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Abstract: The classic E-Bayesian estimation methods can only derive point estimation of the reliability
parameters. In this paper, an improved E-Bayesian estimation method is proposed to evaluate
product reliability under heavily censored data, which can achieve both point and confidence interval
estimation for the reliability parameters. Firstly, by analyzing the concavity & convexity and function
characteristics of the Weibull distribution, the value of product failure probability is limited to a
certain range. Secondly, an improved weighted least squares method is utilized to construct the
confidence interval estimation model of reliability parameters. Simulation results show that the
proposed approach can significantly improve the calculation speed and estimation accuracy with
just very few robustness reductions. Finally, a real-world case study of the sun gear transmission
mechanism is used to validate the effectiveness of the presented method.
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1. Introduction

The reliability evaluation method of the product is essentially a mathematical sta-
tistical method of specific censored data under specific distribution occasions. Normal
distribution, exponential distribution and Weibull distribution are often used to describe
the life distribution of products. Among them, Weibull distribution is the most flexible
one. Weibull distribution was first proposed by Swedish scientist Weibull. The Weibull
distribution model can be regarded as a generalization of the exponential distribution
model. The introduction of shape parameters makes it more accurate than the exponential
distribution model in describing the products whose failure rate increases or decreases
with time. In addition, by adjusting the shape parameters, Weibull distribution is also
capable of describing the normal distribution approximately. Many studies show that the
life distribution of most mechanical products approximately follows Weibull distribution.
Wang [1] proposed a new inference for constant-stress accelerated life tests with Weibull
distribution. Wang [2], Joarder [3] and Kundu [4] proposed MLE methods for Weibull
parameters. Denecke [5], Tan [6] and Krishnamoorthy [7] studied the method of solving
lower confidence limit for Weibull distribution.

Reliability life test is an important way to collect life data. If a test stops before all samples
fail, we call it censoring test, and the corresponding test data is truncated sample. The censoring
test can be classified into four types, namely conventional Type-II censoring, progressive
Type-II censoring [8], conventional Type-I censoring and progressive Type-I censoring [9].

With the rapid development of science and technology, products with long lifetime and
high reliability are emerging. As a result, in many life tests only the heavily censored data
are available for reliability estimation. Under some special conditions, including products
with high reliability and very few test samples, no test data or only very few failure data
can be obtained, which challenges the traditional reliability evaluation methods [10,11].
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Jiang [12] studied the problem of reliability estimation with zero failure data, in which
the Bayesian prior distribution model was constructed by using the “kernel” idea. Jiang [13]
developed a hybrid censoring index to quantitatively describe censoring characteristics of a
data set, proposed a novel parameter estimation method based on information extracted
from censored observations, and evaluated the accuracy and robustness of the proposed
method through a numerical experiment. Han [14–16] reviewed the reliability assessment
methods under zero-failure data conditions, and summarized the corresponding advantages,
disadvantages and application ranges. Li [17,18] proposed a reliability assessment method
with revised confidence limits. It can effectively avoid the aggressive phenomenon of relia-
bility estimation results. The hierarchical Bayesian method generalizes the current Bayesian
method to provide the ability to perform parameter point estimation and confidence interval
estimation at the same time, which effectively improves the credibility of the results [19].
Based on the modification of the hierarchical Bayesian estimation method, the E-Bayesian
estimation method was proposed. Compared with the hierarchical Bayesian method, the
E-Bayesian estimation method simplifies the mathematical model and improves the cal-
culation efficiency [20–22]. Jia [23] proposed an improved method based on the Bayesian
inference and least-squares method, and the four existing methods were com-pared with
this method in terms of applicability, precision, efficiency, robustness, and simplicity.

The current E-Bayesian estimation methods mainly focus on point estimation of
parameters, which do not solve the problem of confidence interval estimation. If the
calculation method of confidence interval estimation is different from point estimation,
the credibility of the results will reduce [24,25]. In addition, most E-Bayesian estimation
methods assume that the range of failure probability is (0, 1), it does not consider the
relationship between the failure probability of each truncation time, which causes the range
of failure probability values to be too large, and affects the accuracy. Furthermore, in the
process of solving the distribution parameters by using the distribution curve, the weight
of the weighted least square method used does not consider the role of the failure sample,
which makes the obtained reliability higher. In order to overcome the above problems, we
propose a new reliability assessment method based on the E-Bayesian. Firstly, based on the
E-Bayesian estimation and the distribution curve method, we develop a confidence interval
method. Secondly, we use the unevenness of the distribution function and the function
characteristics to determine the value range of the failure probability. Thirdly, improve the
original weighted least square method with a new weight function, which consider the
number of failed samples.

