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Abstract: The area under the receiver operating characteristics curve is a popular measure of the
overall discriminatory power of a continuous variable used to indicate the presence of an outcome
of interest, such as disease or disease progression. In clinical practice, the use of cut-off points
as benchmark values for further treatment planning is greatly appreciated, despite the loss of
information that such a dichotomization implies. Optimal cut-off points are often derived from
fixed sample size studies, and the aim of this study was to investigate the convergence behavior
of optimal cut-off points with increasing sample size and to explore a heuristic and path-based
algorithm for cut-off point determination that targets stagnating cut-off point values. To this end,
the closest-to-(0,1) criterion in receiver operating characteristics curve analysis was used, and the
heuristic and path-based algorithm aimed at cut-off points that deviated less than 1% from the cut-off
point of the previous iteration. Such a heuristic determination stopped after only a few iterations,
thereby implicating practicable sample sizes; however, the result was, at best, a rough estimate of an
optimal cut-off point that was unbiased and positively and negatively biased for a prevalence of 0.5,
smaller than 0.5, and larger than 0.5, respectively.
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1. Introduction

The search for biomarkers that indicate a clinical outcome of interest (such as disease
presence or recurrence) has been an incessant endeavor in medical research during the past
decades. Several performance measures quantify a biomarker’s added value in predictive
modeling, including both categorizing a continuous marker with cut-off points and using
the whole of the information that a biomarker provides on a continuous scale [1]. The
categorization of continuous variables has the advantage of straightforward implementa-
tion in clinical practice at the cost of information loss. The distance of a biomarker value
to a given cut-off point may be small or large but still indicates the same classification
of the subject, and functional relationships with the outcome of interest are easily dis-
guised [2,3]. A clinical example is the Framingham Risk Score, used for estimating the
10-year cardiovascular risk of an individual, with low (less than 10%), moderate (10–19%),
and high (20% or higher) risk categories [4–6]. Another example is the Agatston score for
coronary calcification, which is classified, for instance, into 0, 1–9, 10–99, 100–399, and 400
or higher [7,8]. Based on the results of the Multi-Ethnic Study of Atherosclerosis, the Fram-
ingham Risk Score was extended using the Agatston score, illuminating the differences
in the Framingham Risk Score when incorporating or disregarding the Agatston score for
coronary calcification [9–11].
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In diagnostic research, several criteria for cut-off point optimality have been proposed
that are based on the receiver operating characteristics (ROC) curve [12,13]. The closest-
to-(0,1) criterion [14] and the Youden index [15] indicate the optimal cut-off point as the
one closest to perfect discrimination of subjects with or without the condition of interest
and the point farthest from no discrimination, respectively [16]. Liu [17] introduced the
concordance probability of the dichotomized measure at the optimal cut-off point, which
geometrically represents the area of a rectangle below the ROC curve, with the optimal
cut-off point as the top-left corner. In Stata, these three criteria are implemented in the
command cutpt, with Liu’s method used as the default. Lopez-Raton et al. [18] introduced
the R package OptimalCutpoints to select optimal cut-off points. They included criteria based
on sensitivity and specificity (e.g., Youden index and closest-to-(0,1) criterion), predictive
values, diagnostic likelihood ratios, cost–benefit analysis of the diagnosis, and maximum
chi-squared or minimum p-value criterion.

In cancer research, first-in-human dose-finding trials aim to determine a maximal toler-
able dose, which is associated with a probability of observing dose-limiting toxicity of 33%.
Traditionally, the rule-based 3 + 3 design was used; nowadays, more efficient but computa-
tionally more demanding model-based (especially the continual reassessment method) and
model-assisted (such as Bayesian optimal interval design) designs are employed [19–21].

This study aimed to transfer the idea of up-and-down designs in cancer dose-finding
trials (such as the traditional 3 + 3 dose-escalation rule) to cut-off point-finding endeavors
in diagnostic research. To achieve this, we investigated the convergence behavior of optimal
cut-off points with increasing sample size in a simulation study and explored a heuristic
and path-based algorithm for cut-off point determination that targeted stagnating cut-off
point values.

