and population sizes at 40 dB noise for case study 1.





	
Methods

	
T

	
Np

	
Design Parameters

	
Best Fitness

	
Avg Fitness




	
      g  1     

	
      g  2     

	
      h  1     

	
      h  2     

	
      o  1     

	
      o  2     

	
      o  3     






	
MPA

	
500

	
50

	
−1.0976

	
0.9002

	
−0.8108

	
−0.5990

	
−0.9099

	
0.5912

	
0.1952

	
   3.8 ×   10   − 5     

	
   5.5 ×   10   − 5     




	
100

	
−1.0992

	
0.8985

	
−0.7965

	
−0.6014

	
−0.9045

	
0.5973

	
0.2016

	
   3.2 ×   10   − 5     

	
   5.0 ×   10   − 5     




	
1000

	
50

	
−1.0978

	
0.8969

	
−0.7999

	
−0.6023

	
−0.9044

	
0.5961

	
0.1984

	
   3.1 ×   10   − 5     

	
   4.2 ×   10   − 5     




	
100

	
−1.0978

	
0.8965

	
−0.7981

	
−0.5994

	
−0.9046

	
0.5976

	
0.2016

	
   2.9 ×   10   − 5     

	
   3.9 ×   10   − 5     




	
PDO

	
500

	
50

	
−1.1077

	
0.8619

	
−0.7954

	
−0.8527

	
−0.6526

	
0.5071

	
0.1500

	
0.0260

	
0.2769




	
100

	
−1.0527

	
0.8379

	
−0.7737

	
−0.6079

	
−0.9045

	
0.5709

	
0.2188

	
0.0071

	
0.1967




	
1000

	
50

	
−1.0243

	
0.8187

	
−0.8046

	
−0.5028

	
−1.2278

	
0.5109

	
0.2319

	
0.0110

	
0.1863




	
100

	
−1.1020

	
0.8933

	
−0.8539

	
−0.5378

	
−0.9603

	
0.5789

	
0.1965

	
   4.3 ×   10   − 4     

	
0.1612




	
SCA

	
500

	
50

	
−1.2458

	
1.0114

	
−1.2823

	
−0.5958

	
−0.4440

	
0.6779

	
0.0084

	
0.1362

	
0.2290




	
100

	
−1.1005

	
0.9112

	
−0.7042

	
−0.7149

	
−0.7310

	
0.6718

	
0.2431

	
0.0195

	
0.1565




	
1000

	
50

	
−1.0389

	
0.8189

	
−0.8901

	
−0.5615

	
−1.1855

	
0.4103

	
0.2097

	
0.0556

	
0.1500




	
100

	
−1.1279

	
0.8664

	
−1.1919

	
−0.3155

	
−1.4402

	
0.2008

	
0.1338

	
0.0530

	
0.1164




	
WOA

	
500

	
50

	
−1.1736

	
0.9365

	
−1.3780

	
−0.3366

	
−0.5491

	
0.6183

	
0.0930

	
0.0515

	
0.4267




	
100

	
−0.4672

	
0.3825

	
−0.4320

	
−1.1173

	
−1.9501

	
−0.1694

	
0.1607

	
0.1660

	
0.4192




	
1000

	
50

	
−1.0051

	
0.8141

	
−0.2655

	
−0.9009

	
−1.0431

	
0.5755

	
0.3375

	
0.0660

	
0.4354




	
100

	
−0.7311

	
0.6054

	
−0.3689

	
−1.0833

	
−1.0464

	
0.3766

	
0.2605

	
0.1053

	
0.2973




	
True Values

	
−1.1000

	
0.9000

	
−0.8000

	
−0.6000

	
−0.9000

	
0.6000

	
0.2000

	
0

	
0
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Table 5. Estimated weight analysis w.r.t generation and population sizes at 30 dB noise for case study 1.






Table 5. Estimated weight analysis w.r.t generation and population sizes at 30 dB noise for case study 1.