2. Heavily Censored Data Model

Due to time and cost constraints, for many products their life tests are often terminated
before all units fail, and thus produce the so-called censored data. In the test, due to the
high reliability of the product and the large number of units, the test observation time
is relatively short. Therefore, in the collected data, the ratio of faults to the entire unit is
usually less than 0.5 or very small. This collected data is called heavily censored data [13].
A model for heavily censored data is established, and it is the foundation for subsequent
product reliability index evaluation.

The Weibull distribution is a common random distribution and widely used in mod-
eling lifetime distribution for machinery and electronic products [26,27]. If we set the
shape parameter of Weibull distribution to be 1, it reduces to an exponential distribution,
which is only suitable to model electronic lifetime with the property of memoryless. Under
the condition of heavily censored data, it is assumed that the product life T follows a
distribution function T ∼ WE(m, η), where there are N (N > k) samples in the timing
truncation test, a total of k time timing truncation tests are performed, and the end time of
each timing truncation test is used τi(τ1 < τ2 < · · · < τk) to indicate, there are ni samples

that terminate the test at τi(i = 1, 2, · · · , k), and
k
∑

i=1
ni = N.
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Let ri be the number of failed samples during (τi−1, τi] , and tij(j = 1, 2, · · · , ri) be the

corresponding failure time. Here, i = 1, 2, · · · , k and τ0 = 0. Thus ei =
j

∑
q=1

rq indicates

the total number of failed samples in the test. The samples are numbered from 1 to N
at each end of the timing truncation test. After all timing truncation tests are completed,
the life number data are collected corresponding to the sample number ti(i = 1, 2, · · · , N).

Apparently, d =
k
∑

i=1
ei = 0 reduces to the special case of zero-failure life test.

In addition, si =
k
∑
j=i

nj, where si consist of two parts, the first part is the number

of samples still participating in the test at τi(i = 1, 2, · · · , k), the second part is failure
samples ri at the internal (τi−1, τi] . Setting pi = F(τi) = P(t ≤ τi)(i = 1, 2, · · · , k) as the
failure probability at each censoring moment. It is obvious that p0 = 0 at time t = 0,
p1 ≤ p2 ≤ · · · ≤ pk.

Here, the distribution curve method is used to estimate the distribution parameters.
The estimator of the failure probability pi at each truncation moment τi(i = 1, 2, · · · , k) is
the precondition, and it is the core link used by the distribution curve method.

3. E-Bayesian Estimation of pi under Heavily Censored Data

The E-Bayesian parameter estimation method can be regarded as the modified Bayesian
estimation method [28,29].

Definition 1: Let the hyperparameter b ∈ D. If the Bayesian point estimate θ̂B(b) is continuous,
the E-Bayesian point estimation of the parameters θ is

θ̂E =
∫

D
θ̂B(b)π(b)db (1)

where
∫

D θ̂B(b)π(b)db exists, D = {b : 1 < b < c}, c is a constant, π(b) is the density function
of the hyperparameter b on the interval D, and θ̂B(b) is Bayesian estimation of θ.

Equation (1) indicates that the E-Bayesian point estimation of θ is the expectation of
the Bayesian estimate θ̂B(b) about the hyperparameter b, where θ̂E = E

[
θ̂B(b)

]
.

3.1. Prior Distribution of pi

In the case of heavily censored data, it is evident that the prior distribution density
function of the failure probability pi is a decreasing function. Some common distribu-
tion functions in constructing the failure probability prior distribution are: Beta distribu-
tion, Gamma distribution, Exponential distribution, and Logarithmic distribution, where
Beta (a, b) is a conjugate prior distribution of parameter pi. The conjugate prior distribution
can conveniently integrate historical information and provide a reasonable premise for
future test data analysis. Some parameters can also be better explained simultaneously [30].
This study uses the Beta (a, b) distribution as the prior distribution of pi, and adjusts the
Beta (a, b) value range according to the change of the failure probability value range.