2. Materials and Methods
2.1. Simulation Set-Up

The distribution of scores in subjects with (D1) and without (D0) a target condition can
take very different forms. Hypothetical distributions employ normal distributions [12,13,22]
and right-skewed distributions [23]. In practice, the abovementioned Agatston scores for
coronary calcification are an example of a variable that often follows a right-skewed
distribution, as the calcification scores are nonnegative integers, often with an overexpres-
sion of zeros in disease-free subjects [10,24]. Four sets of distributions were assumed for
D0 and D1.

• Scenario 1: normal (mean = 2, variance = 1) and normal (mean = 4, variance = 1) for
D0 and D1, respectively; top left corner of Figure 1;

• Scenario 2: normal (mean = 2, variance = 1) and normal (mean = 5, variance = 2) for
D0 and D1, respectively; top right corner of Figure 1;

• Scenario 3: normal (mean = 2, variance = 1) and gamma (shape = 2, scale = 2, location = 3)
for D0 and D1, respectively; bottom left corner of Figure 1;

• Scenario 4: exponential (scale = 2) and gamma (shape = 2, scale = 2, location = 3) for
D0 and D1, respectively; bottom right corner of Figure 1.

The prevalence of the disease was assumed to be 0.1, 0.3, 0.5, and 0.7, and the number
of simulated trials was 1000. An optimal cut-off point according to the closest-to-(0,1)
criterion was determined with a minimum sample size of 100 to ensure a minimum of
approximately 10 cases. We chose 101 subjects instead of 100 as the starting point to increase
the chance of identifying a unique, optimal cut-off point; as the empirical ROC curve is a
step function, cutpt may identify more than one closest-to-(0,1) cut-off point, leading to ties
and termination of the procedure.

Reproducible Stata codes for all results are available in Supplementary Materials S1,
and Stata data files, including optimal cut-off points by trial number and n = 101–801 in
increments of 50 subjects, are available in Supplementary Materials S2. All analyses were
performed using Stata/MP 17.0 (StataCorp, College Station, TX 77845 USA).
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Figure 1. Four sets of assumed distributions for D0 (left, blue line) and D1 (right, red line) subjects. 
Top left: scenario 1—normal (mean = 2, variance = 1) and normal (mean = 4, variance = 1). Top 
right: scenario 2—normal (mean = 2, variance = 1) and normal (mean = 5, variance = 2). Bottom left: 
scenario 3—normal (mean = 2, variance = 1) and gamma (shape = 2, scale = 2, location = 3). Bottom 
right: scenario 4—exponential (scale = 2) and gamma (shape = 2, scale = 2, location = 3). The vertical, 
dashed line indicates the optimal cut-off point according to the Youden index, which was 3, 3.42, 
3.6, and 3.45 for scenarios 1–4, respectively. The vertical, dotted line indicates the optimal cut-off 
point according to the closest-to-(0,1) criterion, which was 3, 3.18, 3.65, and 3.88 for scenarios 1–4, 
respectively. 
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terion because of its algorithmic stability when conducting the simulation study, as the 
non-identifiability of a unique optimal cut-off point, which leads to immediate termina-
tion of the algorithm, occurs less often with the closest-to-(0,1) criterion than with the 
other two methods. 

  

Figure 1. Four sets of assumed distributions for D0 (left, blue line) and D1 (right, red line) subjects.
Top left: scenario 1—normal (mean = 2, variance = 1) and normal (mean = 4, variance = 1). Top
right: scenario 2—normal (mean = 2, variance = 1) and normal (mean = 5, variance = 2). Bottom
left: scenario 3—normal (mean = 2, variance = 1) and gamma (shape = 2, scale = 2, location = 3).
Bottom right: scenario 4—exponential (scale = 2) and gamma (shape = 2, scale = 2, location = 3).
The vertical, dashed line indicates the optimal cut-off point according to the Youden index, which
was 3, 3.42, 3.6, and 3.45 for scenarios 1–4, respectively. The vertical, dotted line indicates the
optimal cut-off point according to the closest-to-(0,1) criterion, which was 3, 3.18, 3.65, and 3.88 for
scenarios 1–4, respectively.

