
Citation: Ahmed, K.K.; Badra, N.M.;

Ahmed, H.M.; Rabie, W.B. Soliton

Solutions and Other Solutions for

Kundu–Eckhaus Equation with

Quintic Nonlinearity and Raman

Effect Using the Improved Modified

Extended Tanh-Function Method.

Mathematics 2022, 10, 4203. https://

doi.org/10.3390/math10224203

Academic Editor: Youssef Raffoul

Received: 19 October 2022

Accepted: 7 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Soliton Solutions and Other Solutions for Kundu–Eckhaus
Equation with Quintic Nonlinearity and Raman Effect Using
the Improved Modified Extended Tanh-Function Method
Karim K. Ahmed 1,2, Niveen M. Badra 1, Hamdy M. Ahmed 3,* and Wafaa B. Rabie 4

1 Department of Physics and Engineering Mathematics, Faculty of Engineering, Ain Shams University,
Abbassia, Cairo P.O. Box 11517, Egypt

2 Department of Mathematics, Faculty of Basic Sciences, German University in Cairo,
Cairo P.O. Box 11835, Egypt

3 Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy,
Cairo P.O. Box 11837, Egypt

4 Department of Basic Sciences, Higher Institute of Engineering and Technology,
Menoufia P.O. Box 32821, Egypt

* Correspondence: hamdy_17eg@yahoo.com

Abstract: Our paper studies the optical solitons for the Kundu–Eckhaus (KE) equation with quintic
nonlinearity and Raman effect. By applying the improved modified extended tanh-function method,
many soliton solutions can be obtained such as bright soliton solutions, dark soliton solutions, and
the singular soliton solution. In addition, we can obtain various types of solutions, namely, singular
periodic solutions, exponential solutions, rational solutions, Jacobi elliptic solutions and Weierstrass
elliptic doubly periodic solutions. Moreover, some selected solutions are illustrated graphically to
show the physical nature and the characteristics of the obtained solutions.
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1. Introduction

In fields such as optical fibers, fluid mechanics and material science, finding exact
solutions to nonlinear partial differential equations is essential for understanding the nature
of physical phenomena (see [1–4]). The nonlinear Schrödinger equation is one of the most
essential equations in the field of fiber optics (see [5–18]). The Kundu–Eckhaus equation is
a generalized version of the nonlinear Schrödinger equation that describes the propagation
of the ultrashort light pulses in optical fibers. In the literature, many researchers studied the
Kundu–Eckhaus equation; for example, Yildirim [19] established bright, dark and singular
optical solitons to the Kundu–Eckhaus equation having four-wave mixing in the context of
birefringent fibers by the use of modified simple equation methodology. Biswas et al. [20]
obtained an optical soliton perturbation with full nonlinearity for the Kundu–Eckhaus
equation by a modified simple equation method. Biswas et al. [21] investigated optical
solitons and conservation law in birefringent fibers with the Kundu–Eckhaus equation
by an extended trial function method. El Sheikh et al. [22] studied optical solitons with a
differential group delay for a coupled Kundu–Eckhaus equation using an extended simplest
equation approach. El-Borai et al. [23] derived a topological and singular soliton solution
to the Kundu–Eckhaus equation with an extended Kudryashov’s method. Triki et al. [24]
discussed the existence of chirped algebraic solitary waves in optical fibers governed by
the Kundu–Eckhaus equation.
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To the best of the authors’ knowledge, there is no research work that has reported on
the soliton solutions and other solutions for the Kundu–Eckhaus equation with quintic non-
linearity and Raman effect using the improved modified extended tanh-function method.
In order to complete this part, we consider the Kundu–Eckhaus equation with a quintic
nonlinearity and Raman effect as [24]:

i
∂P
∂z

+ A
∂2P
∂$2 + G|P|2P + S|P|4P + iVP

∂|P|2
∂$

= 0, (1)

where z is the propagation distance, $ is the retarded time, P(z, $) is the complex enve-
lope function and A is the group-velocity dispersion. G and S are the cubic and quintic
nonlinearity coefficients sequentially, and V is the Raman effect.