	
Methods

	
T

	
Np

	
Design Parameters

	
Best Fitness

	
Avg Fitness




	
      g  1     

	
      g  2     

	
      h  1     

	
      h  2     

	
      o  1     

	
      o  2     

	
      o  3     






	
MPA

	
500

	
50

	
−1.0993

	
0.9027

	
−0.8065

	
−0.5937

	
−0.9485

	
0.5739

	
0.2001

	
   3.0 ×   10   − 4     

	
   5.2 ×   10   − 4     




	
100

	
−1.0884

	
0.8840

	
−0.7943

	
−0.6330

	
−0.8651

	
0.5970

	
0.1908

	
   2.4 ×   10   − 4     

	
   4.5 ×   10   − 4     




	
1000

	
50

	
−1.1002

	
0.8957

	
−0.7948

	
−0.5956

	
−0.9017

	
0.5975

	
0.2046

	
   2.7 ×   10   − 4     

	
   4.1 ×   10   − 4     




	
100

	
−1.1034

	
0.9003

	
−0.8125

	
−0.5908

	
−0.9229

	
0.5861

	
0.1983

	
   2.4 ×   10   − 4     

	
   3.8 ×   10   − 4     




	
PDO

	
500

	
50

	
−0.9118

	
0.6720

	
−1.0179

	
−0.4754

	
−1.3536

	
0.2024

	
0.1578

	
0.0461

	
0.2711




	
100

	
−1.0106

	
0.8154

	
−0.6439

	
−0.8667

	
−0.9536

	
0.4742

	
0.1776

	
0.0095

	
0.2513




	
1000

	
50

	
−0.8903

	
0.7105

	
−0.6975

	
−0.6399

	
−1.3032

	
0.3473

	
0.2361

	
0.0230

	
0.2707




	
100

	
−1.0686

	
0.8515

	
−0.9238

	
−0.4909

	
−0.9426

	
0.5455

	
0.1848

	
0.0048

	
0.1520




	
SCA

	
500

	
50

	
−1.0744

	
0.8886

	
−0.8612

	
−0.4488

	
−1.3053

	
0.3867

	
0.1863

	
0.0784

	
0.2060




	
100

	
−1.1646

	
0.8605

	
−1.3450

	
−0.1424

	
−1.3534

	
0.1530

	
0.1114

	
0.0709

	
0.1638




	
1000

	
50

	
−1.0843

	
0.9227

	
−0.6941

	
−0.8631

	
−1.0894

	
0.4127

	
0.1170

	
0.0719

	
0.1513




	
100

	
−1.0649

	
0.8689

	
−0.8942

	
−0.4560

	
−0.9881

	
0.6281

	
0.2674

	
0.0489

	
0.1265




	
WOA

	
500

	
50

	
−1.1271

	
0.9493

	
0.5670

	
−1.9626

	
0.0465

	
0.8384

	
0.3408

	
0.1945

	
0.4343




	
100

	
−0.9911

	
0.8016

	
0.0386

	
−1.9189

	
−0.5169

	
0.4345

	
0.1694

	
0.0826

	
0.3993




	
1000

	
50

	
−1.2537

	
0.8268

	
−1.9499

	
0.4810

	
−1.8826

	
−0.1519

	
0.0787

	
0.1643

	
0.3945




	
100

	
−1.1938

	
0.9840

	
−0.8044

	
−0.4657

	
0.0998

	
1.1197

	
0.3217

	
0.0991

	
0.3120




	
True Values

	
−1.1000

	
0.9000

	
−0.8000

	
−0.6000

	
−0.9000

	
0.6000

	
0.2000

	
0

	
0











[image: Table] 





Table 6. Estimated weight analysis w.r.t generation and population sizes at 10 dB noise for case study 1.






Table 6. Estimated weight analysis w.r.t generation and population sizes at 10 dB noise for case study 1.