2.2. Criterion for Optimality of a Cut-Off Point

The Stata package cutpt enables cut-off point determination according to the Youden
index, closest-to-(0,1) criterion, and Liu’s method. We employed the closest-to-(0,1) criterion
because of its algorithmic stability when conducting the simulation study, as the non-
identifiability of a unique optimal cut-off point, which leads to immediate termination
of the algorithm, occurs less often with the closest-to-(0,1) criterion than with the other
two methods.

2.3. True Optimal Cut-Off Points

With Se(c) and Sp(c) representing sensitivity (true-positives divided by the sum of
true-positives and false-negatives) and specificity (true-negatives divided by the sum of
true-negatives and false-positives), respectively, evaluated at cut-off point c, the optimal
cut-off point is defined for each of these methods as follows [17]:

• Closest-to-(0,1) criterion: cclosest = min
c

√
[1 − Se(c)]2 + [1 − Sp(c)]2;

• Liu’s method: cLiu = max
c

(Se(c)Sp(c));

• Youden index: cYouden = max
c

(Se(c) + Sp(c)− 1).

As the assumed distributions for D0 and D1 are given (Figure 1), the true optimal
cut-off points in scenarios 1–4 were evaluated by grid search (Supplementary Materials S1).
For the closest-to-(0,1) criterion, the true optimal cut-off points were 3, 3.18, 3.65, and 3.88
for scenarios 1–4, respectively. Notably, the true optimal cut-off points were identical for the
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Youden index, closest-to-(0,1) criterion, and Liu’s method only for homoscedastic scenario 1,
whereas these were different for the remaining heteroscedastic scenarios (Table 1). Figure A1
depicts the respective ROC curves for all scenarios.

Table 1. True optimal cut-off points for all scenarios and closest-to-(0,1) criterion, Liu’s method, and
Youden index.

Scenario Closest-to-(0,1) Criterion Liu’s Method Youden Index

1 3 3 3
2 3.18 3.34 3.42
3 3.65 3.61 3.6
4 3.88 3.52 3.45

2.4. Convergence Behavior of Optimal Cut-off Points with Increasing Sample Size

For each setting and trial, the optimal cut-off points were determined for all sample
sizes, n = 101, 151, 201, . . . , 801. For every estimated optimal cut-off point, the bias (in %)
and mean squared error (MSE) in relation to the true values were derived. A bias smaller
than a 1% deviation from the true optimal cut-off point was considered reasonably close
to the true value. Boxplots demonstrate the location and skewness of the cut-off point
distributions. Values larger than the third quartile plus 1.5 times the interquartile range
and values smaller than the first quartile minus 1.5 times the interquartile range are shown
individually, in accordance with the definition of boxplot outliers in Stata.

2.5. A Heuristic and Path-Based Algorithm for Cut-Off Point Determination

The optimal cut-off point estimate for ROC curves varies with increasing sample size
and eventually converges to the true value. For each simulated trial, the search started
with n = 101 subjects, and the cut-off point was estimated after increments of 50 (heuristic
algorithm 1) and 100 (heuristic algorithm 2). The algorithm was stopped, and the cut-off
point was identified when the estimated cut-off point deviated by less than 1% from the
precedent estimate. To this end, the simulations in the previous section were used. The bias
(in %) and MSE of the identified optimal cut-off points, as well as the mean number of
patients and their respective 95% confidence intervals (95% CI), are reported.