In this paper, the improved modified extended tanh-function technique is introduced
for the suggested model in order to acquire optical solitons and other solutions. The
presented method gives a greater variety of solutions than other methods. Dark soliton
solutions, bright soliton solutions, singular periodic soliton solutions, singular solutions, ex-
ponential solutions, rational solutions, Jacobi elliptic solutions, and Weierstrass elliptic dou-
bly periodic solutions are extracted. Furthermore, three-dimensional and contour graphics
are conveyed for some obtained solutions to give physical illustrations of their nature.

2. Summary Method

We provide a brief explanation of the improved modified extended tanh-function
scheme as follows [25,26]:

Assuming a nonlinear partial differential equation as follows:

B(u, ut, ux, uxx, uxt, uxxt, . . .) = 0, (2)

where B denotes a polynomial of u(x, t) and its spatial and time partial derivatives. Now,
the main steps of the proposed methodology are as follows:
Step (1): Using the following traveling wave transformation:

u(x, t) = G(ε), ε = κx− ct, (3)

where κ, c are certain real constants to be evaluated later.
After substituting Equation (3) into Equation (2), then Equation (2) can be reformulated

to become the following nonlinear ordinary differential equation (ODE):

B(G,G′,G′′, . . .) = 0. (4)

Step (2): By assuming that the solution of Equation (4) can be expressed in the follow-
ing form:

G(ε) =
M

∑
j=0

rj=j +
M

∑
j=1

sj=−j, (5)

where = satisfies

=′(ε) = v
√

g0 + g1=1(ε) + g2=2(ε) + g3=3(ε) + g4=4(ε), (6)

where v = ±1.
Step (3): After that, we evaluate the value of the number M, which should be a positive
integer number, by applying the balancing principle between the highest-order linear term
and the nonlinear term in Equation (4).
Step (4): Bearing in mind Equation (6), and substituting by Equation (5) in Equation (4),
leads to a polynomial of =(ε). Equating the coefficients of =(ε)i to zero gives a sys-
tem of algebraic equations, and therefore, different kinds of solitary wave solutions will
be obtained.
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3. Solitons and Other Solutions

By applying the proposed method, the solution of Equation (1) can be expressed
as follows:

P(z, $) = R(ξ) e(i[kz−Ω$+F(ξ)]). (7)

Here, F(ξ) is defined as a nonlinear phase shift and R(ξ) is considered to be the amplitude,
and both of them are real functions of the traveling coordinate ξ = $− qz, with q = v−1

acting as the inverse velocity. In addition, k and Ω are considered to be real constants that
represent the propagation constant and the frequency shift, respectively.

Plugging Equation (7) into Equation (1) and splitting into its real and imaginary parts,
then the following coupled ordinary differential equations can be obtained as follows:

A
d2R
dξ2 −

(
k− q

dF
dξ

)
R− A

(
dF
dξ
−Ω

)2
R + GR3 + SR5 = 0, (8)

and

A
(

R
d2F
dξ2 + 2

dF
dξ

dR
dξ

)
− (q + 2AΩ)

dR
dξ

+ 2VR2 dR
dξ

= 0. (9)

Multiplying Equation (9) by R(ξ) and applying the integration of the resultant equation,
then an equation which is called the evolution equation can be obtained as follows:

dF
dξ

= Ω +
q

2A
− V

2A
R2, (10)

for simplicity, we can consider the integration constant to be zero.
Furthermore, plugging Equation (10) into Equation (8), the following ordinary differ-

ential equation for R(ξ) can be obtained, mathematically,

d2R
dξ2 +

q2 + 4A(qΩ− k)
4A2 R +

G
A

R3 +
(4AS−V2)

4A2 R5 = 0. (11)

Multiplying (11) by
dR
dξ

and integrating the resultant equation, a nonlinear differential

equation will be reached as follows(
dR
dξ

)2
= b R2 − c R4 − d R6 + 2Γ, (12)

where b, c and d are considered to be real constants that are evaluated to be

b =
4A(k− qΩ)− q2

4A2 , c =
G

2A
, d =

4AS−V2

12A2 , (13)

and Γ is the integration constant.
By applying the balance principle to Equation (12), suppose that:

R(ξ) = Y(ξ)
1
2 . (14)

Then, Equation (12) can be formulated as follows:(
dY
dξ

)2
= 4b Y2 − 4c Y3 − 4d Y4 + 8YΓ. (15)

By applying the balance principle to Equation (15), then the corresponding solution of
Equation (15) can be represented by

Y(ξ) = r0 + r1=(ξ) +
s1

=(ξ) , (16)
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where r0, r1 and s1 are considered to be constants, which will be determined such that
r1 6= 0 or s1 6= 0.

