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Abstract: This article explores and highlights the effect of stochasticity on the extinction behavior
of a disease in a general epidemic model. Specifically, we consider a sophisticated dynamical
model that combines logistic growth, quarantine strategy, media intrusion, and quadratic noise. The
amalgamation of all these hypotheses makes our model more practical and realistic. By adopting
new analytical techniques, we provide a sharp criterion for disease eradication. The theoretical
results show that the extinction criterion of our general perturbed model is mainly determined by the
parameters closely related to the linear and quadratic perturbations as well as other deterministic
parameters of the system. In order to clearly show the strength of our new result in a practical way, we
perform numerical examples using the case of herpes simplex virus (HSV) in the USA. We conclude
that a great amount of quadratic noise minimizes the period of HSV and affects its eradication time.
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1. Introduction

Recently, the spread of contagious infections is having an adverse influence on the
healthcare systems globally, and has imposed a heavy load on people’s lifestyles [1,2].
To counteract the negative effects of epidemics and prevent their rapid transmission,
some medical and non-medical strategies such as drugs, vaccination, quarantine, isolation
and media intervention are widely used [3,4]. Although we can discover and grasp the
biological characteristics of epidemics, overall infection control is not deterministic due
to external factors. Human intervention, financial crises, and political decisions clearly
influence the spread of epidemics [5]. Climatic alterations lead to changes in global average
temperature and sometimes unpredictable rainfall, phenomena that modify the conditions
for the development of vectors [6]. These environmental changes can increase the presence
of viruses such as influenza in certain areas where average temperatures are cooler [7].
Despite the challenges that extrinsic conditions can pose for controlling vector-borne
infectious diseases, researchers strive to mathematically describe this randomness using
different processes and methods [8]. The main goal is to provide a sophisticated formulation
that simulates the effects of the above strategies and perturbations on disease spread [9,10].

Researchers in the biology and ecology domains investigate the complex charac-
ters of natural phenomena, and therefore require adapted methods of description and
abstraction [11]. Probabilistic systems, being both powerful in their characterization and
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pliable in their analytical treatment, are the most appropriate tools for probing such sce-
narios and situations [12]. The integration of stochastic modeling with complex real-word
model analysis provides wisdom in species and disease dynamics under global oscilla-
tions [13–17]. Using white noise, various analytical tools have been adopted to establish
information and predict the future of the analyzed phenomenon [18]. In its standard
form, many researchers have proportionally integrated white noise in order to stimu-
late the impact of certain continuous variations on the long-term dynamics of biological
systems [19–23]. Asymptotic characteristics such as stability [24–27], dynamical bifurca-
tion [28–30], random bifurcation [31], synchronization, chaos theory [32,33], and other
properties have been investigated [34–40]. When encountering noisy and complex distur-
bances, consideration of second-order white noise is an effective approach for depicting
strong differences in species and individuals. This view was first proposed by Liu and
Jiang [41] in 2017 by analyzing the asymptotic behavior of a stochastic differential system
driven by a quadratic polynomial diffusion part. Subsequently, the authors of [42] studied
the stationarity and extinction properties of a multi-stage HIV system with quadratic per-
turbation. In [43], Liu analyzed the stationarity and ergodicity properties of a SICA-HIV
system with quadratic perturbation. In [44], the authors treated the existence of a single
probability measure and extinction of the illness for a general SIRS epidemic system with
additional hypotheses and quadratic perturbation. In [45], the authors investigated the
periodicity and stationarity properties of a perturbed epidemic model with relapse and
quadratic perturbation. In [46], Liu and Jiang proposed a new AIDS system with enhanced
hypotheses. They studied the stationarity and extinction of their model with quadratic
perturbation. In [47], the authors introduced a new multi-stage HIV-AIDS system with
quadratic perturbation and established the sufficient conditions for the stationarity and
extinction of the disease. In [48], the authors considered an epidemic model with relapse
hypothesis and media intervention. They obtained the sufficient criteria for ergodicity and
extinction in the case of quadratic perturbation. In [49], Lv et al. provided the sufficient con-
ditions of the stationarity and extinction of an impulsive chemostat system with quadratic
perturbation. In [50], the authors included regime switching in a predator–prey system.
By assuming the quadratic perturbation, they proved the existence of a single stationary dis-
tribution. In [51], the authors analyzed a perturbed logistic equation with continuous delay
and quadratic perturbation. They established the conditions of the extinction and existence
of a steady stationary distribution. In [52], Liu et al. showed the periodicity and ergodicity
properties of a standard SIR system with quadratic perturbation. In [53], the authors offered
the sufficient conditions of the ergodicity property of a switched ecological Lotka–Volterra
system under quadratic perturbation. In [54], the authors integrated the quadratic pertur-
bation in an ecological system with additional food and obtained the sufficient condition
of stationarity and extinction. In [55], Liu and Jiang analyzed the propagation of HIV by
discussing the extinction and stationarity properties under the hypothesis of quadratic
perturbation. In [56], the authors provided a nice generalization of a switched perturbed
epidemic model with the hypotheses of media intrusion, isolation, and default immunity
and established the sufficient criteria for stationarity and extinction. In [57], the authors
studied the extinction and stationary distribution of a stochastic COVID-19 epidemic model
with time delay. In this study, we upgrade the model proposed in [56] by incorporating
the effect of logistic growth. In terms of phenomenological modeling, the logistic growth
function is generally used illustratively or phenomenologically because it correlates well
with the ultimate leveling of infection as the population develops herd immunity [51].
The adoption of this function makes epidemiological and ecological modeling more real
and significant [50]. By considering logistic growth and quadratic white noise, the general
epidemic model with medical and non-medical intervention is formulated as follows:
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