2.6. Real-Life Example Data

The Agatston score for coronary calcification is a nonnegative marker based on a
coronary computed tomography (CT) scan. It is the total calcium score across all calcific
lesions detected on slices obtained from the proximal coronary arteries [7]. The Agatston
score has become a cardiovascular risk factor in addition to those previously known (male
sex, age, smoking, systolic blood pressure, and total cholesterol) [25] and was measured as
part of two population-based cardiac CT screening cohorts [26–28]. These Danish samples
comprised 17,252 participants aged 50 to 75 years, among which 15% had a history of
cardiovascular disease and 11.2% were female [24]. The data were randomly sorted by
using 20,221,019 as seed.

The real-life example data are available in Supplementary Materials S4, and the Stata
codes are part of Supplementary Materials S1.

3. Results
3.1. Fixed Sample Size

Figure 2 shows boxplots for optimal cut-off points for sample sizes n = 101, 151,
201, . . . , 801 and scenario 1 by prevalence. For a prevalence below 0.5, the optimal cut-off
point was overestimated on average (Figure 2, top left corner: prevalence = 0.1; Figure 2,
top right corner: prevalence = 0.3).
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Figure 2. Boxplots of chosen cut-off points by sample size for scenario 1 and a prevalence of 0.1 (top
left), 0.3 (top right), 0.5 (bottom left), and 0.7 (bottom right). Values smaller than the first quartile
minus 1.5 times the interquartile range and values larger than the third quartile plus 1.5 times the
interquartile range are shown individually as outliers. The vertical, solid lines indicate a maximum
of 1% deviation from the true optimal cut-off point (target area).

The smaller the prevalence, the higher the likelihood that sampling would include
more D0 subjects in the tails of the distribution and, therefore, to the right of the true
optimal cut-off point (see vertical, dashed, and dotted lines in Figure 1, top left corner). In
contrast, sampling also included fewer D1 subjects in the tails of the distribution, leading
to an overestimation of the estimated optimal cut-off point. With increasing sample size,
the convergence of the estimate to the true optimal cut-off point was visible by means of
narrower boxes (i.e., smaller interquartile ranges) around the true value of 3 (Figure 2).
However, only for a prevalence of 0.5 (Figure 2, bottom left corner) did the first and third
quartiles close onto the interval of 1% deviation from the true value, which was 2.97 to 3.03.
The same was true for scenarios 2–4 (Supplementary Materials S3).

It was also only for a prevalence of 0.5 that the mean bias fell short of a 1% deviation
from the true value across all four scenarios (Table 2, see bold print), even with a sample
size as small as 101. With sample sizes of at least 201 or 301, this held true for a prevalence
of 0.3 or 0.7 in scenarios 1–3 as well as for a prevalence of 0.7 in scenario 4. For a prevalence
of 0.1, the mean bias exceeded a 1% deviation from the true value in all scenarios and
sample sizes. The MSE decreased with increasing sample size for every prevalence and
increased from scenario 1 to 4. The MSE was considerably larger in scenario 4 than in
scenarios 1–3, probably because of the extreme assumption of exponentially distributed
D0 values.

3.2. Heuristic and Path-Based Algorithm for Cut-Off Point Determination

Starting with n = 101 subjects and using increments of n = 50 (heuristic algorithm 1)
until a cut-off point deviated less than 1% from the precedent estimate, 189 to 203 subjects
were used on average to arrive at an optimal cut-off (Table 3). The bias and MSE values
were slightly larger than the respective values for a fixed sample size of n = 201 (Table 2).
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Table 2. Bias and mean squared error (MSE) of cut-off points in fixed sample designs.

