
����������
�������

Citation: Ewees, A.A.; Ismail, F.H.;

Ghoniem, R.M.; Gaheen, M.A.

Enhanced Marine Predators

Algorithm for Solving Global

Optimization and Feature Selection

Problems. Mathematics 2022, 10, 4154.

https://doi.org/10.3390/

math10214154

Academic Editor: Ioannis E. Livieris

Received: 26 September 2022

Accepted: 2 November 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Enhanced Marine Predators Algorithm for Solving Global
Optimization and Feature Selection Problems

Ahmed A. Ewees 1,2,*, Fatma H. Ismail 3, Rania M. Ghoniem 4,5 and Marwa A. Gaheen 2

1 Department of Information Systems, College of Computing and Information Technology, University of Bisha,
Bisha 61922, Saudi Arabia

2 Department of Computer, Damietta University, Damietta 34517, Egypt
3 Faculty of Computer Science, Misr International University, Cairo 11341, Egypt
4 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
5 Department of Computer, Mansoura University, Mansoura 35516, Egypt
* Correspondence: ewees@du.edu.eg

Abstract: Feature selection (FS) is applied to reduce data dimensions while retaining much infor-
mation. Many optimization methods have been applied to enhance the efficiency of FS algorithms.
These approaches reduce the processing time and improve the accuracy of the learning models. In
this paper, a developed method called MPAO based on the marine predators algorithm (MPA) and
the “narrowed exploration” strategy of the Aquila optimizer (AO) is proposed to handle FS, global
optimization, and engineering problems. This modification enhances the exploration behavior of the
MPA to update and explore the search space. Therefore, the narrowed exploration of the AO increases
the searchability of the MPA, thereby improving its ability to obtain optimal or near-optimal results,
which effectively helps the original MPA overcome the local optima issues in the problem domain.
The performance of the proposed MPAO method is evaluated on solving FS and global optimization
problems using some evaluation criteria, including the maximum value (Max), minimum value (Min),
and standard deviation (Std) of the fitness function. Furthermore, the results are compared to some
meta-heuristic methods over four engineering problems. Experimental results confirm the efficiency
of the proposed MPAO method in solving FS, global optimization, and engineering problems.

Keywords: marine predators algorithm; Aquila optimizer; feature selection; engineering problems

MSC: 68U35

1. Introduction

The curse of dimensionality is one of the most tackled topics in recent research. Many
redundant unuseful noisy features might contaminate the feature space. Hence, the idea
of feature selection (FS) has been prominent for many years. The literature classified FS
methods into two main categories: filter and wrapper [1]. Filter methods take advantage of
the statistical measures of the features. For example, it might eliminate or keep features
based on their values. The filter method is fast but less sensitive to the used classifier [2].
Wrapper methods select subsets of the feature space and evaluate the classifier performance.
However, they are computationally exhaustive and time consuming if the brute force search
method is accommodated [3]. Here, the role of metaheuristic algorithms appears clearly.
Metaheuristics algorithms can search the feature space for the best subset that achieves the
highest classification accuracy [4].

Metaheuristic algorithms can be classified into four classes: (1) swarm intelligence
algorithms, (2) human-based algorithms, (3) chemistry and physics algorithms, and (4) evo-
lution algorithms. Swarm-based algorithms depend on studying the behavior of flocks and
how they interact to reach food sources. Examples of such algorithms are the grasshopper
optimization algorithm (GOA) [5], Harris hawk optimization [6], snake optimizer (SO) [7],
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and coot bird optimizer [8]. Human-based algorithms depend on simulating physical and
nonphysical human behaviors. Such classes of algorithms include teaching learning-based
optimization (TLBO) [9], social-based algorithm (SBA) [10], and imperialist competitive
algorithm (ICA) [11]. Chemistry and physics algorithms are derived from chemical or
physical laws such as ion motion algorithm [12], lightning search algorithm [13], and vortex
search algorithm [14]. Evolution algorithms maintain the evolution process of biological
creatures such as genetic algorithm (GA) [15], differential evolution (DE) [16], bacterial for-
aging optimization (BFO) [17], and memetic algorithm (MA) [18]. However, no free lunch
theory [19] mentioned that if one optimization algorithm could solve some optimization
problems, it might not be able to solve all problems. That provokes scientists to propose
more algorithms or even enhance the established ones.