dX1 =

Deterministic part︷ ︸︸ ︷(
r

A
X1

(
A− X1

)
−B0X1X2 −

(
B1 −

B?
1 X4

m1 + X4

)
X1X4 −

(
B2 −

B?
2 X5

m2 + X5

)
X1X5

)
dt+

Stochastic part︷ ︸︸ ︷
dQ1(t),

dX2 =

(
B0X1X2 +

(
B1 −

B?
1 X4

m1 + X4

)
X1X4 +

(
B2 −

B?
2 X5

m2 + X5

)
X1X5 −

(
D+ E1 + E2 + F1

)
X2

)
dt + dQ2(t),

dX3 =
(
E1X2 − (D+M+ F2)X3

)
dt + dQ3(t),

dX4 =
(
E2X2 − (D+N+ K1 + L1)X4

)
dt + dQ4(t),

dX5 =
(
MX3 +NX4 − (D+ K2 + L2)X5

)
dt + dQ5(t),

dX6 =
(
F1X2 + F2X3 + K1X4 + K2X5 −DX6

)
dt + dQ6(t),

Xk(0) > 0, k = 1, . . . , 6,

(1)

where the processes Xk, k = 1, . . . , 6, are defined in Table 1.

Table 1. Classification of different types of individuals.

Symbol Epidemiological Classification

X1 Susceptible persons
X2 Exposed persons
X3 Isolated persons
X4 Infected persons
X5 Hospitalized persons
X6 Recovered persons

In the following, we explain the components of the above model.

• Deterministic Part:
The first part contains the transfer rates between the classes, with the positive parame-
ters defined in Table 2.

Table 2. Epidemiological meaning of the deterministic parameters appearing in (1).

Parameter Epidemiological Meaning Unit

r The natural intrinsic growing rate of X1 days−1

A The carrying amplitude of X1 1 million
B0 The propagation ratio between X1 and X2 days−1

B1 The maximal efficient contact rate between X1 and X4 days−1

B2 The maximal efficient contact rate between X1 and X5 days−1

B?
1

The reduced active contact rate due to media
intrusion associated with X4, (B1 ≥ B?

1) –

B?
2

The reduced active contact rate due to media
intrusion associated with X5, (B2 ≥ B?