Prevalence Patients
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Bias, % MSE Bias, % MSE Bias, % MSE Bias, % MSE

0.1

101 5.1 0.128 9.2 0.360 7.5 0.293 8.4 0.504
201 3.4 0.068 4.7 0.154 4.5 0.130 5.8 0.242
301 2.5 0.047 3.0 0.093 3.4 0.089 4.8 0.168
401 1.9 0.034 2.7 0.074 2.9 0.065 3.8 0.122
501 1.6 0.028 1.9 0.057 2.5 0.049 3.3 0.105
601 1.4 0.023 1.5 0.044 2.1 0.038 2.8 0.085
701 1.4 0.021 1.4 0.037 1.9 0.032 2.6 0.073
801 1.3 0.018 1.5 0.033 1.7 0.028 2.2 0.061

0.3

101 1.5 0.045 1.7 0.098 1.8 0.069 2.7 0.169
201 0.76 0.026 1.1 0.052 1.1 0.037 1.7 0.084
301 0.63 0.019 0.90 0.035 0.98 0.026 1.2 0.064
401 0.62 0.016 0.73 0.028 0.89 0.021 1.03 0.050
501 0.50 0.012 0.60 0.023 0.81 0.017 1.01 0.043
601 0.46 0.011 0.57 0.022 0.72 0.014 0.88 0.038
701 0.38 0.010 0.61 0.019 0.62 0.013 0.82 0.033
801 0.38 0.009 0.48 0.016 0.62 0.012 0.66 0.029

0.5

101 −0.06 0.039 0.34 0.074 −0.11 0.053 0.25 0.125
201 0.26 0.022 −0.07 0.045 0.10 0.029 0.23 0.071
301 0.12 0.016 −0.05 0.032 0.15 0.020 0.36 0.051
401 0.13 0.012 −0.15 0.025 0.18 0.015 0.27 0.039
501 0.13 0.010 −0.01 0.022 0.11 0.013 0.07 0.033
601 0.04 0.009 −0.24 0.019 0.08 0.011 0.09 0.029
701 0.09 0.008 −0.26 0.016 0.14 0.010 0.19 0.026
801 0.07 0.007 −0.24 0.015 0.18 0.008 0.06 0.023

0.7

101 −1.1 0.046 −1.7 0.075 −1.7 0.067 −1.6 0.174
201 −0.54 0.026 −1.1 0.044 −0.74 0.033 −0.74 0.993
301 −0.59 0.019 −0.90 0.033 −0.64 0.025 −0.61 0.065
401 −0.63 0.014 −0.81 0.026 −0.35 0.019 −0.35 0.051
501 −0.56 0.012 −0.75 0.021 −0.56 0.016 −0.17 0.043
601 −0.38 0.010 −0.64 0.019 −0.51 0.014 −0.17 0.035
701 −0.25 0.008 −0.70 0.016 −0.48 0.012 −0.18 0.031
801 −0.28 0.008 −0.58 0.015 −0.43 0.011 −0.05 0.026

Bold print: Mean bias deviated less than 1% from the true optimal cut point.

Table 3. Bias, mean squared error (MSE), and mean number of patients (95% CI) of cut-off points
derived by the heuristic algorithm 1.

Prevalence

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Bias, %
(MSE)

Mean No.
of Patients,

95% CI
Bias, %
(MSE)

Mean No.
of Patients,

95% CI
Bias, %
(MSE)

Mean No.
of Patients,

95% CI
Bias, %
(MSE)

Mean No.
of Patients,

95% CI

0.1 3.7 (0.071) 192
[189–196] 4.8 (0.169) 192

[188–195] 4.7 (0.153) 189
[186–192] 5.4 (0.241) 200

[196–204]

0.3 0.94 (0.028) 194
[190–198] 1.3 (0.056) 198

[194–201] 1.4 (0.043) 195
[191–198] 2.0 (0.096) 197

[193–201]

0.5 0.10 (0.024) 199
[195–204] 0.02 (0.047) 196

[192–200]
−0.04
(0.032)

193
[189–197] 0.17 (0.078) 199

[195–202]

0.7 −0.66
(0.026)

197
[193–201] −1.2 (0.047) 203

[199–207]
−0.98
(0.038)

190
[187–194]

−0.81
(0.100)

197
[193–201]

Bold print: Mean bias deviated less than 1% from the true optimal cut point.

