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Abstract: We derive a path counting formula for a two-dimensional lattice path model with filter
restrictions in the presence of long steps, source and target points of which are situated near the filters.
This solves the problem of finding an explicit formula for multiplicities of modules in tensor product
decomposition of T(1)⊗N for Uq(sl2) with divided powers, where q is a root of unity. Combinatorial
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1. Introduction

Representation theory of Kac–Moody algebras to this day serves as inspiration for
numerous combinatorial problems, solutions to which give rise to interesting combinatorial
structures. Examples of this can be met in [1–3] and many other well-known works. The
problem of tensor power decomposition, in turn, can be considered from the combinatorial
perspective as a problem of counting lattice paths in Weyl chambers [4–7]. In this paper, we
count paths on the Bratteli diagram [8], reproducing the decomposition of tensor powers
of the fundamental module of the quantum group Uq(sl2) with divided powers, where
q is a root of unity ([9–12]), into indecomposable modules. Combinatorial treatment of
this problem gives rise to some interesting structures on lattice path models, such as
filter restrictions, first introduced in [13], and long steps, which are introduced in the
present paper.

In [13], the considered lattice path model was motivated by the problem of finding
explicit formulas for multiplicities of indecomposable modules in the decomposition of
tensor power of fundamental module T(1) of the small quantum group uq(sl2) ([14]). We
call this model the auxiliary lattice path model [9]. It consists of the left wall restriction at
x = 0 and filter restrictions located periodically at x = nl− 1 for n ∈ N. For n = 1, the filter
restriction is of type 1, and the rest of the values of n filter restrictions are of type 2. Applying
periodicity conditions (M + 2l, N) = (M, N), M, N ≥ l − 1 to the Bratteli diagram of this
model allows one to obtain another lattice path model, recursion for weighted numbers of
paths that coincide with recursion for multiplicities of indecomposable uq(sl2)-modules
in the decomposition of T(1)⊗N . Counting weighted numbers of paths descending from
(0, 0) to (M, N) on this folded Bratteli diagram allows one to obtain desired formula for
multiplicity, where M stands for the highest weight of a module, the multiplicity of which
is in question, and N stands for the tensor power of T(1). This has been performed in [9].

We found that the auxiliary lattice path model can be modified in a different way,
giving results for representation theory of Uq(sl2), the quantized universal enveloping
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algebra of sl2 with divided powers, when q is a root of unity ([15]). Instead of applying
periodicity conditions to the auxiliary lattice path model, as in the case of uq(sl2), for Uq(sl2)
we consider all filters to be of the 1st type and also allow additional steps from x = nl− 2 to
x = (n− 2)l− 1, where n ≥ 3. Counting weighted numbers of paths descending from (0, 0)
to (M, N) on the Bratteli diagram of the lattice path model obtained by this modification
gives a formula for the multiplicity of T(M) in the decomposition of T(1)⊗N .

The main goal of this paper is to give a more in-depth combinatorial treatment of the
auxiliary lattice path model in the presence of long steps and obtain explicit formulas for
weighted numbers of paths, descending from (0, 0) to (M, N). We explore combinatorial
properties of long steps, as well as define boundaries and congruence of regions in lattice
path models. Latter is found to be useful for deriving formulas for weighted numbers of
paths. For any considered region, weighted numbers of paths at boundary points uniquely
define such for the rest of the region by means of recursion. So, for congruent regions in
different lattice path models, regions where, roughly speaking, recursion is similar, it is
sufficient to prove identities only for boundary points of such regions.

This paper is organized as follows. In Section 2, we introduce the necessary notation.
In Section 3, we give background on the auxiliary lattice path model. In Section 4, we
introduce the notion of regions in lattice path models, boundary points and congruence
of regions. In Section 5, we explore combinatorial properties of long steps in periodically
filtered lattice path models and consider the auxiliary lattice path model in the presence of
long steps. We do so by means of boundary points and congruence of regions. In Section 6,
we modify the auxiliary lattice path model and argue that the recursion for the weighted
number of paths in such modified model coincides with the recursion for multiplicities
of modules in tensor product decomposition of T(1)⊗N for Uq(sl2) with divided powers,
where q is a root of unity. In Section 7, we prove formulas for the weighted numbers of
descending paths, relevant to this modified model. In Section 8, we conclude this paper
with observations for possible future directions or research.

2. Notations

In this paper, we use the notation following [16]. For our purposes of counting
multiplicities in tensor power decomposition of Uq(sl2)-module T(1), throughout this
paper, we consider the lattice

L = {(n, m)|n + m = 0 mod 2} ⊂ Z2,

and the set of steps S = SL ∪ SR, where

SR = {(x, y)→ (x + 1, y + 1)}, SL = {(x, y)→ (x− 1, y + 1)}.

A lattice path P in L is a sequence P = (P0, P1, . . . , Pm) of points Pi = (xi, yi) in L with
starting point P0 and the endpoint Pm. The pairs P0 → P1, P1 → P2 . . . Pm−1 → Pm are called
steps of P .

Given starting point A and endpoint B, a set S of steps and a set of restrictions C
we write

L(A→ B;S | C)

for the set of all lattice paths from A to B that have steps from S and obey the restrictions
from C. We denote the number of paths in this set as

|L(A→ B;S | C)|.

The set of restrictions C in lattice path models considered throughout this paper mostly
contain wall restrictions and filter restrictions. Left(right) wall restrictions forbid steps in
the left(right) direction, reflecting descending paths and preventing them from crossing
the ’wall’. Filter restrictions forbid steps in certain directions and provide other steps with
non-uniform weights, so paths can cross the ’filter’ in one direction, but cannot cross it in
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the opposite direction. A rigorous definition of these restrictions is given in subsequent
sections.

To each step from (x, y) to (x̃, ỹ) we assign the weight function ω : S −→ R>0 and use
notation (x, y) ω−→ (x̃, ỹ) to denote that the step from (x, y) to (x̃, ỹ) has the weight ω. By
default, all unrestricted steps from S will have weight 1 and is denoted by an arrow with
no number at the top. The weight of a path P is defined as the product

ω(P) =
m−1

∏
i=0

ω(Pi → Pi+1).

For the set L(A→ B;S | C) we define the weighted number of paths as

Z(L(A→ B;S | C)) = ∑
P

ω(P),

where the sum is taken over all paths P ∈ L(A→ B;S | C).

3. The Auxiliary Lattice Path Model

In this section, we briefly revise notions and results obtained in [13], relevant for future
considerations. It is convenient for us to omit mentioning S in L(A→ B;S | C). All paths
considered below involve steps from set S unless stated otherwise.

3.1. Unrestricted Paths

Let L(A→ B) be the set of unrestricted paths from A to B on lattice L with the steps
S. An example of such a path is given in Figure 1.

(x, y) = (0, 0)

(1, 1)(−1, 1)

(M,N)

Figure 1. Example of an unrestricted path in L((0, 0)→ (M, N)) for lattice L and set of steps S.

Lemma 1. For a set of unrestricted paths with steps S we have

|L((0, 0)→ (M, N))| =
(

N
N−M

2

)
. (1)

3.2. Wall Restrictions

Definition 1. For lattice paths that start at (0, 0) we will say thatW L
d with d ≤ 0 is a left wall

restriction (relative to x = 0) if at points (d, y) paths are allowed to take steps of type SR only

W L
d = {(d, y)→ (d + 1, y + 1) only}.