In 2020, the marine predator algorithm (MPA) was introduced by the authors of [20].
Various foraging strategies of predators in biological interaction inspired the authors to
develop MPA. The mathematical model of MPA mimics the behavior of marine predators’
foraging strategy in nature. MPA accommodates Lévy and Brownian statistical distri-
butions. Lévy strategy searches the space with small steps associated with long jumps.
Meanwhile, the Brownian strategy sweeps the search space in controlled and uniform steps.
The virtue of the Lévy strategy is its deep and accurate search, while the Brownian strategy
ensures visiting distant areas. This cooperation improved the searchability of MPA signifi-
cantly. The statistical results showed that MPA outperformed the genetic algorithm (GA),
cuckoo search (CS), gravitational search algorithm (GSA), particle swarm optimization
(PSO), salp swarm algorithm (SSA), and covariance matrix adaptation evolution strategy
(CMA-ES). The MPA also has indicated high execution in solving engineering issues. It
shows a high convergence rate toward the global optimal and does not require training
its parameters. However, applying the metaheuristic algorithm in solving various opti-
mization problems is encouraged according to the “no free lunch“ theory. Moreover, a
new metaheuristic algorithm named Aquila optimizer (AO) was introduced in [21]. It is
inspired by the hunting behavior of one of the most intelligent birds, Aquila, a dark brown
bird belonging to the Accipitridae group. The AO was successfully applied to optimize the
parameters of PID controllers [22] and multilevel inverters [23].

From the previous revision, we can summarize the novelty and contributions of the
study in the following points:

• Improve the exploration phase of the MPA algorithm.
• Apply the “narrowed exploration” strategy of the AO in the MPA algorithm.
• Evaluate the proposed method using different optimization problems.

The rest of this paper is arranged as follows: Section 2 lists the related works. Section 2
describes the materials and methods. Section 4 presents the proposed method. Section 5
contains the experiments results and discussion, whereas the last section concludes the
study.

2. Related Work

Although MPA has recently appeared as a metaheuristic algorithm, it suffers from
early convergence. This drawback affects its accuracy in classification tasks. The authors
in [24] improved this drawback by hybridizing MPA and simulated annealing (SM). SM
has widened the MPA search space and improved its efficiency in FS tasks from high-
dimensional datasets. Many metaheuristic algorithms successfully balance exploration and
exploitation phases by embedding chaos theory. Chaos theory is an alternative method to
generate random numbers in the algorithm. The authors in [25] introduced a chaotic MPA
for feature selection. The practical results showed that the improved MPA had achieved
the optimal number of features in many experiments. One of MPA’s drawbacks is its
unidirectional search for prey. This drawback provoked the authors in [26] to embed
opposition learning-based concepts [27] to allow the examination in all possible search
directions. This improvement saves the MPA from stagnation in the local optima. The
proposed method achieved the best convergence rate and selected the optimal feature set
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compared with other competitive algorithms. Again, the shortage of MPA search ability
is addressed in [28]. The authors hybridize MPA with a sine cosine algorithm (SCA).
Extensive experiments have been conducted to evaluate the performance of the proposed
hybrid approach, and it showed its superiority in all accuracy measures.

The authors in [29] noticed that the prey movement of MPA depends on two simple
strategies: levy flight and Brownian motion. The problem search space is too complex to
be searched by those simple strategies. This note trapped the native MPA in local optima.
They proposed a co-evolutionary cultural mechanism that divides the populations into
subpopulations. Each subpopulation respects its search space and shares accumulated
experiences with others. In addition, two operators are added to enhance the diversity of
the populations and allow better experience exchange to support the exploitation of the
native MPA. The proposed approach was tested in the FS task and proved its superiority
over competitive algorithms. Moreover, it is used to optimize the parameters of the
SVM algorithm.

The two most significant drawbacks of the MPA are the lack of population diversity
and the bad convergence performance. In this regard, Gang et al. [30] tackled the weakness
of MPA regarding population diversity. However new and successful in many applications,
MPA solutions still need to be more accurate. They proposed an enhanced MPA by
adding the neighborhood-based learning strategy and adaptive technique to control the
population size. Their proposed approach was tested on state-of-the-art datasets for solving
optimization problems and real-life applications. Compared with the original MPA, the
enhanced version showed superior performance. Gang et al., again in 2021 [31], introduced
a solution to the shape optimization problem of developable ball surfaces with hybrid MPA.
The differential evolution algorithm combined MPA and a quasi-opposition strategy to
help the original MPA jump out of local optima and enrich the population diversity. Their
proposed approach effectively solved the shape optimization problem regarding robustness
and precision.