Apparently, the heuristic and path-based search was most often completed with 151 or
201 subjects. Figure 3 shows the path of supposedly optimal cut-off points for the first nine
simulated trials in scenario 1 with a prevalence of 0.5 when the sample sizes increased for
illustration purposes from n = 101 to n = 1401 in increments of 50. In six out of nine trials,
the cut-off point was chosen with n = 151 subjects (see vertical, dotted lines); in three trials,
n = 351 (top middle), 201 (middle center), and 201 subjects (bottom right) were necessary.
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Table 4. Bias, mean squared error (MSE), and mean number of patients (95% CI) of cut-off points
derived by the heuristic algorithm 2.

Prevalence

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Bias, %
(MSE)

Mean No. of
Patients,
95% CI

Bias, %
(MSE)

Mean No. of
Patients,
95% CI

Bias, %
(MSE)

Mean No. of
Patients,
95% CI

Bias, %
(MSE)

Mean No. of
Patients,
95% CI

0.1 2.7 (0.048) 312
[305–319] 3.2 (0.103) 312

[304–319] 3.2 (0.082) 319
[312–326] 4.4 (0.158) 343

[335–352]

0.3 0.71 (0.021) 310
[302–318] 0.99 (0.036) 327

[319–336] 0.98 (0.027) 312
[304–319] 1.3 (0.065) 335

[327–343]

0.5 0.15 (0.017) 319
[311–328] −0.02 (0.033) 323

[315–331] 0.15 (0.022) 315
[307–323] 0.28 (0.049) 330

[322–338]

0.7 −0.57 (0.020) 321
[313–330] −0.92 (0.034) 336

[328–345] −0.62 (0.025) 316
[308–324] −0.49 (0.068) 322

[314–330]

Bold print: Mean bias deviated less than 1% from the true optimal cut point.

Starting with n = 101 subjects and using increments of n = 100 instead (heuristic
algorithm 2) led to cut-off point determination with n = 310 to 343 subjects on average
(Table 4). As before, bias and MSE were slightly larger than respective numbers for a fixed
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sample size of n = 301 (Table 2), and the heuristic and path-based search was most often
already completed after a few “follow-up looks” as well. As shown in Figure 3, this was the
case thrice with n = 201 subjects (top left, middle left, bottom middle; see vertical, dashed
lines), twice with n = 301 (bottom left, bottom right), twice with n = 501 (top middle, top
right), and once with n = 401 (middle right) and 601 (middle center).

Finally, Figure 3 suggests that the chosen cut-off point with n = 1401 subjects was very
close to or within a 1% deviation of the true value in five out of nine trials (top row and left
column). In contrast, the chosen cut-off point deviated considerably from the true value
of 3 for three of the remaining four simulated trials at n = 1401 (middle center, middle right,
and bottom middle).

4. Real-Life Example

For the sake of this example, we assumed that the Agatston score could serve as marker
for previous cardiovascular disease in the subjects. Larger values for the Agatston score are
associated with increased risk. Further, we declared the full dataset as a population from
which we sampled. Then, the prevalence was 0.15, the area under the ROC curve was 0.73
(95% CI: [0.72–0.74]), and the empirical optimal cut-off point based on the full dataset was
184.7 (Figure A2).

The real-life example data were analyzed analogously to the simulated data before;
that is, in consecutive order. For all sample sizes n = 101, 151, 201, . . . , 17,251, optimal
cut-off points were determined according to the closest-to-(0,1) criterion (Figure 4). The
heuristic algorithms 1 and 2 stopped at n = 351 and n = 401, respectively. The chosen cut-off
point oscillated heavily for smaller and still considerably for larger sample sizes. The
smallest sample size, at which the chosen cut-off deviated less than 1% from the empirical
optimal cut-off point of 184.7, was n = 5801. Only for sample sizes equal to or larger than
n = 9301 did the chosen cut-off point deviate less than 1% from the empirical value. This
illustrates our findings of slow convergence. Moreover, most chosen cut-off points for
sample sizes less than 9301 were larger than the empirical value of 184.7 in Figure 4. This
positive bias of the chosen cut-off point was due to the small prevalence of only 0.15 (see
also Figure 2, top left).
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and vertical dashed-dotted lines represent the point at which the heuristic and path-based algorithm
stops when using increments of n = 50 and n = 100 subjects, respectively.
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5. Discussion
5.1. Main Findings