Lemma 2. The number of paths from (0, 0) to (M, N) with the set of steps S and one wall restriction
W L

a can be expressed via the number of unrestricted paths as

|L((0, 0)→ (M, N) | W L
a )| =

(
N

N−M
2

)
−
(

N
N−M

2 + a− 1

)
, for M ≥ a, (2)
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We considered the left walls located at x = 0. An example of possible steps for paths
descending from (0, 0) in the presence of this restriction is given in Figure 2.

(0, 0)

WL
0

Figure 2. Arrangement of steps for points of L in presence of restrictionWL
0 .

3.3. Filter Restrictions

Definition 2. For n ∈ N, we say that there is a filter Fn
d of type n, located at x = d if at

x = d, d + 1 only the following steps are allowed:

Fn
d = {(d, y) n−→ (d+ 1, y+ 1), (d+ 1, y+ 1)→ (d+ 2, y+ 2), (d+ 1, y+ 1) 2−→ (d, y+ 2)}.

The index above the arrow is the weight of the step.

Note that by default, an arrow with no number at the top means that the corresponding
step has a weight of 1. An example of possible steps for descending paths in the presence
of this restriction is given in Figure 3. We highlighted steps of weight 2 with red instead of
an arrow with a superscript 2 for future convenience, as those are the most common for the
auxiliary lattice path model and its modifications. We were mostly involved with filters
of type 1, so superscripts n were avoided, leaving Bratteli diagrams with black and red
arrows, with weights 1 and 2 correspondingly.

. . .

Fn
d

. . .

n

n

n

n

Figure 3. Filter Fn
d . Red arrows correspond to steps (d + 1, y + 1) 2−→ (d, y + 2) that has a weight 2.

Black arrows with superscript n correspond to steps (d, y) n−→ (d + 1, y + 1). Other steps have
weight 1.
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Lemma 3. The number of lattice paths from (0, 0) to (M, N) with steps from S and filter restriction
Fn

d with x = d > 0 and n ∈ N is

Z(LN((0, 0)→ (M, N) | Fn
d )) =

(
N

N−M
2

)
−
(

N
N−M

2 + d

)
, for M < d, (3)

Z(LN((0, 0)→ (M, N) | Fn
d )) = n

(
N

N−M
2

)
, for M > d. (4)

Proof. The proof is the same as for Lemma 4.8 and Lemma 4.9 in [13].

3.4. Counting Paths in the Auxiliary Lattice Path Model

Consider the lattice path model for the set of paths on L descending from (0, 0) to
(M, N) with steps S in the presence of restrictionsW L

0 , F 1
l−1, F 2

nl−1, n ∈ N, n ≥ 2. Such set
is denoted as

LN((0, 0)→ (M, N);S | W L
0 ,F 1

l−1, {F 2
nl−1}

∞
n=2)

and such a model is called the auxiliary lattice path model. The main theorem of [13] gives
an explicit formula for weighted numbers of paths in the auxiliary lattice path model. Then,
in [9], periodicity conditions (M + 2l, N) = (M, N), M, N ≥ l − 1 were applied, resulting
in a folded Brattelli diagram. For such a diagram, recursion on the weighted numbers
of paths coincides with recursion on multiplicities of indecomposable uq(sl2)-modules
in tensor product decomposition of T(1)⊗N . Note that due to properties of the category
Rep(uq(sl2)), we mostly considered odd values of l; however, the results remain to be true
for even values of l as well.

Before coming to modifications of the auxiliary lattice path model relevant to the
representation theory of Uq(sl2) at the roots of unity, we need to slightly tweak it. We
are interested in paths descending from (0, 0) to (M, N) with steps S in the presence of
restrictionsW L

0 , F 1
nl−1, n ∈ N, instead of filters of type 2. Such lattice path model is depicted

in Figure 4.

. . .

(0, 0)

F1
l−1 F1

2l−1 F1
3l−1WL

0

Figure 4. Arrangement of steps for points of L in the considered, slightly tweaked version of the
auxiliary lattice path model. Here, we depict the case, where l = 5.
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Definition 3. We denote by multiplicity function in the j-th strip Mj
(M,N)

the weighted number of
paths in set

LN((0, 0)→ (M, N);S | W L
0 , {F 1

nl−1}, n ∈ N)

with the endpoint (M, N) that lies within (j− 1)l − 1 ≤ M ≤ jl − 2

Mj
(M,N)

= Z(LN((0, 0)→ (M, N);S | W L
0 , {F 1

nl−1}, n ∈ N)), (5)

where M ≥ 0 and j =
[

M+1
l + 1

]
.

Now consider the version of the main theorem in [13] corresponding to this model.

Theorem 1 ([13]). The multiplicity function in the j-th strip is given by

Mj
(M,N)

=

[
N−(j−1)l+1

4l

]
∑
k=0

Pj(k)F(N)
M+4kl +

[
N−jl

4l

]
∑
k=0

Pj(k)F(N)
M−4kl−2jl −

−

[
N−(j+1)l+1

4l

]
∑
k=0

Qj(k)F(N)
M+2l+4kl −

[
N−jl−2l

4l

]
∑
k=0

Qj(k)F(N)
M−4kl−2(j+1)l ,

where

Pj(k) =

[
j
2

]
∑
i=0

(
j− 2

2i

)(
k− i + j− 2

j− 2

)
, Qj(k) =

[
j
2

]
∑
i=0

(
j− 2

2i + 1

)(
k− i + j− 2

j− 2

)
, (6)

F(N)
M =

(
N

N−M
2

)
−
(

N
N−M

2 − 1

)
.

Proof. The proof is the same as the proof of the main theorem in [13], except that instead
of Lemma 4.9 in [13], for the slightly tweaked model one should use Lemma 3.

From now on, when mentioning the auxiliary lattice path model, we mean its slightly
tweaked version. This model will be further modified in subsequent sections. Instead of ap-
plying periodicity conditions, as for uq(sl2), we enhance this model with long steps, source
and target points which are located near filters. As a result, recursion for the weighted
numbers of paths on the resultant Bratteli diagram recreates recursion for multiplicities of
indecomposable Uq(sl2)-modules in the decomposition of T(1)⊗N .

4. Boundary Points and Congruent Regions

In this section, we consider notions, which are convenient for counting paths in the
auxiliary lattice path model in the presence of long steps. We will see, that multiplicities
on the boundary of a region uniquely define multiplicities in the rest of the region. For
proving identities between multiplicities in two congruent regions, it is sufficient to prove
such identities for their boundary points.

Definition 4. Consider the lattice path model, defined by a set of steps S and a set of restrictions
C on lattice L. Subset L0 ⊂ L with steps S and restrictions C is called a region of the lattice path
model under consideration.

Intuitively, region L0 ⊂ L is a restriction of the lattice path model defined by S, C on
lattice L to the subset L0. The word ’restriction’ is overused, so we consider regions of
lattice path models instead.
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Definition 5. Consider L0 ⊂ L a region of the lattice path model defined by steps S and restrictions
C. Point B ∈ L0 is called a boundary point of L0 if there exists B′ ∈ L, B′ /∈ L0 such that step
B′ → B is allowed in L by a set of steps S and restrictions C. The union of all such points is a
boundary of L0 and is denoted by ∂L0.

The Definition 5 introduces a notion, reminiscent of the outer boundary in graph
theory. Note that boundary points are defined with respect to some lattice path models
under consideration. For brevity, we assume that this lattice path model is known from the
context, and mentioning it will be mostly omitted.

Example 1. For a strip in the auxiliary lattice path model, its boundary is in the left filter. It is
depicted in Figure 5.

F1
l−1 F1

2l−1

L0

∂L0

Figure 5. Region L0, highlighted with blue dashed lines, is a 2nd strip for l = 5. Its boundary ∂L0 is
a set of points in the left filter restriction F1

l−1, which is highlighted with purple dashed lines.