By substituting Equation (16) with the condition (6) into Equation (15), we obtain the
polynomial in = , and we will equate the sum of all terms with the same powers by zero;
then, a system of algebraic equations can be found as follows:

=0(ξ) coeff.:
4ds4

1 + g0s2
1 = 0,

=1(ξ) coeff.:
4cs3

1 + 16dr0s3
1 + g1s2

1 = 0,

=2(ξ) coeff.:

4bs2
1 − 12cr0s2

1 − 16dr1s3
1 − 24dr2

0s2
1 + 2g0r1s1 − g2s2

1 = 0,

=3(ξ) coeff.:

8br0s1 − 12cr2
0s1 − 12cr1s2

1 − 16dr3
0s1 − 48dr1r0s2

1 + 2g1r1s1 − g3s2
1 + 8Γs1 = 0,

=4(ξ) coeff.:

8br1s1 + 4br2
0 − 24cr1r0s1 − 4cr3

0 − 48dr1r2
0s1 − 24dr2

1s2
1 − 4dr4

0 + 2g2r1s1 − g0r2
1 − g4s2

1 + 8Γr0 = 0,

=5(ξ) coeff.:

8br1r0 − 12cr2
1s1 − 12cr1r2

0 − 48dr2
1r0s1 − 16dr1r3

0 + 2g3r1s1 − g1r2
1 + 8Γr1 = 0,

=6(ξ) coeff.:

4br2
1 − 12cr0r2

1 − 16dr3
1s1 − 24dr2

0r2
1 + 2g4r1s1 − g2r2

1 = 0,

=7(ξ) coeff.:
4cr3

1 + 16dr0r3
1 + g3r2

1 = 0,

=8(ξ) coeff.:
4dr4

1 + g4r2
1 = 0.

By solving the previous system of equations using Mathematica program, many cases will
be obtained as follows:
Case (1): If setting g0 = g1 = g3 = 0, then we have

r0 = − g2

c
, r1 =

√−g2g4

c
, s1 = 0, g2 = −4b

5
.

According to this result, one can obtain the corresponding solutions of Equation (1)
as follows:

(1.1) If g2 < 0, g4 > 0, then a singular periodic solution will be obtained under the
constraint c > 0 as follows:

P1.1(z, $) =

√
− g2(sec[

√−g2($− qz)] + 1)
c

ei(kz−Ω$+F($−qz)). (17)

(1.2) If g2 < 0, g4 > 0, and under the condition that is c < 0, then a solution in a rational
form can be obtained as follows:

P1.2(z, $) =

√
− g2($− qz) +

√−g2

c($− qz)
ei(kz−Ω$+F($−qz)). (18)
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Case (2): If we set g1 = g3 = 0, then we have two possible sets of solutions of the parameters
as follows:

(2.1) r0 =
4(b+

√
g0g4)

5c , r1 =
2
√

g4(b+
√

g0g4)√
5c

, s1 =
2
√

g0(b+
√

g0g4)√
5c

, g2 = 6
5
√

g0g4 − 4b
5 .

(2.2) r0 = 4
c
√

g0g4, r1 = 2
c

4
√

g0g3
4, s1 = 2

c
4
√

g3
0g4, g2 = 4b− 18

√
g0g4.