2) –

C1 The isolation rate of X2 days−1

C2 The transition rate from X2 to X4 days−1

D The normal death rate of Xk, k = 2, 3, 4, 5, 6 days−1

F1 The cure rate of X2 days−1

F2 The cure rate of X3 days−1

K1 The cure rate of X4 days−1

K2 The cure rate of X5 days−1

L1 The disease-related mortality rate of X4 days−1

L2 The disease-related mortality rate of X5 days−1

m1 The coefficient of media intrusion associated with X4 –
m2 The coefficient of media intrusion associated with X5 –
M The hospitalization ratio of X3 days−1

N The hospitalization ratio of X4 days−1
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If we only consider this part without adding random fluctuations, we obtain a deter-
ministic model that simulates the spread of a given disease under an isolation strategy
and media intrusion. To classify and sort the long-term behavior of this disease, we
can use the basic reproductive ratioR◦ [58]. According to the calculus presented in
Section 3 of [59],R◦ is expressed as follows:

R◦ =
A

U2

(
B0 +

B1E2

U4
+

B2ME1

U3U5
+

B2NE2

U4U5

)
,

where

U2 = D+ E1 + E2 + F1, U3 = D+M+ F2, U4 = D+N+ K1 + L1, U5 = D+ K2 + L2.

• Stochastic Part:
This part characterizes and describes the effects of complex environmental fluctuations,
where

dQ1(t) =

Linear part︷ ︸︸ ︷
Ξ1`X1(t)dW1(t) +

Quadratic part︷ ︸︸ ︷
Ξ1qX2

1(t)dW1(t),
dQ2(t) = Ξ2`X2(t)dW2(t) + Ξ2qX2

2(t)dW2(t),
dQ3(t) = Ξ3`X3(t)dW3(t) + Ξ3qX2

3(t)dW3(t),
dQ4(t) = Ξ4`X4(t)dW4(t) + Ξ4qX2

4(t)dW4(t),
dQ5(t) = Ξ5`X5(t)dW5(t) + Ξ5qX2

5(t)dW5(t),
dQ6(t) = Ξ6`X6(t)dW6(t) + Ξ6qX2

6(t)dW6(t).

We consider a probability triple (Ω, E ,P) and an increasing right-continuous filtra-
tion {Et}t≥0 along with the fact that E0 includes all P-null sets. The six Wiener
processes Wk(t) (k = 1, 2, 3, 4, 5, 6) are all mutually independent and defined on
(Ω, E , {Et}t≥0,P); Ξk` > 0 (k = 1, 2, 3, 4, 5, 6) are the intensities of white noises in the
linear part, while Ξkq > 0 (k = 1, 2, 3, 4, 5, 6) are the intensities of white noises in the
quadratic part.

In the present study, our main intention is to provide the precise condition for the
eradication of the infection in probabilistic model (1). This asymptotic property is consid-
ered sufficient to control the future pandemic situation under medical and non-medical
strategies. Although model (1) is based on the model presented in [56], this article general-
izes the previous results and develops the extinction criteria in the case of logistic growth.
Furthermore, we numerically probe the effect of quadratic noise on the temporal extinction
of the infection. We show that human intervention and the high amount of stochastic
components influence the eradication time of the epidemic, which is an important way to
control the future of the epidemic and provide good forecasts.

The remainder of this article is structured as follows. In Section 2, we exhibit the main
theoretical results of our paper by providing the sharp criterion of disease eradication.
In Section 3, we support our findings with computer simulations using real data on the
herpes simplex virus (HSV) in the USA. Furthermore, we explore the effect of quadratic
noise on the eradication time of the epidemic. In Section 4, we derive the main conclusions
of this article.

2. Theoretical Results

Before manipulating system (1), it is necessary to check that it is mathematically and
biologically well-posed. In line with the proof of Theorem 3.1 in [47], we conclude that for
any positive initial data

X0 = (X1(0), X2(0), X3(0), X4(0), X5(0), X6(0)) ∈ R6
+,
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we have the existence of a unique, global and positive solution

X = (X1(t), X2(t), X3(t), X4(t), X5(t), X6(t)) ∈ R6
+

with near certainty (henceforth abbreviated as a.s.). By summing all classes of (1), we

define the total class Ttot(t) =
6
∑

k=1
Xk(t). According to the equation of X1, we consider the

following auxiliary system:dY(t) =
r

A
Y(t)

{
A−Y(t)

}
dt + Ξ1`Y(t)dW1(t) + Ξ1qY2(t)dW1(t),

Y(0) = X1(0) ∈ R+.
(2)

From the theory presented in [56], Equation (2) is well-posed, and if r− 0.5Ξ2
1` > 0, then (2)

admits the following single invariant probability measure ΘY:

ΘY(y) = My
2r

Ξ2
1`
−2

(Ξ1q + Ξ1`y)
− 2r

Ξ2
1`
−2

e

2r(Ξ1`+AΞ1q)
AΞ1`Ξ1q(Ξ1`+Ξ1qy) , ∀y > 0,

where M is a constant that satisfies
∫
R+

yΘY(dy) = 1 a.s. Via the ergodic property [60], we

can see that

lim
t→∞

t−1
∫ t

0
Y(s)ds =

∫
R+

yΘY(dy), a.s. (3)

In the next lemma, we provide an estimation of the time average of Y(t) defined in (3).