Example 2. Consider region L0 of the unrestricted lattice path model, as depicted in Figure 6
and highlighted with blue dashed lines. Its boundary is a set of points highlighted with purple
dashed lines.

L0
∂L0

Figure 6. Region L0 is highlighted with blue dashed lines. Its boundary ∂L0 is a set of points
highlighted with purple dashed lines.
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Lemma 4. Consider region L0 of a lattice path model defined by S, C on lattice L. Weighted
numbers of paths Z(LN((0, 0)→ (M, N); . . .) for (M, N) ∈ L0 are uniquely defined by weighted
numbers of paths for its boundary points ∂L0.

Proof. Suppose weighted numbers of paths for ∂L0 are known. Suppose that there exists
some point A ∈ L0, such that its weighted number of paths cannot be expressed in terms
of weighted numbers of paths for points in ∂L0.

The first case is that recursion for a weighted number of paths for A involves some
point A′ ∈ L0, a weighted number of paths for which cannot be expressed in terms of
such for points in ∂L0. In this case, we need to consider A′ and recursion on the weighted
number of paths for such a point instead of A.

The second case is that recursion for a weighted number of paths for A involves a
weighted number of paths for some point A′ /∈ L0. Then, A ∈ ∂L0 by definition of a
boundary point and weighted number of paths for such point is known by the initial
supposition of the lemma.

Note that due to the fact that we consider descending paths, M and N, to be finite, the
first case can be iterated finitely many times at most.

Definition 6. Consider two lattice path models with steps S1, S2 and restrictions C1, C2 defined
on lattice L. Subset L1 ⊂ L is a region in the lattice path model defined by S1, C1. Subset L2 ⊂ L
is a region in the lattice path model defined by S2, C2. Regions L1 and L2 are congruent if there
exists a translation T in L such that

• TL1 = L2 as sets of points in L
• Translation T induces a bijection between steps in L1 and L2, meaning that there is a one-to-

one correspondence between steps with source and target points related by T, with preservation
of weights.

The second condition can be written down explicitly. Firstly, for each (M, N) ∈ L1

and each step (M, N)
w−→ (P, Q) in S1 obeying C1 such that (P, Q) ∈ L1, there is a step

(M′, N′) w−→ (P′, Q′) in S2 obeying C2, where T(M, N) = (M′, N′), T(P, Q) = (P′, Q′).
Secondly, for each (M′, N′) ∈ L2 and each step (M′, N′) w−→ (P′, Q′) in S2 obeying C2 such
that (P′, Q′) ∈ L2, there is a step (M, N)

w−→ (P, Q) in S1 obeying C1, where T−1(M′, N′) =
(M, N), T−1(P′, Q′) = (M, N). To put it simply, if we forget about lattice path models
outside L1 and L2, these two regions will be indistinguishable. Due to translations in L
being invertible, it is easy to see that congruence defines an equivalence relation.

Now we must prove the main theorem of this subsection.

Theorem 2. Consider two lattice path models with steps S1, S2 and restrictions C1, C2 defined on
lattice L. Region L1 of the lattice path model defined by S1, C1 is congruent to region L2 of the
lattice path model defined by S2, C2, where TL1 = L2. If equality

Z(LN((0, 0)→ (M, N);S1 | C1)) = Z(LN((0, 0)→ T(M, N);S2 | C2)) (7)

holds for all (M, N) ∈ ∂L1 ∪ T−1(∂L2), then it holds for all (M, N) ∈ L1.

Note, that if (M, N) ∈ ∂L1 it does not necessarily follow that T(M, N) ∈ ∂L2, due to
C1 and C2 being different. So, it is natural to ask Formula (7) to hold for ∂L1 ∪ T−1(∂L2).

Proof. We need to prove that Formula (7) is true for (M, N) ∈ L1. The l.h.s. can be uniquely
expressed in terms of its values at ∂L1 ∪ T−1(∂L2), following procedure in Lemma 4. Due
to the congruence between L1 and L2, recursion for the r.h.s. of (7) coincides with the one
for the l.h.s., so we can obtain the same expression on the r.h.s., but with values of weighted
numbers of paths for T(∂L1 ∪ T−1(∂L2)) = T(∂L1) ∪ ∂L2 instead of ∂L1 ∪ T−1(∂L2). We
can compare the l.h.s. and the r.h.s. term by term, for points related by translation T. All of
such terms have the same values due to the initial supposition of the theorem.
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Corollary 1. Consider lattice path models with steps S1, S2, S3 and restrictions C1, C2, C3 defined
on lattice L. Region L1 is congruent toL2 and L3, where T1(M1, N1) = (M2, N2), T2(M1, N1) =
(M3, N3) for (M1, N1) ∈ L1. If equality

Z(LN((0, 0)→ (M, N);S1 | C1)) =

= Z(LN((0, 0)→ T1(M, N);S2 | C2)) + Z(LN((0, 0)→ T2(M, N);S3 | C3)) (8)

holds for all (M, N) ∈ ∂L1 ∪ T−1
1 (∂L2) ∪ T−1

2 (∂L3), then it holds for all (M, N) ∈ L1.

Proof. Due to linearity of the r.h.s. of Formula (8), the proof repeats the one of Theorem 2.

The moral of this section is that for two congruent regions, weighted numbers of
paths are defined by values of such at the boundary of the considered regions. For proving
identities, it is sufficient to establish equality for weighted numbers of paths at boundary
points, while equality for the rest of the region will follow due to the congruence.

5. The Auxiliary Lattice Path Model in the Presence of Long Steps
Long Steps in Lattice Path Models with Filter Restrictions

Long step is a step (x, y) w−→ (x′, y + 1) in L such that |x − x′| > 1. We denote the
sequence of long steps as

S[M1, M2] = {(M1, M1 + 2m)→ (M2, M1 + 1 + 2m)}∞
m=0,

where x = M1 is the source point for the sequence and x = M2 is the target point,
|M1 −M2| > 1. For the purposes of this paper, we are mainly interested in sequences

S(k) ≡ S[l(k+ 2)− 2, lk− 1] = {(l(k+ 2)− 2, lk− 2+ 2m)→ (lk− 1, lk− 2+ 1+ 2m)}∞
m=0,

where k ∈ N and C consists of F 1
lk−1 and F 1

l(k+2)−1. We need such sequences of long steps
for modification of the auxiliary lattice path model, relevant to the representation theory of
Uq(sl2) at roots of unity.

Lemma 5. Fix k ∈ N. Let

Z(M,N) ≡ Z(LN((0, 0)→ (M, N));S | F 1
lk−1,F 1

l(k+2)−1)

be the weighted number of lattice paths from (0, 0) to (M, N) with filter restrictions F 1
lk−1,

F 1
l(k+2)−1 and set of unrestricted elementary steps S. Let

Z′(M,N) ≡ Z(LN((0, 0)→ (M, N));S∪ S(k) | F 1
lk−1,F 1

l(k+2)−1)

be the weighted number of lattice paths from (0, 0) to (M, N) with the same restrictions, with steps
S∪ S(k). Then for lk− 1 ≤ M ≤ l(k + 2)− 2 we have

Z′(M,N) = Z(M,N), if N ≤ M + 2l − 2, (9)

Z′(M,N) = Z(M,N) + Z(M+2l,N), if M + 2l ≤ N ≤ l(k + 4)− 2. (10)

Proof. In Figure 7, we depict the setting of the Lemma 5. Long steps do not impact region
I, so Formula (9) is true.
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F1
lk−1 F1

l(k+2)−1

(l(k + 2)− 2, l(k + 2)− 2)

(lk − 1, l(k + 2)− 2 + 1)

I

II

Figure 7. By square and circle we denote points, where long steps first appear. Regions I and II
highlighted with blue dashed lines correspond to cases N ≤ M + 2l − 2, as in (9), and M + 2l ≤ N ≤
l(k + 4)− 2, as in (10).