π(pi|a, b) =
pa−1

i (1− pi)
b−1

Bi(a, b)
(2)

where, Bi(a, b) =
∫ ui

li
xa−1(1− x)b−1dx



Mathematics 2022, 10, 4216 4 of 14

As this paper focuses on the case of heavily censored data in the timing data in the
timing truncation test, the failure probability pi is more likely to be small value in [0, 1].
And the prior distribution density function π(pi|a, b) is derived:

dπ(pi |a,b)
dpi

=
pa−2

i (1−pi)
b−2

Bi(a,b) [(a− 1)(1− pi)− pi(b− 1)] ≤ 0
(3)

Equation (3) is established when a ∈ (0, 1] and b ≥ 1. According to the property of the
probability density of the Beta distribution function, when a ∈ (0, 1] , the larger the value
of b, the thinner the right tail of the probability density function. From the perspective of
the robustness of the Bayesian estimation, the thinner the right tail of the prior distribution,
the worse is the robustness of the Bayesian estimation. Therefore, there must be an upper
limit on the value of b, which is c. In practical applications, c is generally selected in an
interval [2, 8]. It is very difficult to further determine the exact value of a and b. Rather
than using expert experience to determine a uniquely determined value, it is better to
assume that a and b are uniformly distributed within their respective values, so the prior
distribution density function of a and b is

π(a, b) =
1

c− 1
, 0 < a < 1, 1 < b < c (4)

3.2. E-Bayesian Estimation of Failure Probability

In the model of heavily censored data, the likelihood function of the failure probability pi is

L(si, ei|pi) = Cei
si pei

i (1− pi)
si−ei (5)

Taking the prior distribution function of the failure probability pi in Equation (2) and
the likelihood function in Equation (5) into the Bayesian formula, the poster distribution
density function of failure probability pi can be obtained

h(pi|ri) = π(pi |a,b)L(ri |pi)∫ ui
li

π(pi |a,b)L(ri |pi)dpi

=
p

a+ei−1
i (1−pi)

b+si−ei−1∫ ui
li

p
a+ei−1
i (1−pi)

b+si−ei−1dpi

(6)

With the squared loss function, the Bayesian point estimation p̂i(a, b) of the failure
probability pi is calculated as

p̂i(a, b) =
∫ ui

li
pih(pi|ri)dpi

=
∫ ui

li
pi p

a+ei−1
i (1−pi)

b+si−ei−1∫ ui
li

p
a+ei−1
i (1−pi)

b+si−ei−1dpi
dpi

=

∫ ui
li

p
a+ei
i (1−pi)

b+si−ei−1dpi∫ ui
li

p
a+ei−1
i (1−pi)

b+si−ei−1dpi

(7)

when li = 0 and ui = 1, Equation (6) becomes

h(pi|ri) = π(pi |a,b)L(ri |pi)∫ 1
0 π(pi |a,b)L(ri |pi)dpi

=
p

a+ei−1
i (1−pi)

b+si−ei−1

B(a+ei ,b+si−ei)

(8)
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Equation (7) becomes

p̂i(a, b) =
∫ 1

0 pih(pi|ri)dpi

= B(a+ei+1,b+si−ei)
B(a+ei ,b+si−ei)

= a+ei
a+b+si

(9)

Taking the prior distribution density function of a and b in Equation (4) into
Equation (1), the E-Bayesian estimation of failure probability pi is

p̂iEB =
∫ ∫

D p̂i(a, b)π(a, b)dadb

= 1
(c−1)

∫ c
1

∫ 1
0

∫ ui
li

p
a+ei
i (1−pi)

b+si−ei−1dpi∫ ui
li

p
a+ei−1
i (1−pi)

b+si−ei−1dpi
dadb

(10)

3.3. Value Range of Failure Probability

Motivated by reference [31], the distribution function of the life Ti obeying the Weibull
distribution is

F(t) = P(T ≤ t) = 1− exp
[
−
(

t
η

)m]
(11)

where Ti ∼ WE(m, η), m is the shape parameter, and η is the scale parameter. The
corresponding reliability function is

R(t) = exp
[
−
(

t
η

)m]
(12)

Regarding the determination of the failure probability pi, the value range are li, and
ui, the current research is mainly divided into two methods. The first method takes li = 0
and ui = 1. The second method uses the unevenness of the distribution function and the
function characteristics to determine the value range of the failure probability. The method
of setting the failure probability value range li = 0 and ui = 1 is too conservative, and the
characteristics of heavily censored data are not considered, so the calculation accuracy is
poor. In order to improve the accuracy of the failure probability value range, this study
uses method two to set the value range of the failure probability.