Lemma 1. Presume that r− 0.5Ξ2
1` > 0; then, the time average of Y is estimated as follows:

lim
t→∞

∫ t

0
Y(s)ds ≤

(
r− 0.5Ξ2

1`

)(
r
A + Ξ1`Ξ1q

) a.s.

Proof. Employing Itô’s lemma for drift–diffusion processes, we have

d ln Y(t) =
(

r

A

(
A−Y(t)

)
− 0.5

(
Ξ1` + Ξ1qY(t)

)2
)

dt +
(

Ξ1` + Ξ1qY(t)
)

dW1(t).

Integrating from 0 to t for both sides of the last equality, we obtain

ln Y(t)− ln Y(0) = rt− r

A

∫ t

0
Y(s)ds− 0.5Ξ2

1`t− Ξ1`Ξ1q

∫ t

0
Y(s)ds− 0.5Ξ2

1q

∫ t

0
Y2(s)ds

+ Ξ1`W1(t) + Ξ1q

∫ t

0
Y(s)W1(s).

Then, we have

∫ t

0
Y(s)ds =

(
r− 0.5Ξ2

1`

)
t(

r
A + Ξ1`Ξ1q

) − 0.5Ξ2
1q

∫ t

0
Y2(s)ds + Ξ1q

∫ t

0
Y(s)W1(s) + Ξ1`W1(t)− ln Y(t) + ln Y(0).

Let g(t) = Ξ1q

∫ t

0
Y(s)W1(s); then, the quadratic variation is 〈g(t), g(t)〉 = Ξ2

1q

∫ t

0
Y2(s)ds.

According the exponential Martingales inequality, we have

P
{

sup
0≤t≤h

(
g(t)− 0.5〈g(t), g(t)〉 ≥ 2 ln h

)}
≤ 1

h
.



Mathematics 2022, 10, 4213 6 of 16

for all h > 0. From the Borel-Cantelli lemma, we can be sure that for all h− 1 < t < h,

g(t) ≤ 0.5Ξ2
1q

∫ t

0
Y2(s)ds + ln h a.s.

Consequently,

1
t

∫ t

0
Y(s)ds ≤

(
r− 0.5Ξ2

1`

)(
r
A + Ξ1`Ξ1q

) +
ln h

t
+

Ξ1`W1(t)
t

− ln Y(t)
t

+
ln Y(0)

t
. (4)

Then, taking the limit on both sides of (4),

lim
t→∞

1
t

∫ t

0
Y(s)ds ≤

(
r− 0.5Ξ2

1`

)(
r
A + Ξ1`Ξ1q

) a.s.

�

The next theorem aims to provide a sharp criterion for the eradication of the infection.
For simplicity, we consider the following list of notations:

Z1 =

max
0≤k≤2

{Bk}

min{Z2,Z4,Z5}

(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

,

Z2 =

(
r− 0.5Ξ2

1`

)
R◦

(r+AΞ1`Ξ1q)
,

Z3 =
AB2M

(
r− 0.5Ξ2

1`

)
U3U5(r+AΞ1`Ξ1q)

,

Z4 =
A
(
B1U5 +B2N

)(
r− 0.5Ξ2

1`

)
U4U5(r+AΞ1`Ξ1q)

,

Z5 =
AB2

(
r− 0.5Ξ2

1`

)
U5(r+AΞ1`Ξ1q)

.

Theorem 1. The eradication of the disease occurs if

R◦ < min


(r+AΞ1`Ξ1q)(
r− 0.5Ξ2

1`

) ,
0.125 min

2≤k≤5
{Ξ2

kq}

0.5Z1

∫
R+

∣∣∣∣y− A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

∣∣∣∣ΘY(dy)

 = K.