Consider Formula (10). The weighted number of paths in the l.h.s. involves points
from region II. Its boundary contains points of the left cathetus of region II, of the form
(lk− 1, N) for l(k + 2)− 1 ≤ N ≤ l(k + 4)− 2, and points of the hypotenuse of the region
II, of the form (lk− 1 + j, l(k + 2)− 1 + j) for j = 1, . . . , 2l− 1. Denote this set by ∂LI I . The
r.h.s. of (10) has two terms. The first involves region II, the boundary of which we have
already considered. The second term involves points of the region congruent to region II, as
they are related by translation T(M, N) = (M+ 2l, N), satisfying Definition 6. Its boundary
consists of the image of the left cathetus of region II under translation T. Denote this set by
∂L′I I . By Corollary 1, it is sufficient to prove Formula (10) for ∂LI I ∪ T−1(∂L′I I) = ∂LI I .

We proceed by induction over n, where N = l(k + 2) − 1 + 2n. For n = 0 from
recursion we have

Z′(lk−1,l(k+2)−1) = Z(lk−2,l(k+2)−2) + 2Z(lk,l(k+2)−2) + Z(l(k+2)−2,l(k+2)−2), (11)

which, taking into account that

Z(lk−2,l(k+2)−2) + 2Z(lk,l(k+2)−2) = Z(lk−1,l(k+2)−1),

Z(l(k+2)−2,l(k+2)−2) = Z(l(k+2)−1,l(k+2)−1),

gives us
Z′(lk−1,l(k+2)−1) = Z(lk−1,l(k+2)−1) + Z(l(k+2)−1,l(k+2)−1). (12)

We obtained the base of induction.
In a similar manner, it also follows, that Formula (10) is true for boundary points of

the hypotenuse of region II. In order to show this, one must consider recursion explicitly
and use the fact that

Z(j,j) = Z(k,k), for all j, k > 0. (13)

Now it is sufficient to prove Formula (10) for boundary points, situated in the left cathetus
of region II.

Suppose

Z′(lk−1,l(k+2)−1+2n) = Z(lk−1,l(k+2)−1+2n) + Z(l(k+2)−1,l(k+2)−1+2n) (14)
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is true. For the sake of brevity, we rewrite this expression as

Z′(p,q+2n) = Z(p,q+2n) + Z(q,q+2n), (15)

where p = lk− 1, q = l(k + 2)− 1, q = p + 2l. By Theorem 2, it follows that Formula (10) is
true for the region, corresponding to boundary points, covered by the inductive supposition.
In particular, this region includes points (p + j, q + 2n + j) for j = 0, . . . , 2l − 1. Need to
prove that

Z′(p,q+2(n+1)) = Z(p,q+2(n+1)) + Z(q,q+2(n+1)) (16)

Taking into account, that

Z′(p,q+2n+2) = Z(p−1,q+2n+1) + 2Z′(p+1,q+2n+1) + Z(q−1,q+2n+1),

Z(p,q+2n+2) = Z(p−1,q+2n+1) + 2Z(p+1,q+2n+1),

Z(q,q+2n+2) = Z(q−1,q+2n+1) + 2Z(q+1,q+2n+1),

after getting rid of the factors, we obtain

Z′(p+1,q+2n+1) = Z(p+1,q+2n+1) + Z(q+1,q+2n+1). (17)

However, this is true from the inductive supposition.

Note that Formula (10) is not true for greater values of N. Region II indeed can be
made into a parallelogram, similar to region I, since the set of boundary points will remain
the same. However, the region corresponding to this parallelogram being translated by T
contains new boundary points, where (10) does not hold and Corollary 1 cannot be used
further, even though these regions are congruent to each other. The formula for greater
values of N needs to include some new terms. In this parallelogram-like region, we need
to take into account the reflection of paths, induced by the term Z(M+2l,N) in Z′(M,N), from

the filter restriction F 1
l(k+2)−1. This is achieved by means of the first part of Lemma 3.

Now consider the triangular region, which, similarly to region II being below region I, is
below the parallelogram-like region considered previously. There, we need to take into
account long steps, acting on paths induced by the term Z(M+2l,N), which have descended
to (l(k + 2)− 2, N) and were acted upon by long steps for the second time. This is being
conducted in a similar fashion to Corollary 1, where Z(M+2l,N) is assumed to be known
from the second part of Lemma 3. This situation for the case of the auxiliary lattice path
model in the presence of long steps will be elaborated upon later.

Corollary 2. Fix j, k ∈ N, j ≤ k. Let

Z(M,N) ≡ Z(LN((0, 0)→ (M, N));S | W L
0 , {F 1

nl−1}
∞
n=j)

be the weighted number of lattice paths from (0, 0) to (M, N) with filter restrictions {F 1
nl−1}

∞
n=j

and set of unrestricted elementary steps S. Let

Z′(M,N) ≡ Z(LN((0, 0)→ (M, N));S∪ S(k) | W L
0 , {F 1

nl−1}
∞
n=j)

be the weighted number of lattice paths from (0, 0) to (M, N) with the same restrictions, with steps
S∪ S(k). Then, for lk− 1 ≤ M ≤ l(k + 2)− 2 we have

Z′(M,N) = Z(M,N), if N ≤ M + 2l − 2, (18)

Z′(M,N) = Z(M,N) + Z(M+2l,N), if M + 2l ≤ N ≤ l(k + 4)− 2. (19)
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Proof. The proof is the same, as for Lemma 5. When proving the inductive step, we still
can apply Corollary 1 as region II is still congruent to the one, translated by T.

Note, that Formula (19), unlike (10), is true for greater values of N, as making region
II into a parallelogram-like region will not add new boundary points. The manifestation
of this fact is that we do not need to take into account the reflection of paths, as they have
already been dealt with in term Z(M+2l,N) due to the periodicity of filter restrictions. So,
for such a region Formula (19) holds. However, for the triangular region below the same
problem remains.

Consider the auxiliary lattice path model in the presence of the sequence of steps S(k).

Definition 7. We denote by multiplicity function in the j-th strip M̃j
(M,N)

the weighted number of
paths in set

LN((0, 0)→ (M, N);S∪ S̃ | W L
0 , {F 1

nl−1}, n ∈ N)

with the endpoint (M, N) that lies within (j− 1)l − 1 ≤ M ≤ jl − 2

M̃j
(M,N)

= Z(LN((0, 0)→ (M, N);S∪ S̃ | W L
0 , {F 1

nl−1}, n ∈ N)), (20)

where S̃ is a set of some additional steps and M ≥ 0 and j =
[

M+1
l + 1

]
.

In this subsection, S̃ = S(k) if not stated otherwise.

Lemma 6. For fixed k ∈ N

M̃k+1
(M,N)

=
[ N−lk+1

2l ]

∑
j=0

Mk+1+2j
(M+2jl,N)

, (21)

M̃k+3
(M,N)

=
[ N−l(k+2)+1

2l ]

∑
j=0

Mk+3+2j
(M+2jl,N)

, (22)

where M̃j
(M,N)

is the multiplicity function for j-th strip in the auxiliary model with steps S ∪ S̃,

Mj
(M,N)

is the multiplicity function for j-th strip in the auxiliary model with steps S.