As a new metaheuristic algorithm, MPA was applied in solving engineering problems
in [32]. However, its convergence was treated by the following steps: (1) The logistic
chaos function was used to ensure the quality of population diversity. (2) An adjustment
transition strategy was added to maintain both exploration and exploitation. Moreover,
the problem of falling into local optima was solved by updating the step information of
predators by modifying the sigmoid function. Finally, after adding the golden sine factor,
the proposed MPA achieved a better convergence rate, and its proposed solutions were
diverse enough to solve engineering problems effectively.

MPA has been introduced to solve engineering and renewable energy problems such
as predicting wind power in [33]. Mohamed et al. optimized the parameters of ANFIS
(adaptive neuro-fuzzy inference system) using augmented MPA. In their augmented MPA,
they added a mutation operator to the original MPA to overcome its sticking in local optima.
The experiments revealed the competency of their modified MPA approach over many
time-series forecasting algorithms.

Multilevel thresholding is an essential preprocessing step in image segmentation.
Selecting the optimal threshold affects the accuracy of the segmented image. An improved
MPA has been proposed in [34]; it proposed a strategy to steer the worst solutions toward
the best ones and, at the same time, randomly in the search space to improve the conver-
gence rate and prevent sticking in local optima. Another strategy is added to improve the
exploration and exploitation capabilities. The experimental results showed the competency
of the proposed MPA over other metaheuristic algorithms.

From the previous works, we can conclude that MPA has many drawbacks tackled
in the previously mentioned proposed approaches, such as the problem of premature
convergence, unidirectional search for prey, and sticking in local optima. The motivation of
our research is to improve the weakness of the original MPA with the strength of another
metaheuristic algorithm, Aquila optimizer (AO). Aquila optimizer was introduced in
2021 to solve continuous optimization problems. However, a binary version of AO is used
for the wrapper approach FS from a medical dataset on COVID-19 [35]. Different shapes of
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transfer functions are applied to convert AO from its continuous nature into binary nature.
The proposed approach proved its competencies in many directions, such as increasing
accuracy, balancing exploration and exploitation, reducing the number of selected features,
and fast convergence speed. Deep learning techniques inspired many researchers to use
them as feature extraction methods and then apply AO for feature selection. In [36], the
MobileNetV3 deep learning method extracted the features of some medical images. A
binary thresholding version of AO selected the most non-trivial features to detect COVID-
19 from X-ray images. The proposed method showed high performance and was suggested
to cover many other areas of applications. However, the thresholding binary version of the
AO optimizer is applied in intrusion detection in an IoT environment [37]. A deep learning
technique based on CNN is used first for feature extraction, and then, the binary AO selects
the most important features. This research confirmed that binary AO is competitive in
many areas other than medical applications. The strength of the AO algorithm can treat the
weakness of some metaheuristic algorithms. The hybrid combination of the Harris hawk
algorithm with AO enhanced the searchability of the former. The proposed hybrid approach
in [38] proved its competence in solving optimization problems. A hybrid algorithm that
combined the exploration of AO and the exploitation of Harris hawk emerged in [39]. The
robust search capability of AO is integrated with random opposition-based learning to
enhance the Harris hawk optimization algorithm. An intensive study on its performance is
introduced to test its exploration, exploitation, and sticking in local optima. The results
show its superiority and its competence in solving industrial engineering problems.

3. Material and Methods

This section briefly describes the marine predators algorithm and Aquila optimizer.

3.1. Marine Predators Algorithm (MPA)

The MPA was presented in [20]. The biological ocean predators’ motions inspired it.
The main steps of MPA are as follows:

• MPA initialization: As with all population-based algorithms, MPA has an initialization
step where all populations are distributed uniformly in the search space as shown in
Equation (1).

X0 = u + rand (l − u) (1)

where u and l are the lower and upper bounds, respectively. rand is a random vector

in [0, 1]. The fittest solution
−→
X I is selected to form a matrix called Elite shown in

Equation (2). Elite matrix has a dimension [n, d], where n is the search agents and n is
the number of the problem dimension.

Elite =



X I
1,1 X I

1,2 · · · X I
1,d

X I
2,1 X I

2,2 · · · X I
2,d

...
...