Explicitly, the solution X of (1) verifies

lim sup
t→∞

t−1 ln
5

∑
k=2

ZkXk(t) ≤ 0.5Z1R◦
∫
R+

∣∣∣∣y− A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

∣∣∣∣ΘY(dy)− 0.125 min
2≤k≤5

{Ξ2
kq} < 0 a.s.,

which implies that lim
t→∞

Xk(t) = 0 a.s. for all k = 2, 3, 4, 5.

Proof. In order to reduce notations and provide clear mathematical writing, we set

f (t) =
5

∑
k=2

ZkXk(t).
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Let f−1 = f−1(t) = 1
f (t) and f−2 = f−2(t) = 1

f 2(t) . By employing Itô’s lemma for drift–
diffusion processes, we obtain

d
(

ln f
)
= L

(
ln f

)
dt + f−1 ×

5

∑
k=2

Zk

(
Ξk`Xk + ΞkqX2

k

)
dWk(t), (5)

where L is the Itô differential operator, such that

L
(

ln f
)
= f−1 ×

(
Z2

(
B0X1X2 +

(
B1 −

B?
1 X4

m1 + X4

)
X1X4 +

(
B2 −

B?
2 X5

m2 + X5

)
X1X5 − U2X2

)
+ Z3

(
E1X2 − U3X3

)
+ Z4

(
E2X2 − U4X4

)
+ Z5

(
MX3 +NX4 − U5X5

)
− 0.5 f−2 ×

5

∑
k=2

Z2
k

(
Ξk`Xk + ΞkqX2

k

)2
.

In accordance with the positivity of X (t), we have

L
(

ln f
)
≤ f−1 ×

( =Ψ1︷ ︸︸ ︷
Z2

(
B0X2 +B1X4 +B2X5

)
X1 −

(
Z2U2 − Z3C1 − Z4C2

)
X2

=Ψ2︷ ︸︸ ︷
−
(
Z3U3 − Z5M

)
X3 −

(
Z4U4 − Z5N

)
X4 − Z5U5X5

)
− 0.5 f−2 ×

5

∑
k=2

Z2
k

(
Ξk`Xk + ΞkqX2

k

)2
. (6)

To deal with expressions Ψ1 and Ψ2, we consider the following system:

S =



U2Z2 − C1Z3 − C2Z4 + 0Z5 =
A
(
r−0.5Ξ2

1`

)
B0

(r+AΞ1`Ξ1q)
,

0Z2 + U3Z3 + 0Z4 −MZ5 = 0,

0Z2 + 0Z3 + U4Z4 −NZ5 =
A
(
r−0.5Ξ2

1`

)
B1

(r+AΞ1`Ξ1q)
,

0Z2 + 0Z3 + 0Z4 + U5Z5 =
A
(
r−0.5Ξ2

1`

)
B2

(r+AΞ1`Ξ1q)
.

Obviously, (Z2,Z3,Z4,Z5) =

((
r−0.5Ξ2

1`

)
R◦

(r+AΞ1`Ξ1q)
,
AB2M

(
r−0.5Ξ2

1`

)
U3U5(r+AΞ1`Ξ1q)

,
A
(
B1U5+B2N

)(
r−0.5Ξ2

1`

)
U4U5(r+AΞ1`Ξ1q)

,

AB2

(
r−0.5Ξ2

1`

)
U5(r+AΞ1`Ξ1q)

)
is the unique solution of S. Using this result, we obtain

Ψ1 + Ψ2 =

=Ψ3︷ ︸︸ ︷(
B0X2 +B1X4 +B2X5

)( (
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

R◦X1 −
A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

)

= Ψ3

( (
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

R◦X1 −
A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

−R◦
A
(
r− 0.5Ξ2

1`

)2

(r+AΞ1`Ξ1q)2 +R◦
A
(
r− 0.5Ξ2

1`

)2

(r+AΞ1`Ξ1q)2

)

=

(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

R◦Ψ3

(
X1 −

A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

)
+

A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

Ψ3

( (
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

R◦ − 1

)
︸ ︷︷ ︸

<0

.