Proof. We proceed by induction over n, where n = [N−l(k+2)+2
2l ], first proving (22), then

(21). For n = 0, Formula (22) follows immediately from the Theorem 2, as long steps do not
impact this region. Formula (21) follows from Corollary 2. As was discussed, Formula (19)
is true for greater values of N, mainly, it is true for a parallelogram-like region, satisfying
n = 0. So, we obtained the base of induction.

Suppose, that

M̃k+1
(M,N)

=
n+1

∑
j=0

Mk+1+2j
(M+2jl,N)

(23)

M̃k+3
(M,N)

=
n

∑
j=0

Mk+3+2j
(M+2jl,N)

(24)

is true.
Need to prove the inductive step for (24) first, thus we need to prove (22) for M+ 2ln ≤

N ≤ M + 2l(n + 1), where l(k + 2)− 1 ≤ M ≤ l(k + 3)− 2. Denote this region as L1. The
l.h.s. of (22) is a weighted number of paths, ∂L1 consists of points (l(k + 2)− 1, N) for
l(k+ 2)− 1+ 2ln ≤ N ≤ l(k+ 2)− 1+ 2l(n+ 2) and (l(k+ 2)− 1+ j, l(k+ 2)− 1+ 2ln+ j)
for j = 0, . . . , l − 1. We divide the r.h.s. of (22) into two terms. The first corresponds to
the sum given by inductive supposition in (24). It is also a weighted number of paths
defined for L2 = L1 with the same boundary points ∂L2 = ∂L1, as the l.h.s. of (22). These
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two regions are congruent, T1 = id. The second is an additional term, which we expect to
appear during an inductive step. It is given by

Mk+3+2(n+1)
(M+2(n+1)l,N)

= Z(LN((0, 0)→ (M + 2(n + 1)l, N));S | W L
0 , {F 1

ml−1}
∞
m=1)

for region l(k + 2 + 2(n + 1))− 1 ≤ M ≤ l(k + 3 + 2(n + 1))− 2 and M ≤ N ≤ M + 2l.
Denote it by L3. Its boundary ∂L3 consists of points (l(k + 2 + 2(n + 1)) − 1, N) for
l(k + 2 + 2(n + 1))− 1 ≤ N ≤ l(k + 2 + 2(n + 1))− 1 + 2l. This region is an image of L1
under translation T2(M, N) = (M + 2l(n + 1), N), they are congruent. By Corollary 1, it is
sufficient to prove inductive step at points (l(k + 2)− 1, N) for l(k + 2)− 1 + 2ln ≤ N ≤
l(k+ 2)− 1+ 2l(n+ 2) and points (l(k+ 2)− 1+ j, l(k+ 2)− 1+ 2ln+ j) for j = 0, . . . , l− 1.
These are drawn in Figure 8.

Consider points of a form (l(k + 2)− 1, N). At n-th iteration we added Mk+1+2(n+1)
(M+2(n+1)l,N)

to M̃k+1
(M,N)

. This term induces paths, which further descend from (k + 1)-th strip to bound-
ary points of (k + 3)-th strip. The region in which induced paths descend is congruent
to the region, where paths corresponding to Mk+1+2(n+1)

(M+2(n+1)l,N)
continue to descend to the

boundary of (k + 3 + 2(n + 1))-th strip in the auxiliary lattice path model. This is due to
the periodicity of filter restrictions. Here, we can apply Theorem 2 to conclude that the
weighted number of induced paths arriving at the boundary of (k + 3)-th strip is equal to
Mk+3+2(n+1)

(2(n+1)l,N)
.

Consider points of a form (l(k + 2)− 1 + j, l(k + 2)− 1 + 2ln + j). For such points,
the proof is the same as for the Formula (10) for the hypotenuse of region II.

Now that we proved the inductive step for the boundary of the considered region, by
Corollary 1, it follows that

M̃k+3
(M,N)

=
n

∑
j=0

Mk+3+2j
(M+2jl,N)

+ Mk+3+2(n+1)
(M+2(n+1)l,N)

=
n+1

∑
j=0

Mk+3+2j
(M+2jl,N)

, (25)

is true for the whole region, which proves the inductive step for Formula (24).

F1
l(k+2)−1 F1

l(k+3)−1

Figure 8. Region L1, for which it is sufficient to prove (22) consists of points M + 2ln ≤ N ≤
M + 2l(n + 1) where l(k + 2)− 1 ≤ M ≤ l(k + 3)− 2. It is highlighted with blue dashed lines. Union
of boundaries for all terms of the considered expression ∂L1 ∪ T−1

1 (∂L2) ∪ T−1
2 (∂L3) consists of

points (l(k + 2)− 1, N) for l(k + 2)− 1 + 2ln ≤ N ≤ l(k + 2)− 1 + 2l(n + 2) and points (l(k + 2)−
1 + j, l(k + 2)− 1 + 2ln + j) for j = 0, . . . , l − 1. It is highlighted with purple dashed lines. Here, we
depict the case, where l = 5.
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This process for the first iterations is shown in Figure 9.

Mk+1
(...)

Mk+2
(...)

Mk+3
(...)

Mk+4
(...)

Mk+5
(...)

Mk+6
(...)

Mk+7
(...)

Mk+8
(...)

+M
k+5
(...)

+M
k+7
(...)

Mk+9
(...)

j = 0

j = 1

j = 2

. . .

Figure 9. Color emphasizes the number of iterations in the induction. Paths induced at the boundary
of (k+ 1)-th strip during (j− 1)-th iteration descend in the region, highlighted with color, correspond-
ing to j-th iteration. Colored lines outline regions congruent to each other. Dashed colored arrows
denote weighted numbers of induced paths, inflicted to (k + 3)-th strip once they have descended,
and their equivalents in strips of the auxiliary lattice path model.

This figure also shows how long steps act on descended paths corresponding to dashed
colored arrows, inducing paths at boundary points of (k + 1)-th strip, highlighted with
the dashed arrow of the same color. These induced paths, in turn, descend in the region,
highlighted with a color corresponding to the next, (j + 1)-th iteration. Proving that long
steps induce paths at boundary points of (k + 1)-th strip following this scenario amounts
to proving the inductive step for Formula (23).

Now we need to prove the inductive step for Formula (23), which amounts to proving
(21) for lk− 1 ≤ M ≤ l(k + 1)− 2 and M + 2ln ≤ N ≤ M + 2l(n+ 1). It is being conducted
in a fashion similar to the proof of (22). Again, we divide the r.h.s. of (21) in two terms. The
first one corresponds to the sum given by inductive supposition in (23). The second one is
an additional term, which we expect to appear during an inductive step. It is given by

Mk+1+2(n+1)
(M+2(n+1)l,N)

= Z(LN((0, 0)→ (M + 2(n + 1)l, N));S | W L
0 , {F 1

ml−1}
∞
m=1)

for region l(k + 2(n + 1))− 1 ≤ M ≤ l(k + 1 + 2(n + 1))− 2 and M ≤ N ≤ M + 2l. By
Corollary 1, it is sufficient to prove inductive step at points (lk− 1, N) for lk− 1 + 2ln ≤
N ≤ l(k + 1)− 1 + 2l(n + 2) and points (lk− 1 + j, lk− 1 + 2ln + j) for j = 0, . . . , l − 1. It
is shown in Figure 10. This region is the same, as depicted in Figure 8, but translated by
T(M, N) = (M− 2l, N).
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F1
lk−1 F1

l(k+1)−1

Figure 10. Points M + 2ln ≤ N ≤ M + 2l(n + 1) where l(k + 2) − 1 ≤ M ≤ l(k + 3) − 2 are
highlighted with blue dashed lines. Union of boundaries for all terms of the considered expression
consists of points (l(k + 2)− 1, N) for l(k + 2)− 1 + 2ln ≤ N ≤ l(k + 2)− 1 + 2l(n + 2) and points
(l(k + 2)− 1 + j, l(k + 2)− 1 + 2ln + j) for j = 0, . . . , l − 1. They are highlighted with purple dashed
lines. Here, we depict the case where l = 5.