	
Methods

	
T

	
Np

	
Design Parameters

	
Best Fitness

	
Avg Fitness




	
      g  1     

	
      g  2     

	
      h  1     

	
      h  2     

	
      o  1     

	
      o  2     

	
      o  3     






	
MPA

	
500

	
50

	
−1.0044

	
0.9248

	
−0.6585

	
−0.5989

	
−1.2175

	
0.5851

	
0.2879

	
0.0266

	
0.0651




	
100

	
−0.4721

	
0.3117

	
0.0368

	
−1.0912

	
−1.7806

	
0.1460

	
0.4641

	
0.0350

	
0.0585




	
1000

	
50

	
−1.0797

	
0.8075

	
−1.0865

	
−0.3263

	
−0.8897

	
0.5562

	
0.2113

	
0.0257

	
0.0537




	
100

	
−1.0986

	
0.9158

	
−0.6987

	
−0.6994

	
−0.9153

	
0.5574

	
0.1941

	
0.0263

	
0.0417




	
PDO

	
500

	
50

	
−0.4146

	
0.2163

	
−0.3158

	
−1.3845

	
−1.1701

	
0.0619

	
0.1626

	
0.0591

	
0.3364




	
100

	
−1.0651

	
0.6972

	
−1.6685

	
−0.2576

	
−0.5222

	
0.4760

	
0.0516

	
0.0810

	
0.2740




	
1000

	
50

	
−0.7514

	
0.5082

	
−0.2147

	
−0.6914

	
−1.2349

	
0.8102

	
0.5757

	
0.0707

	
0.3043




	
100

	
−0.7529

	
0.5434

	
−0.3480

	
−1.1650

	
−0.9728

	
0.3101

	
0.1813

	
0.0390

	
0.2830




	
SCA

	
500

	
50

	
−0.6897

	
0.4400

	
−0.8164

	
−0.9964

	
−1.5210

	
−0.0562

	
0.1077

	
0.1750

	
0.2764




	
100

	
−1.1314

	
0.8923

	
−1.5527

	
−0.7299

	
−0.8486

	
0.2096

	
0.0101

	
0.0933

	
0.1738




	
1000

	
50

	
−0.0228

	
0.0203

	
−0.0002

	
−2.0000

	
−1.7703

	
−0.2665

	
0.1090

	
0.1005

	
0.1781




	
100

	
−0.2253

	
−0.0028

	
−0.1909

	
−1.6631

	
−1.0498

	
0.1043

	
0.2336

	
0.0966

	
0.1620




	
WOA

	
500

	
50

	
−0.1134

	
−0.0868

	
−0.3416

	
−0.7243

	
−0.4913

	
0.7683

	
0.4553

	
0.1016

	
0.3102




	
100

	
−1.3169

	
0.8183

	
−1.6177

	
0.1795

	
−1.4909

	
0.0159

	
0.1090

	
0.0760

	
0.2376




	
1000

	
50

	
−0.7933

	
0.6662

	
−1.2328

	
−0.5992

	
−1.9345

	
−0.2411

	
0.0103

	
0.0824

	
0.2924




	
100

	
0.0301

	
0.1867

	
−1.9827

	
−1.9827

	
−1.0564

	
−0.1705

	
0.0200

	
0.1355

	
0.2732




	
True Values

	
−1.1000

	
0.9000

	
−0.8000

	
−0.6000

	
−0.9000

	
0.6000

	
0.2000

	
0

	
0
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Table 7. Estimated weight analysis w.r.t generations at a 0.01 noise level for case study 2.






Table 7. Estimated weight analysis w.r.t generations at a 0.01 noise level for case study 2.





	
Methods

	
T

	
Design Parameters

	
Best Fitness

	
Avg Fitness




	
      g  1     

	
      g  2     

	
      h  1     

	
      h  2     

	
      o  1     

	
      o  2     

	
      o  3     






	
MPA

	
200

	
−1.1017

	
0.8978

	
−0.8044

	
−0.5999

	
−0.8932

	
0.6001

	
0.1980

	
   5.2 ×   10   − 5     

	
   1.9 ×   10   − 3     




	
500

	
−1.1018

	
0.8979

	
−0.8044

	
−0.5996

	
−0.8920

	
0.6010

	
0.1982

	
   5.2 ×   10   − 5     

	
   5.2 ×   10   − 5     




	
PDO

	
200

	
−1.0836

	
0.8766

	
−0.7975

	
−0.6473

	
−1.0023

	
0.5269

	
0.1740

	
   6.3 ×   10   − 3     

	
0.5494




	
500

	
−1.0899

	
0.8948

	
−0.5766

	
−0.6963

	
−0.7177

	
0.7521

	
0.2727

	
0.0146

	
0.3834




	
SCA

	
200

	
−1.1650

	
0.9793

	
−1.8630

	
−1.2628

	
0.0036

	
0.6294

	
0.0072

	
0.2384

	
0.8104




	
500

	
−1.1364

	
0.8896

	
−1.6057

	
−0.2327

	
−0.7748

	
0.5465

	
0.0233

	
0.0867

	
0.4969




	
WOA

	
200

	
−0.9963

	
0.7957

	
−0.3799

	
−0.7507

	
−1.3856

	
0.6501

	
0.3586

	
0.2331

	
1.0182




	
500

	
−1.1450

	
0.9706

	
−0.2738

	
−0.6472

	
0.3553

	
1.4730

	
0.4975

	
0.1753

	
0.6517




	
True Values

	
−1.1000

	
0.9000

	
−0.8000

	
−0.6000

	
−0.9000

	
0.6000

	
0.2000

	
0

	
0
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Table 8. Estimated weight analysis w.r.t generations at a 0.05 noise level for case study 2.