With a disease prevalence of 0.5, the optimal cut-off point estimation was, on average,
unbiased for all sample sizes, but positively biased for a prevalence smaller than 0.5 and
negatively biased for a prevalence larger than 0.5. For a prevalence of 0.5, the mean bias
fell short of a 1% deviation from the true optimal cut-off point across all four scenarios.
The MSE value was the worst in scenario 4, in which the D0 distribution was assumed
to be exponential and highly right-skewed. The heuristic and path-based algorithm that
looked for a deviation of up to 1% within two consecutive cut-off points stopped after only
a few iterations, resulting in an imprecise cut-off point estimate. This was independent of
whether increments of 50 or 100 subjects were used, leading to average sample sizes up to
n = 203 (heuristic algorithm 1) and n = 343 (heuristic algorithm 2).

5.2. “Optimality” of a Cut-Off Point

According to Leeflang et al. [23], a prevalence of 50% is the most efficient to ensure
that the combined uncertainty in sensitivity and specificity is the smallest. Perkins and
Schisterman [16] pointed out that the Youden index and the closest-to-(0,1) criterion lead
to the same chosen cut-off points in some situations but to different cut-off points in
others. The Youden index reflects the intention of maximizing overall correct classification
proportions and, thus, minimizing misclassification, whereas the closest-to-(0,1) criterion
lacks such a clinical meaning. Thus, Perkins and Schisterman advised against the use of
the closest-to-(0,1) criterion. In our simulation study, both the closest-to-(0,1) criterion and
the Youden index identified the very same cut-off point as optimal only in scenario 1 (3)
but different ones in scenario 2 (3.18 vs. 3.42), 3 (3.65 vs. 3.6), and 4 (3.88 vs. 3.45). From
Figure 1, it becomes apparent that the indicated optimal cut-off points according to the
Youden index (vertical, dashed lines) are clearly those that maximize the overall correct
classification, as they indicate where the D0 and D1 distributions cross.

López-Ratón et al., focused on the symmetry point (also known as the point of equiva-
lence) in optimal cut-off point determination [29,30]. The symmetry point is defined by the
intersection of the ROC curve and the line y = 1 − x and can be interpreted as the point
that maximizes simultaneously both types of correct classifications; that is, true-positives
and true-negatives. Liu [17] proposed an alternative criterion to the Youden index, and
Schisterman et al. [31] discussed a generalized Youden index to integrate the costs of differ-
ent types of errors (i.e., false-negatives and false-positives). Further, Schisterman et al. [31]
proposed deriving bootstrapped 95% CIs to reflect the estimation uncertainty of the chosen
cut-off point. However, these optimality criteria apply only if the sensitivity and specificity
are weighted equally and any differential consequences are ignored. In contrast, Laking
et al. [32] and Greiner et al. [33] also considered the impact of the cost of false-negative
and false-positive results on the choice of the cut-off point. Pepe et al. [34] related the
target values for the sensitivity and specificity of a diagnostic test to its clinical value. They
argued that the necessary information comprises knowledge of the disease prevalence in
the clinical population and the ratio of the benefit associated with the clinical consequences
of a positive biomarker test in cases to the cost associated with a positive biomarker test in
controls. In a practical application, the optimality criterion must be chosen with care; for the
purpose of this simulation study, considering the straightforward closest-to-(0,1) criterion is
sufficient to investigate its convergence pattern with increasing sample size. Peng et al. [35]
proposed the broadest framework to categorize a continuous scale according to an ordinal
outcome. They suggested a nonparametric cut-off point estimator that encompasses the
Youden index in the context of ROC curve analysis.