Consider points of a form (lk− 1, N). Above, we have seen that Formula (22) receives
term Mk+3+2(n+1)

(M+2(n+1)l,N)
during the inductive step. By inductive supposition (23), it is left to

account for the action of long steps, acting on paths, induced by this term. Denote the
weighted number of paths, corresponding to this term as

Z(M,N) ≡ Z(LN((−2l(n + 1), 0)→ (M, N));S | W L
−2l(n+1), {F

1
ml−1−2l(n+1)}

∞
m=1) =

= Mk+3+2(n+1)
(M+2(n+1)l,N)

,

where lk − 1 ≤ M ≤ l(k + 2) − 1, M + 2ln ≤ N ≤ M + 2l(n + 1). Now, we want to
calculate

Z′(M,N) ≡ Z(LN((−2l(n + 1), 0)→ (M, N));S∪ S̃ | W L
−2l(n+1), {F

1
ml−1−2l(n+1)}

∞
m=1).

From Corollary 2, it is given by

Z′(M,N) = Z(M,N) + Z(M+2l,N),

where
Z(M+2l,N) = Mk+3+2(n+2)

(M+2(n+2)l,N)
.

Consider points of a form (lk− 1 + j, lk− 1 + 2ln + j). For such points, the proof is
the same as for Formula (10) for the hypotenuse of region II.

Now that we have proven the inductive step for the boundary of the considered region,
by Corollary 1, it follows that

M̃k+1
(M,N)

=
n+1

∑
j=0

Mk+1+2j
(M+2jl,N)

+ Mk+1+2(n+2)
(M+2(n+2)l,N)

=
n+1

∑
j=0

Mk+1+2j
(M+2jl,N)

, (26)
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is true for the whole region, which proves the inductive step for Formula (23).

Corollary 3. For fixed k ∈ N and m ≥ k

M̃m+1
(M,N)

=
[ N−lm+1

2l ]

∑
j=0

Mm+1+2j
(M+2jl,N)

, (27)

Proof. The result of Lemma 6 can be extended to other strips in a similar fashion to the
proof of (22). Each new term Mk+1+2j

(M+2jl,N)
in M̃k+1

(M,N)
induces paths, which further descend

from (k + 1)-th strip to boundary points of each consequent (k + 1 + m)-th strip. The
region in which these induced paths descend is congruent to the region, where they would
continue to descend in the auxiliary path model due to the periodicity of filter restrictions.
Hence, each M̃k+1+m

(M,N)
acquires term Mk+1+m+2j

(M+2jl,N)
, which proves the statement.

During this subsection, we introduced long steps and proved lemmas, necessary for
counting weighted numbers of paths in modification of the auxiliary lattice path model,
relevant for the representation theory of Uq(sl2) at roots of unity.

6. On Decomposition of T(1)⊗N for Uq(sl2) at Roots of Unity

Consider the auxiliary lattice path model with filter restrictions of type 1, in the
presence of steps

SU ≡ S∪
( ∞⋃

k=1

S(k)
)

,

and denote it as LU . The arrangement of steps for points of LU is depicted in Figure 11.

. . .

(0, 0)

WL
0 F1

l−1 F1
2l−1 F1

3l−1

Figure 11. Arrangement of steps for points of the lattice path model LU . Here, we depict the case,
where l = 5.
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Now, fix q = e
πi
l and l is odd. Category Rep(Uq(sl2)) is the category of representations

of Uq(sl2), a quantized universal enveloping algebra of sl2 with divided powers. Consider
tensor product decomposition of a tensor power of fundamental Uq(sl2)-module

T(1)⊗N =
N⊕

k=0

M(l)
T(k)(N)T(k), T(1), T(k) ∈ Rep(Uq(sl2)), (28)

where M(l)
T(k)(N) is the multiplicity of T(k) in tensor product decomposition. We consider

the tensor powers of a tilting module, and as a category of tilting modules is closed under
finite tensor products, it can be decomposed into a direct sum of tilting modules. The
highest weight of T(k) can be written as k = lk1 + k0. The Grothendieck ring of the category
of tilting modules over Uq(sl2) at odd roots of unity gives the following tensor product
rules ([9,17])

T(k0)⊗ T(1) = T(k0 + 1)⊕ T(k0 − 1), 0 ≤ k0 ≤ l − 2;

T(lk1 + k0)⊗ T(1) = T(lk1 + k0 + 1)⊕ T(lk1 + k0 − 1), 1 ≤ k0 ≤ l − 3, k1 ≥ 1;

T(lk1 + l − 2)⊗ T(1) = T(l(k1 + 1)− 3)⊕ T((k1 + 1)l − 1)⊕ T((k1 − 1)l − 1), k1 ≥ 1;

T(lk1 − 1)⊗ T(1) = T(lk1), k1 ≥ 1;

T(lk1)⊗ T(1) = T(lk1 + 1)⊕ 2T(lk1 − 1), k1 ≥ 1.

Theorem 3 ([9]). The multiplicity of the tilting Uq(sl2)-module T(k) in the decomposition of
T(1)⊗N is equal to the weighted number of lattice paths on LU connecting (0, 0) and (k, N) with
weights given by multiplicities of elementary steps SU .

Proof. Tensor product rules allow the following recursive description of multiplicities

M(l)
T(0)(N + 1) = M(l)

T(1)(N);

M(l)
T(lk1+k0)

(N + 1) = M(l)
T(lk1+k0−1)(N) + M(l)

T(lk1+k0+1)(N), 1 ≤ k0 ≤ l − 3, k1 ≥ 0;

M(l)
T(lk1−2)(N + 1) = M(l)

T(lk1−3)(N), k1 ≥ 1;

M(l)
T(lk1−1)(N + 1) = M(l)

T(lk1−2)(N) + 2M(l)
T(lk1)

(N) + M(l)
T((k1+2)l−2)(N), k1 ≥ 1;

M(l)
T(lk1)

(N + 1) = M(l)
T(lk1−1)(N) + M(l)

T(lk1+1)(N), k1 ≥ 1.

This recursion coincides with the recursion for weighted numbers of paths descending
from (0, 0) to (k, N) in lattice path model LU . The latter is depicted in Figure 11.

The main goal of the following section is to obtain the explicit formula by combinatorial
means, mainly counting lattice paths in modification LU of the auxiliary lattice path model.

7. Counting Paths

Consider the lattice path model LU . From now on, following Definition 7, we denote
by multiplicity function in the j-th strip M̃j

(M,N)
the weighted number of paths in set

LN((0, 0)→ (M, N);SU | W L
0 , {F 1

nl−1}, n ∈ N)
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with the endpoint (M, N) that lies within (j− 1)l − 1 ≤ M ≤ jl − 2

M̃j
(M,N)

= Z(LN((0, 0)→ (M, N);SU | W L
0 , {F 1

nl−1}, n ∈ N)), (29)

where

SU = S∪
( ∞⋃

k=1

S(k)
)

.

and M ≥ 0 and j =
[

M+1
l + 1

]
. The main goal of this section is to derive an explicit formula

for M̃j
(M,N)

.