Then, from the above case (2.1), obtaining the corresponding solutions of Equation (1) will
be as follows:

(2.1,1) If g2 < 0, g4 > 0, and g0 =
g2

2
4g4

and under the conditions that c > 0 and 2b + g2 > 0,
then a singular soliton solution can be obtained as follows:

P2.1,1(z, $) =
1

4√53

√√
2b + g2

c

(
2
√

5(2b + g2) + 10
√
−g2 coth

[√
−2g2($− qz)

])
ei(kz−Ω$+F($−qz)). (19)

(2.1,2) If g2 > 0, g4 > 0, and g0 =
g2

2
4g4

, and under the conditions that c > 0 and 2b+ g2 > 0,
then a periodic solution can be obtained as follows:

P2.1,2(z, $) =
1

4√53

√√
2b + g2

c

(
2
√

5(2b + g2) + 10
√
−g2 csc

[√
−2g2($− qz)

])
ei(kz−Ω$+F($−qz)). (20)

(2.1,3) If g2 < 0, g4 > 0, and g0 =
g2

2m2

g4(m2+1)2 , and under the conditions that c > 0 and

2b + g2 > 0, then a Jacobi elliptic solution can be obtained as follows:

P2.1,3(z, $) =
1

4
√

5

√√√√2
c

[√
b +
√

g0g4

(
2
√

b +
√

g0g4√
5

+

√
− g2m2

(m2 + 1)
sn[$− qz|m] +

√−g2√
(m2 + 1)sn[$− qz|m]

)]

× ei(kz−Ω$+F($−qz)), (21)

where 0 ≤ m ≤ 1.

If m = 1, a singular soliton solution can be obtained as follows:

P2.1,4(z, $) =
1

4√53

√√√√√
2b + g2

(
2
√

5(2b + g2) + 10
√−g2 coth[2($− qz)]

)
c

ei(kz−Ω$+F($−qz)). (22)

Then, from case (2.2), one can find the corresponding solutions with different cases of
Equation (1) as follows:

(2.2,1) If g2 < 0, g4 > 0, and g0 =
g2

2
4g4

and under the condition that c > 0, then a singular
soliton solution can be obtained as follows:

P2.2,1(z, $) =

√√√√ 4
√

g2
2

c

(
2
√
−g2 coth

[√
−2g2($− qz)

]
+ 2 4
√

g2
2

)
ei(kz−Ω$+F($−qz)). (23)

(2.2,2) If g2 > 0, g4 > 0, and g0 =
g2

2
4g4

, and under the condition that c > 0, then a periodic
solution can be obtained as follows:

P2.2,2(z, $) =

√
2g2

c

(
csc
[√

2g2($− qz)
]
+ 1
)

ei(kz−Ω$+F($−qz)). (24)
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(2.2,3) If g2 < 0, g4 > 0, and g0 =
g2

2m2

g4(m2+1)2 , and under the condition that c > 0, then we

obtain a Jacobi elliptic solution as follows:

P2.2,3(z, $) =

√√√√√ 2 4
√

g0g4

c

√− g2m2

m2 + 1
sn[$− qz|m] +

1√
−m2+1

g2
sn[$− qz|m]

+ 2 4
√

g0g4


× ei(kz−Ω$+F($−qz)), (25)

where 0 ≤ m ≤ 1.
If we set m = 1, a singular soliton solution can be obtained as follows:

P2.2,4(z, $) =

√
−2g2

c
(csch[2(qz− $)] + 1) ei(kz−Ω$+F($−qz)). (26)

Case (3): If we set g0 = g1 = g4 = 0, then we have two possible sets of solutions of the
parameters as follows:

(3.1) r0 = s1 = 0, r1 = − g3

4c
, g2 = 4b.

(3.2) r0 =
b
2c

, r1 = − g3

4c
, s1 = 0, g2 = −2b.

Then, from case (3.1), one can find the corresponding solutions of Equation (1) as follows:

(3.1,1) If g2 > 0, and under the condition that c > 0, then a bright soliton solution shall be
found as follows:

P3.1,1(z, $) =
1
2

√
g2

c
sech2

[√
g2($− qz)
√

2

]
ei(kz−Ω$+F($−qz)). (27)

(3.1,2) If g2 < 0, and under the condition that c < 0, then a periodic solution can be found
as follows:

P3.1,2(z, $) =
1
2

√
g2

c
sec2

[√−g2($− qz)√
2

]
ei(kz−Ω$+F($−qz)). (28)

(3.1,3) If g2 = 0, and under the condition that c < 0, then a solution in the rational form
can be obtained as follows:

P3.1,3(z, $) =

√
− 1

c($− qz)2 ei(kz−Ω$+F($−qz)). (29)