...
...

...
...

...
...

...
...

...
...

X I
n,1 X I

n,2 · · · X I
n,d


n×d

(2)
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Another matrix called Prey is constructed with the exact dimensions of Elite shown in
Equation (3).

Prey =



X1,1 X1,2 · · · X1,d
X2,1 X2,2 · · · X2,d
X3,1 X3,2 · · · X3,d

...
...

...
...

...
...

...
...

Xn,1 Xn,2 · · · Xn,d


n×d

(3)

The process of MPA is split into three levels based on the difference in velocity ratio
between a predator and prey.

• Predator moving faster than prey (exploration phase): When the prey is faster than
the predator, the predator’s best strategy is to remain stationary. Exploration is more
important in the first third of iterations. The prey position is updated by a stesize
calculated as shown in Equation (4).

−−−−−→
stepsize i = ~RB ⊗

(−−−→
Elite i − ~RB

−−−−→⊗Pre yi

)
, i = 1, . . . , n (4)

where RB is a random numbers vector. The new prey position is updated as shown in
Equation (5).

−−−→
Prey i =

−−→
Preyi + 0.5 · ~N ⊗−−−−−→stepsize i (5)

where ~N is a random vector in [0, 1].
• Predator and prey are moving at the same rate (exploitation vs. exploration):

When the predator and the prey move at the same speed, they are both on the prowl
for prey. This section occurs during the intermediate stage of the optimization process
when exploration attempts to be transiently converted to exploitation. It is critical
for both exploration and exploitation. As a result, half of the population is used for
exploration and the other half is used for exploitation. During this phase, the predator
is in charge of exploration, while the prey is in charge of exploitation. The new
positions for the first half of the populations (supporting exploitation) are updated as
shown in Equation (6).

−−−−−→
stepsize i = ~RL ⊗

(−−−→
Elite i − ~RL ⊗

−−−→
Prey i

)
i = 1, . . . , n/2

−−−→
Prey i =

−−→
Preyi + 0.5 · ~N ⊗−−−−−→stepsize i

(6)

where ~RL is a vector of random numbers based on Levy distribution. The new
positions for the second half of the populations (supporting exploration) are updated
as shown in Equation (7)

−−−−−→
stepsize i = ~RB ⊗

(
~RB ⊗

−−−→
Elite i −

−−−→
Prey i

)
i = n/2, . . . , n

−−−→
Prey i =

−−−→
Elite i + 0.5.A⊗−−−−−→stepsize i

(7)

where A is a control parameter calculated as shown in Equation (8).

A =

(
1− Iter

MaxIter

)(2 Iter
MaxIter )

(8)

• Prey moving faster than predator (exploitation):
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This scenario occurs during the final stage of the optimization process and is typically
associated with a high capacity for exploitation. The prey positions are updated as
shown in Equation (9).

−−−−−→
stepsize i = ~RL ⊗

(
~RL ⊗

−−−→
Elite i −

−−−→
Prey i

)
, i = 1, . . . , n

−−−→
Prey i =

−−−→
Elite i + 0.5.A ⊗−−−−−→stepsize i

(9)

To maintain the search, the Fish Aggregating Devices (FADs) is proposed. The math-
ematical model of FADs is defined in Equation (10). Algorithm 1 shows the pseudo
code of the MPA.

preyl l =


prey i + CF

[
Xmin + ~R⊗ (X̄max − X̄min)

]
⊗ ~U

if r ≤ FADs
−−−→prey l + [FADs(1− r) + r]

(
prey 1− prey r2

)
if r > FADs

(10)

Algorithm 1 MPA pseudo code

1: initialize populations. t=1.
2: while (t <= Tmax) do
3: Calculate the fitness and form the Elite matrix.
4: if t < Tmax/3 then
5: Update the prey position based on Equation (5) .
6: else if Tmax/3 < t < 2 ∗ Tmax/3 then
7: For the first half of the populations, update prey position based on Equation (6).
8: For the other half, use Equation (7) to update the position.
9: else if t > 2 ∗ Tmax/3 then

10: Update prey position using Equation (9).
11: end if
12: Apply memory saving and Elite update
13: Apply FAD effect using Equation (10)
14: Apply memory saving and Elite update
15: t = t + 1
16: end while
17: return the best position.