Lemma 7. For the lattice path model LU

M̃1
(M,N) = M1

(M,N), (30)

and for k ∈ N,

M̃k+1
(M,N)

=
[ N−lk+1

2l ]

∑
j=0

F(k−1+2j)
k−1 Mk+1+2j

(M+2jl,N)
, (31)

Proof. The formula for the 1st strip follows immediately as long steps have no impact and
multiplicity is the same as in the auxiliary lattice path model.

This lemma follows from gradually adding each S(k) for k = 1, 2, . . . to the initial set
of steps S and applying results of the Corollary 3 repeatedly. Let us start with k = 1. From
Corollary 3, it follows that in case of having one series of long steps, for (m + 1)-th strip we
would simply have

M̃m+1
(M,N)

|k = 1=
[ N−lm+1

2l ]

∑
j=0

Mm+1+2j
(M+2jl,N)

, (32)

where m ∈ N. This is a summation of multiplicities in the auxiliary lattice path model with
trivial coefficients. This situation is depicted in Figure 12.

M̃2
(...)

M̃3
(...)

M̃4
(...)

M̃5
(...)

M̃6
(...)

M̃7
(...)

M̃8
(...)

M̃9
(...)

M̃10
(...)

M1
(...)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

M5
(...)

M7
(...)

M9
(...)

M̃ 5
(...) =M5

(...) M7
(...) M9

(...)+ + . . .

1

Figure 12. In each strip, triangles with coefficients correspond to terms in Formula (32). Each term is
given by the multiplicity of a strip in the auxiliary lattice path model, situated to the far right of the
considered triangle. As an example, we show how this mnemonic rule works for M̃5

(M,N)
.
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In each strip, triangles with coefficients correspond to terms in Formula (32). Each
term is given by the multiplicity function of a strip in the auxiliary lattice path model,
situated to the far right of the considered triangle. The coefficient in a triangle tells us how
many terms corresponding to this multiplicity function are in Formula (32). This mnemonic
rule comes from considerations in Figure 9. The proofs of Theorem 6 and Corollary 3 define
a recursion on the coefficients near multiplicity functions from the auxiliary lattice path
model in Formula (32). This recursion is depicted in Figure 13.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

M̃1
(...) M̃2

(...)
M̃3

(...)
M̃4

(...) M̃5
(...) M̃6

(...) M̃7
(...)

M̃8
(...) M̃

9
(...) M̃

10
(...)

N = 5

N = 7

N = 9

M̃ 5
(...) =

M5
(...)

M7
(...)

M9
(...)

+

+

+
. . .

S(1)

=

Figure 13. Numbers near vertices of the lattice are the coefficients in Figure 12. Blue arrows denote
steps in the recursion, which were added by the long steps S(1) in the lattice path model. Length of
paths N, descending to a considered vertex of a lattice gives the number of the strip in the auxiliary
lattice path model, the multiplicity function of which is being added to (32) as a term. As an example,
we show formula for M̃5

(M,N)
|k = 1.

Blue arrows correspond to steps in the recursion on the coefficients, which were added
as a consequence of the presence of long steps S(1). In the black frame, it is noted that
although long steps have length 2l, as shown, for example, in Figure 12, their source and
target points belong to two adjacent strips, so when dealing with the coefficients it is
convenient to denote blue arrows as in the Figure 13. Long steps, following the idea of the
proof of Formula (22) depicted in Figure 9, induce paths that descend further, giving the
result as in Corollary 3. Similarly, blue arrows induce paths in the lattice, which descend
further, adding new terms in (32).

Note, that without blue arrows we would have obtained a single diagonal path with
weighted numbers of paths equal to 1. This situation would give us coefficients as in the
formula for multiplicities in the auxiliary lattice path model, meaning that we would have
M̃k

(...) = Mk
(...). This is exactly what we would have in case we removed the long steps S(1)

in the lattice path model.
Again, following the idea of the proof of Corollary 3, induced paths descend further

to each consequent strip as if they were to continue to descend in the auxiliary lattice path
model, so additional terms are dependent on how many strips these induced paths will
cross while they descend. In the recursion on the coefficients, it is manifested in the fact
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that the length of a descending path in Figure 13 gives the number of strips in the auxiliary
lattice path model, to which the additional term corresponds.

Now, our main goal is to apply S(k) for other k. As the considerations above suggest,
applying S(k) for k = 1, 2, . . . induces other sequences of blue arrows. From Figure 14, we
see that the recursion for the coefficients near multiplicity functions is satisfied by Catalan
numbers. This proves Formula (31).

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

2

5

9

14

20

5

14

2814

M̃1
(...) M̃2

(...)
M̃3

(...)
M̃4

(...) M̃5
(...) M̃6

(...) M̃7
(...)

M̃8
(...) M̃

9
(...) M̃

10
(...)

N = 5

N = 7

N = 9

M̃ 5
(...) =

M5
(...)

4M7
(...)

14M9
(...)

+

+

+
. . .

S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8)

Figure 14. In each strip, numbers in vertices of a lattice correspond to terms in Formula (32). Each
term is given by the multiplicity of a strip in the auxiliary lattice path model, the number of which
is given by the length of a path, descending to the considered coefficient. As an example, we show
formula for M̃5

(M,N)
.

Note, that action of black arrows on terms in (31) follows from Lemma 3 and the
periodicity of filter restrictions. The action of blue arrows on terms in (31) follows from
Corollary 1. Now let us prove the main theorem.

Theorem 4. For k ∈ N∪ {0} we have

M̃k+1
(M,N)

= F(N)
M +

[ N−lk+1
2l + 1

2 ]

∑
j=1

F(N)
−2lk+M−2jl +

[ N−lk+1
2l ]

∑
j=1

F(N)
M+2jl (33)

where lk− 1 ≤ M ≤ l(k + 1)− 2.

Proof. We proceed by induction over [N−lk+1
2l + 1

2 ]. For [N−lk+1
2l + 1

2 ] = 1 the Formula (33)
obviously gives the same result as (31), which is the base of induction.
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Suppose, that

M̃k+1
(M,N)

= F(N)
M +

n

∑
j=1

F(N)
−2lk+M−2jl +

n−1

∑
j=1

F(N)
M+2jl (34)

is true. We need to prove this statement for n + 1. It is sufficient to compare coefficients in
(33) and (31) near F(N)

M+2nl and F(N)
−2lk+M−2(n+1)l . We focus on the term F(N)

M+2nl , the rest can

be performed in a similar fashion. From the structure of Mk
(M,N)

, given by Theorem 1 and
depicted in Figure 15, we have two cases: n + 1 is odd and n + 1 is even.

Mk
(M,N)

Pk(0)F
(N)
−2l(k−1)+M−2l

Pk(0)F
(N)
M

Qk(0)F
(N)
M+2l

Qk(0)F
(N)
−2l(k−1)+M−4l

Pk(1)F
(N)
M+4l

. . .

. . .

. . .
Figure 15. Graphical presentation of terms in the formula for Mk

(M,N)
, given by Theorem 1. Each

term is depicted in accordance to the domain of the lattice where it appears for the first time.