In line with the probabilistic comparison lemma [61], we can conclude that
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Ψ1 + Ψ2 ≤
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

R◦Ψ3

(
X1 −

A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

)
≤

(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

R◦Ψ3

(
Y−

A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

)
≤

(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

R◦Ψ3

{
Y−

A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

}+

, (7)

where {·}+ is the the ramp function defined by {z}+ = max{0, z} = 0.5(z + |z|) for all
z ∈ R. Now, we return to the inequality (6) and utilize the result (7); thus,

L
(

ln f
)
≤ f−1 ×Ψ3 ×

(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

R◦
{

Y−
A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

}+

− 0.5 f−2 ×
5

∑
k=2

Z2
k

(
Ξk`Xk + ΞkqX2

k

)2
.

From the definition of Z1, the above inequality implies that

L
(

ln f
)
≤ Z1R◦

{
Y−

A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

}+

− 0.5 f−2 ×
5

∑
k=2

Z2
k

(
Ξk`Xk + ΞkqX2

k

)2
.

Consequently,

L
(

ln f
)
≤ 0.5Z1R◦

(
Y−

A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

)
+ 0.5Z1R◦

∣∣∣∣Y− A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

∣∣∣∣− 0.5 f−2 ×
5

∑
k=2

Z2
k

(
Ξk`Xk + ΞkqX2

k

)2
.

After which, we make two operations on both sides of (5), that is, integration from 0 to t
and division by t; then, the result is

t−1 ln f (t)− t−1 ln f (0) ≤ 0.5Z1R◦
(

t−1
∫ t

0
Y(s)ds−

A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

)
+ 0.5Z1R◦t−1

∫ t

0

∣∣∣∣Y(s)− A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

∣∣∣∣ds

− 0.5t−1
5

∑
k=2

∫ t

0
Z2

k f−2(s)
(

Ξk`Xk(s) + ΞkqX2
k (s)

)2
ds

+ t−1
5

∑
k=2

∫ t

0
Zk f−1(s)

(
Ξk`Xk(s) + ΞkqX2

k (s)
)

dWk(s). (8)

The next step is based on the use of the exponential Martingales inequality [62], which
leads to

P
(

sup
0≤t≤h

{∫ t

0
Zk f−1(s)

(
Ξk`Xk(s) + ΞkqX2

k (s)
)

dWk(s)− 0.5n
∫ t

0
Z2

k f−2(s)
(

Ξk`Xk(s) + ΞkqX2
k (s)

)2
ds
}

>
2 ln h
n

)
≤ 1

h2 ,

for all k = 2, 3, 4, 5; 0 < n < 1 and h > 0. From the Borel-Cantelli result [62], we can be
assured of the existence of hω = h(ω) for all ω in Ω such that the inequality

∫ t

0
Zk f−1(s)

(
Ξk`Xk(s) + ΞkqX2

k (s)
)

dWk(s) ≤ 0.5n
∫ t

0
Z2

k f−2(s)
(

Ξk`Xk(s) + ΞkqX2
k (s)

)2
ds +

2 ln h
n

, ∀k = 2, 3, 4, 5,

holds for all h− 1 < t ≤ h and h ≥ hω a.s. Under this setup, we can show that
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− 0.5t−1
5

∑
k=2

∫ t

0
Z2

k f−2(s)
(

Ξk`Xk(s) + ΞkqX2
k (s)

)2
ds + t−1

5

∑
k=2

∫ t

0
Zk f−1(s)

(
Ξk`Xk(s) + ΞkqX2

k (s)
)

dWk(s)

≤ 0.5(n− 1)t−1
∫ t

0
f−2(s)

5

∑
k=2

Z2
k

(
Ξk`Xk(s) + ΞkqX2

k (s)
)2

ds +
8 ln h
nt

≤ 0.5(n− 1)t−1
∫ t

0

(
4

5

∑
k=2

Z2
k X2

k (t)
)−1( 5

∑
k=2

Z2
kΞ2

k`X2
k (s)

)
ds +

8 ln h
n(h− 1)

≤ 0.125(n− 1) min
2≤k≤5

{Ξ2
kq}+

8 ln h
n(h− 1)

.

By taking the sup limit on two sides of (8), h tends to ∞ and

lim sup
t→∞

t−1 ln f (t) ≤ 0.5Z1R◦lim sup
t→∞

t−1
∫ t

0

∣∣∣∣Y(s)− A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

∣∣∣∣ds− 0.125(1− n) min
2≤k≤5

{Ξ2
kq}+ lim

h→∞

8 ln h
n(h− 1)︸ ︷︷ ︸
=0

= 0.5Z1R◦
∫
R+

∣∣∣∣y− A
(
r− 0.5Ξ2

1`

)
(r+AΞ1`Ξ1q)

∣∣∣∣ΘY(dy)− 0.125 min
2≤k≤5

{Ξ2
kq}+ 0.125n min

2≤k≤5
{Ξ2

kq} a.s.