The second derivative of the Weibull distribution function is

d2F(t)
dt2 =

mtm−2 exp
(
−
(

t
η

)m)
ηm

(
m− 1− mtm

ηm

)
= m2

η2

(
t
η

)m−2(m−1
m − tm

ηm

)
exp

[
−
(

t
η

)m] (13)

when m ≤ 1, it is easy to prove that d2F(t)
dt2 < 0 by Equation (13), and thus the distribution function

F(t) is a convex function. According to the properties of the convex function, we can obtain

p1

t1
>

p2

t2
> · · · > pi−1

ti−1
>

pi
ti

> · · · > pk
tk

(14)

Because p1 ≤ p2 ≤ · · · ≤ pk, we can get the interval of pi as follows

pi−1 ≤ pi <
ti

ti−1
pi−1(i ≥ 2) (15)

The first step is to limit the value range of p1 is 0 < p1 < plim, where plim is the upper
limit of p1. The value of plim is based on the actual situation and the experience of an expert.
For heavily censored data [13], plim is usually set to be less than 0.5.
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When m > 1, it is difficult to determine the concavity and convexity of distribution
function F(t). Transforming the Weibull distribution function according to the function
characteristics, Equation (16) is obtained

ln ln
1

1− p
= m ln t−m ln η (16)

Taking pi−1 and pi into Equation (16), we have

ln
ln(1− pi−1)

ln(1− pi)
= m ln

ti−1

ti
< ln

ti−1

ti
(17)

Then, Equation (17) is transformed into

ln(1− pi−1)

ln(1− pi)
<

ti−1

ti
(18)

From Equation (18), pi > 1− (1− pi−1)
ti

ti−1 , it is known that 1− (1− pi−1)
ti

ti−1 is the
lower limit of pi and pupp is the upper limit of pi. The value of pupp is based on the actual
situation. According to the unevenness and function characteristics of the distribution
function, the value range of pi can be determined as follow

li =


pi−1

1− (1− pi−1)
ti

ti−1

m ≤ 1

m > 1
, ui =


ti

ti−1
pi−1

pupp

m ≤ 1

m > 1
(19)

4. E-Bayesian Point Estimation of Reliability

In order to obtain distribution parameter estimates, points (τi, pi) first need to be
obtained, and then a distribution curve based on the points needs to be assigned. As the
exact value of the failure probability pi cannot be obtained during the calculation, the
estimation value p̂iEB is used to describe the failure probability pi. After all the p̂iEB are
obtained, the distribution curve method is used to form a distribution curve based on these
points (τi, p̂iEB). The current commonly used method for fitting a distribution curve is the
weighted least square method. Reference [19] using the weighted least squares method to fit
the distribution curve, the weight is wi =

niti
k
∑

j=1
njtj

. This method only considers the influence

of the number of test samples and test time on the estimated value of the distribution
parameter, and ignores the role of failed samples in the value of the test, so the method
can only be used to estimate the distribution parameter of the sample without failure data.
For test samples containing failure data, the method has obvious shortcomings. In order
to consider the number of test samples, test time, and number of failed samples in the
distribution curve, the original weighted least square method is improved. An improved

least square method is proposed, the improved weight is wi =
ni

ri+1ti
k
∑

j=1
nj

ri+1tj

, and the method is

used to fit the distribution curve.
Let y = ln[− ln(1− p)], x = ln t, b = m ln η, and then Equation (11) is transformed into

y = mx− b (20)

With the improved weighted least squares method, the point estimates of distribu-
tion parameters m and η are obtained by fitting (xi, ŷiEB), and then the point estimate of
reliability is obtained. By minimizing the square of fitting errors, we have

Q =
k

∑
i=1

wi(ŷiEB −mxi + m ln η)2 (21)
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where wi =
ni

ri+1ti
k
∑

j=1
nj

ri+1tj

, k ≥ 2.