Then, from case (3.2), the corresponding solutions of Equation (1) can be obtained as follows:

(3.2,1) If g2 > 0, and under the condition that c > 0, then a bright soliton solution can be
obtained as follows:

P3.2,1(z, $) =
1
2

√√√√2b + g2 sech2
[√

g2($−qz)√
2

]
c

ei(kz−Ω$+F($−qz)). (30)

(3.2,2) If g2 < 0, and under the condition that b, c < 0, then a periodic solution can be
obtained as follows:

P3.2,2(z, $) =
1
2

√√√√2b + g2 sec2
[

1
2
√−g2($− qz)

]
c

ei(kz−Ω$+F($−qz)). (31)
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(3.2,3) If g2 = 0, and under the condition that b, c < 0, then a rational solution can be
obtained as follows:

P3.2,3(z, $) =
1
2

√
2(b($− qz)2 − 2)

c($− qz)2 ei(kz−Ω$+F($−qz)). (32)

Case (4): If we set g2 = g4 = 0, g0 6= 0, g1 6= 0, g3 > 0, then we have two possible sets of
solutions of the parameters as follows:

(4.1) r0 =
b
3c

, r1 = − g3

4c
, s1 = 0, g1 = −16b2

9g3
− 3g0g3

4b
.

Under the condition that b, c < 0, then a solution of the type Weierstrass elliptic
doubly periodic can be found as follows:

P4.1(z, $) =

√
b
3c
− g3

4c
℘

[
($− qz)

√
g3

2
, A2, A3

]
ei(kz−Ω$+F($−qz)), (33)

where A2 = − 4g1
g3

and A3 = − 4g0
g3

.

(4.2) r0 =
b
3c

, r1 = − g3

4c
, s1 = − b2

9cg3
, g0 = 0, g1 =

4b2

9g3
.

Under the condition that c < 0, then a solution of the type Weierstrass elliptic doubly
periodic can be found as follows:

P(z, $)4.2 =
1
6

√√√√√√−
(

2b− 3g3 ℘
[
($−qz)

√
g3

2 , A2, A3

])2

cg3 ℘
[
($−qz)

√
g3

2 , A2, A3

] ei(kz−Ω$+F($−qz)), (34)

where A2 = − 4g1
g3

and A3 = − 4g0
g3

.

Case (5): If we set g0 = g1 = g2 = 0, then we have :

r0 =
b
c

, r1 = ±
√

3b g4

2c
, s1 = 0, g3 = ±

2
√

b g4√
3

In this case, rational and exponential solutions to Equation (1) can be obtained as follows:

P5.1(z, $) =

√√√√1
c

(
b +

3g2
3

g2
3($− qz)2 − 4g4

)
ei(kz−Ω$+F($−qz)), (35)

and

P5.2(z, $) =

√√√√√√1
c

b +
3g2

3 e
g3($−qz)
2
√
−g4

8 g4

 ei(kz−Ω$+F($−qz)), (36)

where b, c < 0 and g4 < 0.
Case (6): If we set g3 = g4 = 0, then we have :

r0 =
4b + g2

4c
, r1 = 0, s1 =

3g1(4b + g2)

4c(4b + 5g2)
, g0 =

6g2
1(2b + g2)

(4b + 5g2)2
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(6.1) If g2 > 0, and under the conditions that g1, 4b + 5g2, c < 0, then we obtain an
exponential solution as follows:

P6.1(z, $) =
1
2

√√√√4b + g2

c

(
1− 6g1g2

(4b + 5g2)(g1 − 2g2 e
√

g2($−qz))

)
ei(kz−Ω$+F($−qz)). (37)

(6.2) If g0 = 0, g2 > 0, and under the conditions that c < 0 and 4b + 5g2 < 0, then a
singular soliton solution can be obtained as follows:

P6.2(z, $) =
1
2

√√√√ (4b + g2)

c

(
1− 6g2

(4b + 5g2)
(
sinh

[
2
√

g2($− qz)
]
+ 1
)) ei(kz−Ω$+F($−qz)). (38)