We let n tend to 0+; then, the obtained result is

lim sup
t→∞

t−1 ln f (t) ≤ 0.5Z1R◦
∫
R+

∣∣∣∣y− A
(
r− 0.5Ξ2

1`
)

(r+AΞ1`Ξ1q)

∣∣∣∣ΘY(dy)− 0.125 min
2≤k≤5

{Ξ2
kq} < 0, a.s.

Because the probabilistic eradication of the infection implies its extinction with near cer-
tainty, lim

t→∞
f (t) = 0 a.s., and the positivity of X affirms that lim

t→∞
Xk(t) = 0 a.s. for all

k = 2, 3, 4, 5. In other words, the classes of individuals carrying the virus disappear despite
their different characteristics. �

3. Numerical Application: Herpes Simplex Virus (HSV)

Herpes is a viral, contagious, and recurrent illness. Herpes is characterized by the
appearance of blisters (vesicles) grouped in clumps. It is a highly contagious viral dis-
ease. Its best known manifestation is the classic labial cold sore, and genital localizations
exist as well. Herpes simplex (herpes virus) belongs to the herpesviridae family, which
includes the varicella zoster virus, infectious mononucleosis virus (Epstein–Barr), and
cytomegalovirus [63].

In this section, and by choosing the parameter values from the real data on HSV (US)
depicted in Table 3, we set forth a number of simulations to shed light on the strength of
our sharp extinction theorem associated with the general epidemic model (1). The solution
of this latter is simulated in our case with the initial data

X0 = (X1(0), X2(0), X3(0), X4(0), X5(0), X6(0)) = (0.4, 0.2, 0.2, 0.2, 0.18, 0.17).

The linear and quadratic random intensities are selected as follows: Ξ1` = 0.07, Ξ2` = 0.17,
Ξ3` = 0.1835, Ξ4` = 0.764, Ξ5` = 0.148, Ξ6` = 0.141, Ξ1q = 0.012, Ξ2q = 0.027, Ξ3q = 0.0135,
Ξ4q = 0.024, Ξ5q = 0.028, Ξ6q = 0.011. Henceforth, the units adopted for time and number
of individuals are respectively one day and one million population.
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Table 3. Numerical values of the system parameters used in the simulations.

Parameter Case 1 Case 2 Source

r 0.1 0.1 Estimated
A 3.8 4.4 [63]
B0 0.02 0.02 Estimated
B1 0.2 0.2 Estimated
B2 0.02 0.02 Estimated
B?

1 0.13 0.13 Estimated
B?

2 0.16 0.16 Estimated
C1 0.01 0.01 [63]
C2 0.1 0.1 [63]
D 0.05 0.05 Estimated
F1 0.2857 0.2857 Estimated
F2 0.3 0.3 Estimated
K1 0.08 0.08 Estimated
K2 0.1 0.1 Estimated
L1 0.042 0.042 [63]
L2 0.028 0.028 [63]
m1 1 1 Supposed
m2 1.5 1.5 Supposed
M 0.057 0.057 [63]
N 0.051 0.051 [63]

3.1. Case 1: WhenR◦ < 1 < K

In this example, we choose the parameter values presented in the second column of
Table 2 in order to examine the sharpness of the condition of Theorem 1. Using numerical
approximations and calculus, we obtain r − 0.5Ξ2

1` = 0.0976 > 0, R◦ = 0.9359 < 1
and K = 1.1615 > 1. As can be seen from Figure 1, the HSV is almost sure to die out
exponentially in the classes Xk, k = 2, 3, 4, 5, 6.
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Figure 1. Cont.
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Figure 1. Numerical plot of the stochastic paths Xk, k = 1, 2, 3, 4, 5, 6 and their associated deterministic
trajectories. The estimated deterministic values are selected from Table 2 and the stochastic amplitudes
are chosen as follows: Ξ1` = 0.07, Ξ2` = 0.17, Ξ3` = 0.1835, Ξ4` = 0.764, Ξ5` = 0.148, Ξ6` = 0.141,
Ξ1q = 0.012, Ξ2q = 0.027, Ξ3q = 0.0135, Ξ4q = 0.024, Ξ5q = 0.028, Ξ6q = 0.011.