For the derivative calculation of Equation (21), let A =
k
∑

i=1
wixi, B =

k
∑

i=1
wix2

i ,

C =
k
∑

i=1
wi ŷiEB, and D =

k
∑

i=1
wixi ŷiEB, giving

m̂ =
D− AC
B− A2 η̂ = exp

(
AD− BC
D− AC

)
(22)

Taking the estimated value of the distribution parameters obtained from Equation (22) into
Equation (19), the point estimation R̂EB(t) under the Weibull distribution can be obtained

R̂EB(t) = REB(t; m̂, η̂) = exp

[
−
(

t
η̂

)m̂
]

(23)

5. E-Bayesian Confidence Interval Estimation

Currently, all applications of the E-Bayesian estimation method focus on the point
estimation of parameters, and no further research about parameter confidence interval
calculations on this basis. For the estimation of parameter confidence intervals, the other
methods should be used, such as the optimal confidence limit method [32] and bootstrap
method [33]. Because the methods used for the parameter confidence interval estimation
and the point estimation are different, the result will have “disjointed” problem. In fact,
on the basis of the E-Bayesian estimation method and the distribution curve method, the
confidence interval of the parameters can be obtained.

Under the confidence level value (1− α), the first step is to estimate upper confidence
value p̂u

iEB of the failure probability pi. Based on the poster distribution density function of
pi in Equation (6) and the E-Bayesian estimate of the failure probability pi in Equation (10),
G(x, si, ei) is defined as

G(x, si, ei) =
1

(c− 1)

∫ c

1

∫ 1

0

∫ x
li

pa+ei−1
i (1− pi)

b+si−ei−1dpi∫ ui
li

pa+ei−1
i (1− pi)

b+si−ei−1dpi
dadb (24)

Similar to the estimation of upper confidence limit for the hierarchical Bayesian
estimation method, Based on the definition of the upper confidence limit, we have

G( p̂u
iEB, si, ei) = 1− α (25)

Since G(li, si, ei) = 0 and G(ui, si, ei) = 1, Equation (25) is solved by the binary search
method, and then the upper confidence limit p̂u

iEB of failure probability pi is obtained. Based on
the linearization process to Equation (18), ŷu

iEB = ln
[
− ln

(
1− p̂u

iEB
)]

and xi = ln ti are obtained.
According to the improved weighted least square method, the failure probability upper

confidence limit curve can be obtained by fitting points
(
xi, ŷu

iEB
)
. From Equation (21), we have

Qu =
k

∑
i=1

wi(ŷu
iEB −mxi + m ln η)2 (26)

As m has a limited value range and it has a small effect on the reliability index, so the
confidence interval of m is not assumed. m̂ is the point estimation value of m, and then
taking m̂ into fitting the curve with

(
τi, pu

iEB
)
, obtaining the point estimation value m̂. The

next step is to obtain the lower confidence limit ηL of the estimation value η. Taking m̂ into
Equation (26), we have

Qu =
k

∑
i=1

wi(ŷu
iEB − m̂xi + m̂ ln η)2 (27)
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The lower confidence limit ηL of η can be obtained when Qu have the smallest value:

ηL = exp

[
k

∑
i=1

wi

(
xi −

yu
iEB
m̂

)]
(28)

The point estimation value m̂ and lower confidence limit ηL are taken into the Weibull
reliability calculation formula, and then the lower confidence limit of reliability R at
confidence level (1− α) can be obtained at any time t, it is

RL(t) = exp

[
−
(

t
ηL

)m̂
]

(29)

Similarly, the upper confidence limit of the failure probability is

Fu(t) = 1− RL(t) = 1− exp

[
−
(

t
ηL

)m̂
]

(30)

The upper confidence limit of the failure rate function is

λu(t) =
fu(t)
RL(t)

=
m̂
ηL

(
t

ηL

)m̂−1
(31)

6. Simulation Verification

In order to verify the accuracy of the proposed method, simulation experiments were
used to generate simulation samples. Based on the generated simulation samples, the classic
estimation method [34], the hierarchical Bayesian estimation method [19], and the E-Bayesian
estimation method are used to evaluate the reliability of the sample. The results are compared
from multiple aspects such as robustness, average time consumption and distance from the
true value. Zhang [35] describes the process of generating simulation samples:

(1) Setting the true value of the shape parameter m and scale parameter η in the Weibull
distribution, and then the failure time ti(i = 1, 2, · · · , N) is randomly generated through
MATLAB, that is, there are N experimental samples from the simulation experiment.

(2) N uniformly distributed random numbers ui, ui ∈ (0, 1).
(3) The truncation level CL is determined, based on that, r (r = N × CL) failure

times from all ti(i = 1, 2, · · · , N) are arbitrarily selected, denoted as t f i(i = 1, 2, · · · , r). The
remaining failure time is represented by tsi(i = 1, 2, · · · , N − r).