Case (7): If we set g0 = g1 = 0 and g4 > 0, then we have:

r0 =
4b + g2

4c
, r1 =

3g3(4b + g2)

4c(4b + 5g2)
, s1 = 0, g4 =

6g2
3(2b + g2)

(4b + 5g2)2

(7.1) If g2 < 0, and under the conditions that 4b + 5g2, c < 0 and g3, g4 > 0, then a combo
periodic solution can be obtained as follows:

P7.1(z, $) =

√
(4b + g2)

4c

[
3g2g3 sec2[0.5

√−g2($− qz)]
(4b + 5g2)(2

√−g2g4 tan[0.5
√−g2($− qz)] + g3)

+ 1
]

ei(kz−Ω$+F($−qz)). (39)

(7.2) If g2 > 0, and under the conditions that g3, c, 4b + 5g2 < 0 and g4 > 0, then, we
obtain the bright–dark combo soliton solution as follows:

P7.2(z, $) =

√√√√ (4b + g2)

4c

(
1−

3g2g3 sech2[0.5
√

g2($− qz)
]

(4b + 5g2)
(

g3 − 2
√

g2g4 tanh
[
0.5
√

g2($− qz)
])) ei(kz−Ω$+F($−qz)). (40)

(7.3) If g2 > 0, and under the conditions that b, c > 0, then a dark soliton solution can be
obtained as follows:

P7.3(z, $) =
1
2

√√√√√ (4b + g2)

(
3g2(tanh[ 1

2
√

g2($−qz)]+1)
4b+5g2

+ 1
)

c
ei(kz−Ω$+F($−qz)). (41)

4. Graphic Representation of Solutions

In this section, 3D and contour graphs of some obtained solutions are presented to
clarify the shape of some waves produced by the solutions and also to show the physical
behavior of some reported solutions. Figure 1 displays a singular periodic wave solution of
Equation (17) when g2 = −0.5, G = −1.6, A = −1.6, k = 0.8, Ω = 1.6, q = 0.7, V = 1.5
and −20 < z < 20. Figure 2 displays a rational solution of Equation (18) when g2 = −0.5,
G = 0.6, A = 0.6, k = 0.6, Ω = 0.6, q = 0.7, V = 0.5 and −10 < z < 15. Figure 3 displays
a singular soliton solution of Equation (19) when g2 = −0.8, G = −1.7, A = −1.1, k = 0.95,
Ω = 1.6, q = 1.1, V = 1.7 and −20 < z < 20. Figure 4 displays a periodic solution of
Equation (24) when g2 = 1.5, G = −1.2, A = −1.4, k = 1.8, Ω = 0.6, q = 1.7, V = 0.5 and
−15 < z < 15. Figure 5 displays a soliton solution of the bright type of Equation (27) when
g2 = 2, G = −0.6, A = −0.6, k = 1.1, Ω = 1.3, q = 1.7, V = 0.5 and −6 < z < 7.
Figure 6 displays a dark soliton solution of Equation (41) when g2 = 1.7, G = 1.2, A = 1.6,
k = 1.8, Ω = 1.6, q = −1.3, V = 1.5 and −30 < z < 30.
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Figure 1. Three-dimensional (3D) and contour plots of the singular periodic wave solution of
Equation (17).
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Figure 2. Three-dimensional (3D) and contour plots of the rational solution of Equation (18).
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Figure 3. Three-dimensional (3D) and contour plots of the singular soliton solution of Equation (19).
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Figure 4. Three-dimensional (3D) and contour plots of the periodic solution of Equation (24).
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Figure 5. Three-dimensional (3D) and contour plots of the bright soliton solution of Equation (27).
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Figure 6. Three-dimensional (3D) and contour plots of the dark soliton solution of Equation (41).

5. Conclusions

We investigated solitons and other solutions for the KE equation with a quintic nonlin-
earity and Raman effect using the improved modified extended tanh-function technique.
Numerous species of solutions were obtained such as the dark soliton solutions, the bright
soliton solutions, the singular soliton solution, the singular periodic solutions, the exponen-
tial solutions, the rational solutions, the Jacobi elliptic solutions, and the Weierstrass elliptic
doubly periodic solutions. A graphical representation section is added to illustrate some
obtained solutions.
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