Table 8. Estimated weight analysis w.r.t generations at a 0.05 noise level for case study 2.





	
Methods

	
T

	
Design Parameters

	
Best Fitness

	
Avg Fitness




	
      g  1     

	
      g  2     

	
      h  1     

	
      h  2     

	
      o  1     

	
      o  2     

	
      o  3     






	
MPA

	
200

	
−1.1109

	
0.8910

	
−0.8271

	
−0.5952

	
−0.8589

	
0.6044

	
0.1903

	
   1.3 ×   10   − 3     

	
   3.7 ×   10   − 3     




	
500

	
−1.1109

	
0.8910

	
−0.8262

	
−0.5954

	
−0.8583

	
0.6049

	
0.1906

	
   1.3 ×   10   − 3     

	
   1.3 ×   10   − 3     




	
PDO

	
200

	
−1.0406

	
0.8332

	
−0.4206

	
−1.3664

	
−0.7828

	
0.4256

	
0.1194

	
0.0872

	
0.6333




	
500

	
−1.0866

	
0.8555

	
−0.8423

	
−0.6316

	
−1.0984

	
0.4647

	
0.1520

	
0.0172

	
0.4124




	
SCA

	
200

	
−1.1050

	
0.8054

	
−1.4742

	
−0.1922

	
−1.0218

	
0.5351

	
0.0089

	
0.2073

	
0.8758




	
500

	
−1.0695

	
0.8453

	
−1.1957

	
−1.4701

	
−0.1459

	
0.5871

	
0.0042

	
0.1845

	
0.4258




	
WOA

	
200

	
−0.9064

	
0.7102

	
−0.3235

	
−1.1091

	
−1.2099

	
0.4528

	
0.2038

	
0.3539

	
1.1520




	
500

	
−1.0549

	
0.8315

	
−1.0059

	
−0.9560

	
−1.2754

	
0.1507

	
−0.0263

	
0.1994

	
0.5828




	
True Values

	
−1.1000

	
0.9000

	
−0.8000

	
−0.6000

	
−0.9000

	
0.6000

	
0.2000

	
0

	
0
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Table 9. Estimated weight analysis w.r.t generations at a 0.10 noise level for case study 2.






Table 9. Estimated weight analysis w.r.t generations at a 0.10 noise level for case study 2.





	
Methods

	
T

	
Design Parameters

	
Best Fitness

	
Avg Fitness




	
      g  1     

	
      g  2     

	
      h  1     

	
      h  2     

	
      o  1     

	
      o  2     

	
      o  3     






	
MPA

	
200

	
−1.1267

	
0.8856

	
−0.8717

	
−0.5808

	
−0.8127

	
0.6069

	
0.1776

	
   5.3 ×   10   − 3     

	
   6.8 ×   10   − 3     




	
500

	
−1.1265

	
0.8857

	
−0.8653

	
−0.5835

	
−0.8107

	
0.6093

	
0.1794

	
   5.3 ×   10   − 3     

	
   5.3 ×   10   − 3     




	
PDO

	
200

	
−1.0194

	
0.7655

	
−0.6219

	
−0.9296

	
−1.1517

	
0.3711

	
0.1296

	
0.1452

	
0.7990




	
500

	
−1.0938

	
0.8706

	
−0.6854

	
−0.7346

	
−0.8723

	
0.5692

	
0.2007

	
0.0172

	
0.3089




	
SCA

	
200

	
−1.0574

	
0.9286

	
−0.0290

	
−1.3075

	
−0.6739

	
0.5813

	
0.3124

	
0.2892

	
0.6840




	
500

	
−1.1517

	
0.8870

	
−1.4557

	
−0.1035

	
−1.4434

	
0.2615

	
0.0165

	
0.1655

	
0.4139




	
WOA

	
200

	
−1.1503

	
0.8178

	
−1.9646

	
0.2299

	
−1.9588

	
−0.0416

	
−0.0822

	
0.3225

	
1.0572




	
500

	
−1.0863

	
0.8635

	
−0.3088

	
−0.8407

	
−0.6800

	
0.8381

	
0.3392

	
0.0734

	
0.6578




	
True Values

	
−1.1000

	
0.9000

	
−0.8000

	
−0.6000

	
−0.9000

	
0.6000

	
0.2000

	
0

	
0
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