(4) tsj is replaced by uitsj, which is used to indicate zero-failure truncation time tsj.
(5) Based on the value of t f i(i = 1, 2, · · · , r) and tsj, the truncation time is grouped and the

minimum truncation time is taken as the truncation time of the censored experiment of the group.
For this simulation, 11 samples were selected for 5 censored experiments. In the Weibull

distribution, the shape parameter m = 2.2 and scale parameter η = 2400. Taking the
truncation level CL = 0.1, the simulation samples were generated, they were shown in Table 1.

Table 1. Simulation samples.

Number i 1 2 3 4 5

Censored time ti 682 813.5 1460 2090.7 2390.7
Samples ni 2 1 1 2 5

Failed samples ri 0 0 0 1 0
Summary of failed

samples ei
0 0 0 1 1

Remaining
samples si

11 9 8 7 5
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From Equation (14), when m > 1, the upper limit pupp of pi needs to be determined,
since even in a censored test, the value of pupp will continuously change with time t. It will
increase the calculation complexity and cumulative error, so generally the value of pupp is

set to 1 and the value range of failure probability pi is
[

1− (1− pi−1)
ti

ti−1 , 1
]

.

Based on the data in Table 1, the classical estimation method [34], the hierarchical
Bayesian estimation method [19], and the E-Bayesian estimation method proposed in this
study were used to solve the failure probability estimates. The calculation results of the
failure probability at time t5 are shown in Table 2.

Table 2. The failure probability pi at c.

c 2 3 4 5 6 7 8 Range Average Running Time/s

Method proposed in this study 0.5615 0.5428 0.5258 0.5103 0.4961 0.4829 0.4706 0.0909 102

Method proposed in [19] 0.2221 0.2092 0.1981 0.1887 0.1805 0.1734 0.1672 0.0549 1038

Method proposed in [34] 0.0833 / ≈ 0

True value 0.6290 / /

Table 2 gives the failure probability estimation results of three different methods. The
estimation range under different c values and average running time are also compared in
the table. Compared with [19], although the robustness of the proposed method is slightly
lower, and the algorithm efficiency is significantly improved. Furthermore, compared
with [19,34], our method has higher calculation accuracy due to modify the value range of
failure probability.

c = 5 is used in subsequent calculation, and reliability R̂EB(t) calculated by the method
proposed in this study is compared with R̂HB(t) and R̂B(t) which are calculated by methods
proposed in [19,34] respectively, the results are shown in Figure 1.
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In the Figure 1, Method 1 is the hierarchical Bayesian estimation method [19], Method 2
is the classic estimation method [34], and Method 3 is the E-Bayesian reliability evaluation
method proposed in this study. From Figure 1, it can be seen that E-Bayesian reliability
assessment methods with heavily censored data have the closest estimated results to the
true values. The classic estimation method [34] does not consider the effect of censored
time on the failure probability in the timing truncation test, which makes the reliability
overestimated. In the process of determining the failure probability value range, the
hierarchical Bayesian estimation method [19] fixed the interval to [0, 1], without considering
the sequence relationship between the failure probability values. The determination of the
failure probability value range is too conservative. In addition, in the process of solving
the distribution parameters using the weighted least squares method, the weight model
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does not consider the effect of the number of failed samples on the weight value. Due to
the above reasons, the obtained reliability estimation value is too large.

In order to solve the lower confidence limit of reliability, the first step is to calculate
the upper confidence limit pu

i of failure probability pi under the confidence level of 0.9,
and then getting the lower confidence limit of the reliability parameter. As reference [34]
does not further analyze the confidence interval of the reliability parameter, the method
proposed in this study is only compared with the method in [19]. The corresponding lower
confidence limit (LFM) comparison results are shown in Figure 2.
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In Figure 2, Method 1 is the hierarchical Bayesian estimation method [19] and Method 3
is the E-Bayesian reliability evaluation method proposed in this study. From the comparison
results, it can be seen that the method proposed in this study is better than the hierarchical
Bayesian method proposed in [19].

7. Case Study
7.1. Transmission Mechanisms

Most of the transmission mechanisms in the integrated transmission are planetary
transmission mechanisms. This type of planetary transmission mechanism refers to a
transmission mechanism in which the structure includes a planetary gear that rotates
around a central axis. Planetary gears are internally connected parts, which are connected
to the various elements that rotate around the central axis, including the sun gear, ring gear,
and planet carrier, forming various planetary differentials (planetary rows). It can be used
alone as a differential, reducer, or power splitting and converging mechanism in the drive
train, or it can be used in series to form a speed increasing and reducing mechanism in the
drive train. The flexible application of planetary mechanisms has changed a lot and has
become the basis for many new developments in transmissions. Among them, the sun gear
is a key component of the planetary transmission mechanism, which affects whether the
planetary transmission mechanism can be normally used.