3.2. Case 2: When 1 < R◦ < K

Now, we select the values of the parameters from the third column of Table 2. Nu-
merically, we obtain r− 0.5Ξ2

1` = 0.0976 > 0,R◦ = 1.0837 > 1 and K = 1.1830 >1. In this
particular case, we have a different behavior of the deterministic model and the correspond-
ing stochastic paths. From Figure 2, it can be clearly seen that the non-probabilistic solution
in classes Xk, k = 2, 3, 4, 5, 6 persists, while the stochastic paths die out. This different
attitude shows the effect of fluctuations on the long-term behavior of HSV. In other words,
stochastic perturbations favor the eradication of HSV.

3.3. Impact of Quadratic Noise on Eradication Time of HSV

In this part, we probe the impact of the growth of the quadratic noise amplitude on
the eradication time of HSV. From Figures 3 and 4, we show that the X2 and X4 processes
reach zero differently depending on the strength of the quadratic noise. For example, in the
case of the X2 compartment, when the quadratic noise is equal to 0.01, the eradication time
of HSV is approximately 170 days, whereas for quadratic noise equal to 0.09 , the HSV only
becomes extinct after 15 days. That is, a large increasing value of the quadratic intensity
minimizes the period of the HSV. Therefore, we can infer that quadratic noise positively
changes the epidemic situation.
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Figure 2. Cont.
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Figure 2. Numerical plot of the stochastic paths Xk, k = 1, 2, 3, 4, 5, 6 and their associated deterministic
trajectories. The estimated deterministic values are selected from Table 2 and the stochastic amplitudes
are chosen as follows: Ξ1` = 0.07, Ξ2` = 0.17, Ξ3` = 0.1835, Ξ4` = 0.764, Ξ5` = 0.148, Ξ6` = 0.141,
Ξ1q = 0.012, Ξ2q = 0.027, Ξ3q = 0.0135, Ξ4q = 0.024, Ξ5q = 0.028, Ξ6q = 0.011.
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Figure 3. Numerical plot of the stochastic solution Xk, k = 1, 2, 3, 4, 5, 6 with different quadratic noise.
The estimated deterministic values are selected from Table 2 and the linear stochastic amplitudes are
chosen as follows: Ξ1` = 0.07, Ξ2` = 0.17, Ξ3` = 0.1835, Ξ4` = 0.764, Ξ5` = 0.148, Ξ6` = 0.141.
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Figure 4. Numerical plot of the stochastic solution Xk, k = 1, 2, 3, 4, 5, 6 with different quadratic noise.
The estimated deterministic values are selected from Table 2 and the linear stochastic amplitudes are
chosen as follows: Ξ1` = 0.07, Ξ2` = 0.17, Ξ3` = 0.1835, Ξ4` = 0.764, Ξ5` = 0.148, Ξ6` = 0.141.

4. Conclusions

Stochastic modeling characterizes the random nature of certain natural fluctuations.
The amount of randomness affects outbreak situation scenarios. In this study, we have
considered a general epidemic model that integrates medical and non-medical strategies
such as quarantine, different periods of immunity, and media intervention. In addition, our
model incorporates logistic growth and the effect of stochasticity. More precisely, we have
treated a multidimensional system perturbed by a quadratic white noise. Analytically, we
have proposed an acute condition for the eradication of the disease. This result provides
insight into the future of epidemic situations under huge environmental fluctuations.
Numerically, we have presented an example to confirm the accuracy of our condition.
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Additionally, we have discussed the impact of quadratic noise on HSV eradication time.
We conclude that increasing the loudness of the noise leads to rapid extinction. This means
that the noise has a great influence on the outbreak period.

In general, we emphasize that our study generalizes previous works by considering
the logistic growth function and second-order perturbation. Moreover, it provides new
knowledge for a better understanding of the extinction scenario of an epidemic in complex
real-world conditions. Due to analytical complexity, we derived only the critical condition
for extinction, which is less than ideal with respect to epidemiological models. We intend
to deal with the conditions of persistence and stationarity in our future work.
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