3.2. Aquila Optimizer (AO)

AO [21] was introduced in 2021 as an optimization algorithm. The algorithm mimics
Aquila hunting behavior and has four main stages: initialization, exploration, exploitation,
and finally, reaching the optimal solution. The initialization stage starts by initializing
population X with N agents as shown in Equation (11).

Xij = r1 × (UBj − LBj) + LBj, i = 1, 2, ....., N j = 1, 2, ..., Dim (11)

where UBj and LBj are the upper and lower bounds of the search space, the number of
problem dimensions is Dim, and r1 ∈ [0, 1] is the random value.

The next phase of the AO approach is to either explore or exploit until the best solution
is identified. According to [21], there are two methods for both exploration and exploitation.
The first technique uses the best agent (Xb) and the average of all agents (XM) to carry out
the exploration. The mathematical formulation of this method is as follows:

Xi(t + 1) = Xb(t)×
(

1− t
T

)
+ (XM(t)− Xb(t) ∗ rand), (12)
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XM(t) =
1
N

N

∑
i=1

X(t), ∀j = 1, 2, ..., Dim (13)

T declares the max iteration’s number.
The second method, expressed as follows, uses Xb and the Levy flight Levy(D) distri-

bution to improve the solutions’ ability for exploration.

Xi(t + 1) = Levy(D)× Xb(t) + XR(t) + (y− x) ∗ rand, (14)

Levy(D) = s× u× σ

|υ|
1
β

, σ =

 sine(πβ
2 )× Γ(1 + β)

β× 2(
β−1

2 ) × Γ( 1+β
2 )

 (15)

where u and υ are random numbers; while s = 0.01 and beta = 1.5 are constants. XR is a
randomly chosen agent in Equation (14). In addition, y and x are used to mimic the spiral
shape, and they are written as:

y = r× cos(θ), x = sin(θ)× r (16)

r = r1 + U × D1, θ = −ω× D1 + θ1, θ1 =
3× π

2
(17)

where ω = 0.0050 and U = 0.005650 are random values, and r1 ∈ [0, 20] is a random
number.

The first technique is used in [21] in the exploitation phase based on Xb and XM and
it is computed as:

Xi(t + 1) = (Xb(t)− XM(t))× α− rand + ((UB− LB)× rand + LB)× δ, (18)

The parameters for exploitation adjustment are given by α and δ. A random value is
the value rand [0, 1].

The solution is updated using Levy, Xb, and the quality function QF in the second
exploitation phase. That is defined as follows:

Xi(t + 1) = QF× Xb(t)− (G1 × X(t)× rand)− G2 × Levy(D) + rand× G1, (19)

QF(t) = t
2×rand()−1

(1−T)2 (20)

In addition, G1 refers to several motions used to track the optimal solution as in
Equation (21).

G1 = 2× rand()− 1, G2 = 2× (1− t
T
) (21)

A random value is denoted by the symbol rand. G2, on the other hand, denotes
decreasing values from 2 to 0, and it is calculated as:

G2 = 2× (1− t
T
) (22)

4. Proposed Method

This section describes the proposed MPAO method. This method aims to improve the
optimization technique of the original MPA using the strategy of the narrowed exploration
of the AO. This modification enhances the exploration behavior of the MPA to update the
search space and explore more regions in the search domain. Therefore, the narrowed
exploration of the AO increases the searchability of the MPA, thereby improving its ability
to obtain optimal or near-optimal results. This phase effectively helps the original MPA
overcome the local optima issues in the problem domain. The narrowed exploration of the
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AO is applied based on a random variable rx, where rx ∈ [0, 1]. If rx is greater than 0.25, the
narrowed exploration (Equation (14)) is applied, else the operators of MPA (Equation (7))
are used.

The optimization process of MPAO starts by determining the values of all parameters
and creates the initial population for the search space. Then, the fitness function ( f (x))
checks the solutions’ quality using Equation (23); if the current solution is better than the
old one, the MPAO saves it as the best solution.

f (x) = γCx + (1− γ)(
s
S
) (23)

where γCx denotes the error of the classification phase (in this study, the K-NN is used as a
classifier). The second part of the equation defines the selected feature’s ratio (s). S denotes
the number of full features. γ is a random value in [0, 1].

After that, the optimization begins by discovering the search space and evaluating the
solutions using the fitness function to determine the initial optimal values.