In this study, the sun gear of a transmission mechanism is used as the research object,
and the timing truncation test is carried out under its normal working conditions. The test
data is shown in Table 3.
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Table 3. Sun Gear Test Data.

Number i 1 2 3 4 5

Censored time ti 1000 1500 2000 2500 3000

Samples ni 3 3 3 3 3

Failed samples ri 0 0 0 1 0

Summary of failed
samples ei

0 0 0 1 1

Remaining samples si 15 12 9 6 3

Where c = 5, the failure probability E-Bayesian point estimate value p̂iEB at every
censored moment ti is calculated, and the results are shown in Table 4.

Table 4. Failure probability and upper confidence limit point estimation.

Number i 1 2 3 4 5

Failure probability estimated value p̂iEB 0.02689 0.08861 0.17639 0.31400 0.48287

The upper confidence limit of failure probability p̂u
iEB 0.0474 0.1193 0.2143 0.3767 0.5604

Then, the point estimation (solid line in Figure 3) curve of the reliability under the
Weibull distribution is obtained.
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In this study, we set the confidence level (1− α) = 0.8. With Equation (25), the upper
confidence point estimation value p̂u

iEB (dash line in Figure 3) of failure probability pi is
obtained. The results are shown in Table 4.

The lower confidence limit can be obtained at any t moment when the reliability R at
the confidence level 0.8, and the results are shown in Figure 3.

With Equation (31), the upper confidence limit of the failure rate function λu(t) is
obtained, and the result is shown in Figure 4.
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7.2. GPS Receiver

The measurement and control subsystem, it is an important subsystem of the satellite
platform. It cooperates with the ground measurement and control system to realize the
speed, distance and angle measurement of a satellite. In addition, this subsystem is
also used to collect relevant parameters inside the satellite. GPS receiver is one of the
components of measurement and control subsystem.

We collected 10 times telemetry data, and there are no failure data of all GPS receivers.
The receiving times are shown in Figure 5.
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Firstly, sort the samples in descending order, namely t10 > · · · > t1,
With the GPS receiver data, we can obtain the reliability point estimation and remaining

samples si. Set the confidence level to be (1− α) = 0.9. Finally, the reliability point estimation
and lower confidence limit of GPS receiver for 1 to 8 years are calculated in Figure 6.
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8. Conclusions

In this paper, an improved E-Bayesian estimation method based on Weibull distribution
is proposed. Compared with the traditional ones, the main contribution is twofold: (1) We
extend the application range of E-Bayesian estimation from zero failure data to extreme few
failure data; (2) A novel confidence interval estimation approach for E-Bayesian is provided.

Simulation results show that although the proposed method sacrifices few robust-
ness, it outperforms the traditional ones in the following aspects: (1) Compared with the
hierarchical Bayesian estimation method, the E-Bayesian estimation method proposed in



Mathematics 2022, 10, 4216 13 of 14

this study has simpler mathematical models and calculations. The efficiency is signifi-
cantly improved. (2) The value range of the failure probability is improved by using the
unevenness and function characteristics of the distribution function, and the improved
weighted least square method is used to solve the distribution parameters. Compared with
the hierarchical Bayesian estimation method, the E-Bayesian estimation method proposed
in this study has higher calculation accuracy.

Finally, the method proposed in this study is applied to the data analysis of the sun
gear timing truncation test of a transmission mechanism and GPS receiver. It further
verified that the method proposed in the study is more conducive to practical application
in engineering. The results show that the heavily censored data based on E-Bayesian
estimation method can solve the reliability evaluation problem under the condition of
non-failure data and few failure data. Therefore, the method proposed in this paper has a
wider range of engineering applications.

Reliability assessment methods for heavily censored data has not been studied thor-
oughly and there are still many issues to be resolved. In practice, we can only have very
few failure data of products, it is difficult to collect product performance data. In addition,
due to the limited test time and samples, it is generally impossible to collect sufficient life
data. In the future, we will pay more attention to the combination of life data and other
reliability data, as well as the utilization of historical data.
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