For the case of odd n + 1 the last term in (31) is associated with Pj(
n
2 ), for the case of

even n it is Qj(
n+1

2 ). We focus on the case of odd n + 1, the other case can be proven in a
similar manner. So, the proof boils down to a combinatorial identity

n

∑
j=0

even j

F(k−1+2j)
k−1 Pk+1+2j

(n− j
2

)
−

n−1

∑
j=1
odd j

F(k−1+2j)
k−1 Qk+1+2j

(n− 1− j
2

)
= 1. (35)

From comparing coefficients near F(N)
M+2(n−2)l in the inductive supposition (34), we know

that

n−2

∑
j=0

even j

F(k−1+2j)
k−1 Pk+1+2j

(n− 2− j
2

)
−

n−3

∑
j=1
odd j

F(k−1+2j)
k−1 Qk+1+2j

(n− 3− j
2

)
= 1 (36)

is true. Take into account, that

Pj(k)− Pj(k− 1) =
(

j + 2k− 3
j− 3

)
, (37)

Qj(k)−Qj(k− 1) =
(

j + 2k− 2
j− 3

)
. (38)
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Subtracting (36) from (35), we obtain

( n−2

∑
j=0

even j

−
n−3

∑
j=1
odd j

)
F(k−1+2j)

k−1

(
j + n + k− 2

2j + k− 2

)
(39)

+F(k−1+2n)
k−1 Pk+1+2n(0)− F(k−1+2n−2)

k−1 Qk+1+2(n−1)(0) = 0

Taking into account that Pj(0) = 1 and Qj(0) = j− 2 and simplifying further, we arrive at

n

∑
j=0

(−1)jF(k−1+2j)
k−1

(
j + n + k− 2

2j + k− 2

)
= 0. (40)

n

∑
j=0

(−1)j
(

j + n + k− 2
2j + k− 2

)((2j + k− 1
j

)
−
(

2j + k− 1
j− 1

))
= 0 (41)

The last identity follows from the following lemma.

Lemma 8. For n, k ∈ N

n

∑
j=0

(−1)j
(

j + n + k− 2
2j + k− 2

)(
2j + k− 1

j

)
= 2(−1)n, (42)

n

∑
j=0

(−1)j
(

j + n + k− 2
2j + k− 2

)(
2j + k− 1

j− 1

)
= 2(−1)n. (43)

Proof. Let us first prove Formula (42). Denote

F(n, j) =
(−1)j+n

2

(
j + n + k− 2

2j + k− 2

)(
2j + k− 1

j

)
.

We need to show, that
n

∑
j=0

F(n, j) = 1, ∀n ∈ N.

For n = 1 it is true, which gives us the base of induction. Using Zeilberger’s algo-
rithm ([18–20]), we obtain its Wilf–Zeilberger pair

G(n, j) =
(−1)j+n j(j + k− 1)(k + 2n)

2n(n + 1)(j− n− 1)(k + 2j− 1)(k2 + n(n− 1) + k(2n− 1))

×(1 + k2n− 3n2 + k(n2 − 3n− 1) + j(2n2 + 2kn + k− 1))
(

j + n + k− 2
2j + k− 2

)(
2j + k− 1

j

)
,

for which
− F(n + 1, j) + F(n, j) = G(n, j + 1)− G(n, j) (44)

is true. Applying sum over j to both sides and simplifying telescopic sum to the right, we
obtain that

n

∑
j=0

F(n + 1, j) =
n

∑
j=0

F(n, j) + G(n, 0)− G(n, n + 1). (45)

Taking into account, that G(n, 0) = 0 and G(n, n + 1) = F(n + 1, n + 1), we have

n+1

∑
j=0

F(n + 1, j) =
n

∑
j=0

F(n, j), (46)
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which, considering inductive supposition, proves Formula (42).
Formula (43) can be proven in a similar fashion, the corresponding Wilf–Zilberger pair

is given by

G(n, j) =
(−1)j+n(j− 1)(j + k)(k + 2n)

2n(n− 1)(j− n− 1)(k + 2j− 1)(k2 + n(n− 1) + k(2n− 1))

×(1 + k2(n− 1) + k(n2 − 3n)− 3n2 + j(2n2 + 2kn− k− 1))
(

j + n + k− 2
2j + k− 2

)(
2j + k− 1

j− 1

)
.

The proof of this lemma concludes the proof of the identity and finishes the proof of
the initial theorem.

8. Conclusions

In this paper, we considered the lattice path model LU , which is the auxiliary lattice
path model in the presence of long steps. Weighted numbers of paths in this model
recreate multiplicities of Uq(sl2)-modules in tensor product decomposition of T(1)⊗N ,
where Uq(sl2) is a quantum deformation of the universal enveloping algebra of sl2 with
divided powers and q is a root of unity. Explicit formulas for multiplicities of all tilting
modules in tensor product decomposition were derived by purely combinatorial means in
the main theorem of this paper Theorem 4.

We found that the auxiliary lattice model defined in [13] is of great use for counting
multiplicities of modules of differently defined quantum deformations of U(sl2) at q root
of unity. For instance, in [9] we applied periodicity conditions to the auxiliary lattice path
model to obtain a folded Bratteli diagram, weighted numbers of paths for which recreate
multiplicities of modules in tensor product decomposition of T(1)⊗N , where T(1) is a
fundamental module of the small quantum group uq(sl2). In this paper, we modified the
auxiliary lattice path model by applying long steps to obtain multiplicities for the case of
Uq(sl2) with divided powers in a similar fashion.

The model defined in [13] required analysis of combinatorial properties of filters,
which we heavily relied on. In this paper, we introduced long steps and explored their
combinatorial properties. In order to derive formulas for weighted numbers of paths in
this setting, we also defined boundary points and congruence of regions in lattice path
models. The philosophy of congruence is fairly easy to understand. Two different lattice
path models can be locally indistinguishable due to coinciding recursions for weighted
numbers of paths in these regions. Weighted numbers of paths at boundary points of the
considered region uniquely define weighted numbers of paths for the rest of the region by
recursion. So, instead of proving identities for the whole region, it is sufficient to prove such
only for boundary points of the region. At boundary points, an identity can be represented
as a linear combination of weighted numbers of paths from different lattice path models
and one needs to take into account boundary points of congruent regions with respect to
all these models.

We found that besides applying periodicity conditions to the auxiliary lattice path
model, one can take Uq(sl2), consider its restriction to u−q U0

q u+
q , where u±q are subalgebras of

the small quantum group uq(sl2), generated by F and E, respectively, and U0
q is a subalgebra

of Uq(sl2), generated by K±1 and
[

K; c
t

]
, for t ≥ 0, c ∈ Z. Then, we can restrict u−q U0

q u+
q

to uq(sl2). This procedure defines another modification of the auxiliary lattice path model
and, remarkably, gives the same result as with periodicity conditions. The lattice path
model corresponding to u−q U0

q u+
q will be considered in the upcoming paper.

Considering other possible directions for further research, the following questions
remain open:
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• Multiplicity formulas for decomposition of tensor powers of fundamental representa-
tions of Uq(sln) at roots of unity remain out of reach and can be a source of inspiration
for other interesting combinatorial constructions. We expect that for Uq(sln) derivation
of such formulas will rely on similar combinatorial ideas. It is worth mentioning that
obtaining such formulas explicitly is of interest for asymptotic representation theory,
mainly, for constructing Plancherel measure and possibly obtaining its limit shape in
different regimes, including regime when n→ ∞ ([7,9,21]).

• In [22], similar lattice path models emerge when studying the Grothendieck ring of
the category of tilting modules for Uq(sl2) in the mixed case: when q is an odd root of
unity and the ground field is Fp. One can expand the combinatorial analysis presented
in this paper to a mixed case.

• Inr [23], it was shown that Uq(sln) at roots of unity is in Schur–Weyl duality with
Hecke algebra nHN(q) on ⊗NCn. For the case of Uq(sl2) at roots of unity, multiplicity
formulas should give answers for dimensions of certain representations of Temperley–
Lieb algebra TLN(q) at roots of unity. Dimensions of which representations were
obtained is an open question, at least to the knowledge of the author of this paper.
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