In the second–third part of the optimization process, the MPAO decides to update the
solutions using the MPA or AO based on a random value. This step helps with improving
the exploration phase and adds more diversity to the search space. Finally, all obtained
values by the fitness function are checked; then, the best one is selected and saved. The
above steps can be summarized as follows:

• Declare the experiment variables and their values.
• Generate the X population randomly with a specific size and dimension.
• Start the main loop of the MPAO.
• Apply the fitness function for all solutions.
• Return the best value.

The above steps are iterated until reaching the stop condition. The structure of the
MPAO is presented in Figure 1.
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Figure 1. Proposed MPAO architecture.

5. Experiments and Discussion

This section evaluates the proposed MPAO using three experiments: solving global op-
timization problems, selecting the essential features, and solving real engineering problems.
The proposed method is compared with nine optimization methods: PSO [40], GA [41],
AO [21], MFO [42], MPA [20], SSA [43], GOA [5], slime mold algorithm (SMA) [44], and



Mathematics 2022, 10, 4154 10 of 21

whale optimization algorithm (WOA) [45]. Table 1 lists the parameter settings for all
of them.

In the experiments, there are some performance measures used to evaluate the pro-
posed method, namely: the average, minimum (Min), standard deviation (Std), and maxi-
mum (Max) values of the fitness function as in Equations (24)–(26), respectively. In addition,
the classification accuracy is as in Equation (27).

Max = max
1≤i≤N

f i
b (24)

Min = min
1≤i≤N

f i
b (25)

Std =

√√√√ 1
N

N

∑
i=1
| fi − µ|2 (26)

where f and µ denote the value and mean of the objective function, respectively. N denotes
the size of the sample.

Acc =
TP + TN

TP + FN + FP + TN
(27)

where TN and TP denote true negative and positive results, respectively. FN and FP
denote false negative and positive results.

Table 1. Parameter settings.

Algorithm Parameters Values

GA γ = 0.2, pm = 0.3, pc = 0.8, β = 8, mu = 0.02
PSO w = 1, C1 and C2 = 1, wDamp = 0.990
WOA b = 1.0, a = [0, 2], l = [−1, 1]
SSA C3 ∈ [0, 1], C2 ∈ [0, 1]
MPA P = 0.50, β = 1.50, FADs = 0.20
AO δ = 0.1, α = 0.1
SMA z = 0.030
GOA cmax = 1.00 , cmin = 0.000040
MFO a = ∈ [−2− 1], b = 1
MPAO P = 0.50, FADs = 0.20, β = 1.50, α = 0.1, δ = 0.1

5.1. Experiment 1: Global Optimization

This experiment discusses the experimental results using the CEC2019 benchmark [46]
by comparing the MPAO to some state-of-the-art advanced competitors, including PSO,
GA, AO, MFO, SMA, MPA, SSA, GOA, and WOA. Tables 2–5 report the results of average
fitness, Std, Max, and Min over ten test functions of the CEC 2019 benchmark. In all tables,
the boldface refers to the best value.

Concerning the average of function fitness which is computed for all the counterparts,
it is clear from Table 2 that the proposed MPAO is superior in six out of 10 functions
(F2–F5 and F7–F8), followed by the MPA, which is better in three functions (F3, F6, and
F10). On the other hand, the PSO, GA, MFO, and WOA show the best values in only one
out of 10 functions. The SSA and GOA failed to realize the best files over all the functions.
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Table 2. Average of the fitness function.

Fitness MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

F1 9.8× 107 5.4× 1012 6.4× 1010 7.2× 104 3.9× 1010 1.3× 108 2.0× 108 3.2× 1010 1.0× 1012 2.4× 1011

F2 17.3429 17572.6 24.0539 17.4253 17.3762 17.3493 17.3438 17.7506 4835.64 17.5476
F3 12.7024 12.7024 12.7024 12.7025 12.7024 12.7029 12.7024 12.7029 12.7043 12.7024
F4 37.328 2655.65 103.248 3888.51 111.354 43.323 66.652 86.691 6347.84 2244.70
F5 1.1493 2.4856 1.1707 2.3692 1.3942 1.5244 1.2688 1.1931 3.1950 2.3165
F6 5.3995 11.3959 6.9637 11.6460 6.9047 10.0283 5.1793 7.9303 10.5355 10.3370
F7 128.129 369.736 230.85 678.72 455.91 413.32 171.96 414.07 890.94 812.84
F8 4.6566 6.0968 5.4827 6.2123 5.3837 5.7392 4.7533 5.7522 6.9650 6.1076
F9 3.3087 60.8198 3.3120 262.603 3.7325 3.1231 3.3268 3.8415 906.81 177.21
F10 20.012 20.530 20.174 20.626 20.143 20.499 18.800 20.096 20.522 20.499