The term “optimality” may suggest that a single, universal optimal cut-off point
does actually exist. However, every criterion implicates its “own” optimal cut-off point,
leading to differences in “optimal” cut-off points across methods (Table 1). Any “optimal”
cut-off point is, just as in any optimization problem, optimized according to the pre-
specified criterion.
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Finally, several approaches have been proposed that refrain from dichotomization
of a continuous marker at all [36–38] but allow for an interval of uncertainty or a gray zone
of transition where D0 and D1 overlap [39–44], possibly heavily so (see, for instance, D0
and D1 for 2 < x < 4 in Figure 1, top left). Briggs and Zaretzki [45] proposed a graphical
technique to evaluate continuous diagnostic tests, the skill plot. The skill plot gives insight
into the interval of marker values for which peak diagnostic performance occurs. Moreover,
the skill plot indicates clearly whether any threshold value offers diagnostic power beyond
a naive forecast (of an always present or always absent target condition).

5.3. Transferability of a Path-Based Design from Early Phase Cancer Research

The idea of path-based cut-off point determination is different from fixed-sample
cut-off point determination followed by validation endeavors [23]. In phase I cancer
research, dose-finding studies serve the purpose of identifying a dose to be used for clinical
development. As the risk of dose-limiting toxicity increases with increasing doses, caution
is advised in dose escalation. In diagnostic trials, the choice of a cut-off point has indirect
consequences on the subjects, as treatment planning may later depend on the biomarker
value, with the inherent risks of false-positive (the cut-off point was chosen as too small)
and false-negative (the cut-off point was chosen as too large) decisions. The chosen optimal
dose represents the best estimate of the target dose level, implicating a certain probability
of dose-limiting toxicity. In contrast, cut-off point selection based on the heuristic rules
shown here represents, at best, a rough estimate of an optimal cut-off point, although
admittedly at moderately, and thereby practicable, sample sizes. However, the need for
internal, temporal, and external validation of any chosen cut-off point remains [46,47].

5.4. Limitations of the Study

We employed the closest-to-(0,1) criterion despite its lack of clinical interpretability—in
opposition to both Liu’s method and the Youden index—due to algorithmic stability in our
Monte Carlo simulations. We believe, though, that the study of the convergence behavior
in finding an optimal cut-off point according to the closest-to-(0,1) criterion is defensible as
we would expect similar patterns with Liu’s method or the Youden index.

The syntax of the cutpt command in Stata is derived from the roctab command that
provides nonparametric estimation of the ROC curve for a given classifier and true-status
reference variable. The points on the nonparametric ROC curve are generated by using
each possible outcome of the diagnostic test as a classification cut-off point and computing
the corresponding sensitivity and specificity. These points are, then, simply connected
by straight lines, and the area under the resulting ROC curve is computed using the
trapezoidal rule. Generally, the estimation of cut-off points can significantly vary with the
shape of the ROC curve that can result from nonparametric, semiparametric, or parametric
estimation [12,13,48–52]. Especially when the ROC curve is estimated empirically (for
smaller sample sizes or for cases with extreme marker distributions), the cut-off point could
be different as compared to when the ROC curve is estimated as a smooth curve based on
parametric or semi-parametric estimation. The shape of the ROC curve (concave or non-
concave) can also impact the cut-off point estimation. In short, the estimation process of the
ROC curve will affect the cut-off point estimate and, thus, the convergence pattern could
also vary with respect to the ROC estimation. Our work is based on one specific criterion
for optimality (closest-to-(0,1)) and one specific nonparametric ROC curve estimation.

6. Conclusions

The optimal cut-off points derived from the ROC curve analysis converged to the true
but unknown optimal cut-off point beyond n = 1000 included subjects. Special attention
should be paid to the prevalence of a disease in the cut-off point estimation. Simple heuristic
rules may serve as a preliminary cut-off point estimate, which warrants further validation.
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