The Std values show the stability in the results obtained by the competitors over the
testing functions, which are reported in Table 3. The proposed MPAO shows lower Std
values in five out of ten functions (F2, F3, F5, F7, and F10), which reflects the stability of the
algorithm in most testing functions. The MFO comes in the second rank, stable over only
two functions (F4 and F9), whereas the other competitors did not show stability over all
the algorithms.

Table 3. Average of the standard deviation of the fitness function.

Fitness MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

F1 2.5× 107 5.5× 1012 5.9× 1010 1.8 × 108 5.0× 1010 5.0× 108 2.1× 108 4.1× 1010 1.1× 1012 2.2× 1011

F2 0.0000 4545.32 20.7697 0.0456 0.0253 0.0029 0.0036 1.2910 1814.2625 0.1412
F3 4.3 × 1012 4.2× 107 5.3× 107 4.9× 105 3.8× 105 7.0× 104 3.4× 109 1.0× 103 1.1× 103 1.5× 105

F4 13.812 1755.848 66.809 1123.78 56.374 14.788 13.079 38.264 3601.57 1079.32
F5 0.0681 0.6314 0.0927 0.3748 0.2057 0.1892 0.0825 0.0872 0.4821 0.4346
F6 0.7966 0.9099 1.1223 0.7444 1.2010 1.3071 1.1628 1.3740 1.0611 1.0808
F7 121.125 304.895 186.871 209.602 295.891 247.995 131.941 266.407 219.64 145.75
F8 0.5416 1.0492 0.6554 0.4344 0.9944 0.4929 0.4285 0.5523 0.2950 0.7153
F9 0.7371 65.122 0.5731 173.339 0.6670 0.4946 0.3884 0.9028 540.447 123.834
F10 0.0138 0.1439 0.0570 0.1041 0.1351 0.1073 3.4481 0.1349 0.1660 0.1516

Table 4 reports the Max values computed from each counterpart’s fitness value of the
testing functions. The MPAO reports the Max value in the majority of functions (F2–F8),
followed by the MPA that shows the maximal over two functions only (F9–F10). The rest of
the competing algorithms cannot provide any maximum value in all the testing functions.

Table 4. Minimum values of the fitness function.

Fitness MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

F1 5.9× 107 3.5× 1011 4.2× 109 5.2× 104 2.4× 109 5.1 × 104 2.3× 107 5.9× 109 3.1× 1011 2.3× 1010

F2 17.343 10314.099 17.343 17.360 17.345 17.345 17.343 17.344 2150.473 17.354
F3 12.702 12.702 12.703 12.703 12.703 12.703 12.703 12.703 12.703 12.703
F4 16.221 501.030 17.183 1846.99 57.768 24.489 44.514 26.620 1674.01 803.47
F5 1.0523 1.6612 1.0569 1.7537 1.1214 1.2652 1.1761 1.0640 2.4857 1.6620
F6 3.6330 9.6109 3.8354 9.9305 4.4174 7.0427 3.3423 5.8103 8.8478 8.6721
F7 −78.041 −121.72 −57.655 306.11 −59.043 158.51 −50.040 −76.690 460.78 634.57
F8 3.7175 3.3291 4.3536 5.6299 2.5838 5.0209 4.1234 4.6728 6.5461 4.2988
F9 2.5474 3.3357 2.5675 62.940 2.7396 2.5927 2.8640 2.9346 284.771 5.946
F10 19.996 20.159 20.048 20.402 20.002 20.310 6.7125 19.978 20.163 20.260

Table 5 presents the Min values of fitness computed for the counterparts over the
testing functions. The MPAO shows lower values in five functions (F2–F5 and F9), followed
by PSO and MPA, each of which shows lower values in only two functions. Each MFO and
SMA obtains the lower values in only one function, namely F8 and F1 means no substantial
changes over the experiments. Table 5 demonstrates the Std values, where the MPAO
realizes the lower value over seven out of 15 datasets. The PSO is only in three, the MFO in
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two, and the GA and MPA in one. In contrast, the other counterparts did not realize the
best results over any datasets.

Table 5. Maximum values of the fitness function.

Fitness MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

F1 1.4× 108 1.9× 1013 1.9× 1011 1.2 × 105 2.1× 1011 2.1× 109 7.3× 108 1.7× 1011 5.3× 1012 9.3× 1011

F2 17.343 25684.6 101.158 17.530 17.451 17.355 17.357 22.572 8464.21 17.776
F3 12.702 12.702 12.702 12.703 12.703 12.705 12.702 12.706 12.706 12.702
F4 58.729 7440.74 308.29 5653.4 264.87 74.431 91.710 168.851 16776.6 4751.8
F5 1.2820 4.4236 1.3790 3.1667 2.0734 1.9849 1.4228 1.3566 4.0174 3.2375
F6 6.5206 13.6429 8.5646 12.6687 8.4957 11.8549 7.6363 10.4369 12.5073 12.3857
F7 307.33 866.88 596.19 1062.45 1098.39 908.58 456.60 893.19 1371.84 1067.62
F8 5.5873 7.1162 6.8344 6.9835 6.5186 6.7966 5.6520 6.5570 7.5365 7.4462
F9 5.1445 197.777 4.5874 618.10 5.3925 4.3462 4.2065 6.3094 2167.1 462.86
F10 20.046 20.703 20.257 20.835 20.489 20.696 20.039 20.403 20.746 20.784

5.2. Experiment 2: Feature Selection

This experiment evaluates a set of UCI datasets by the proposed method. These
benchmark datasets are collected from distinct fields such as biology, electromagnetic,
games, physics, politics, and chemistry. Furthermore, each benchmark shows a different
number of instances, features, and categories. The description of each benchmark is
provided in Table 6.

Table 6. Description of the UCI datasets.

Instances Features Classes

ionosphere 351 34 2
breastcancer 699 9 2
glass 214 9 7
sonar 208 60 2
lymphography 148 18 2
waveform 5000 40 3
clean1data 476 166 2
SPECT 267 22 2
ecoli 336 7 8
CongressEW 435 16 2
Exactly2 1000 13 2
M-of-n 1000 13 2
Vote 300 16 2
krvskp 3196 36 2
heart 270 13 2

Concerning this subsection, we demonstrate and discuss the experimental results
of the comparisons conducted to solve the feature selection issue. These comparisons
involved the proposed MPAO, PSO [40], GA [41], AO [21], MFO [42], SMA [44], MPA [20],
SSA [43], GOA [5], and WOA [45] with the previously described evaluation metrics. Table 7
demonstrates the experimental results of the average of the fitness function, which were
calculated for all compared counterparts over the 15 datasets. From the table, it is clear that
the proposed MPAO was superior in 13 out of 15 datasets, whereas the PSO demonstrated
the best values in three cases, which is followed by the MPA and SSA, each of which was
better in one dataset. These results indicated that the MPAO was accurate and superior in
the average measure of the fitness value. In all tables, the boldface refers to the best value.
Keeping on with the fitness values, we can analyze the fitness functions’ maximum (Max)
and minimum (Min) values. This investigation allows us to determine when the algorithms
realize the worst and best value.
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Table 7. Results of the average of the fitness value.

MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

ionosphere 0.1233 0.1452 0.1918 0.2465 0.2657 0.4117 0.1237 0.1664 0.2025 0.1569
breastcancer 0.1088 0.1309 0.1587 0.2234 0.2536 0.4182 0.1164 0.1620 0.2037 0.1800
glass 0.1517 0.1662 0.1664 0.1926 0.2085 0.2801 0.1666 0.9691 1.0155 0.9730
sonar 0.0433 0.0790 0.1203 0.2823 0.2829 0.4832 0.0568 0.2379 0.2759 0.2759
lymphography 0.2656 0.3040 0.3371 0.4227 0.4687 0.6394 0.3051 0.3495 0.3888 0.3888
waveform 0.6363 0.6269 0.6426 0.6660 0.6685 0.9424 0.6345 0.6590 0.6786 0.6701
clean1data 0.1585 0.1916 0.2070 0.2804 0.2505 0.4712 0.1723 0.2296 0.2630 0.2616
SPECT 0.3095 0.3361 0.3500 0.3978 0.4210 0.5200 0.3372 0.3152 0.3377 0.3587
ecoli 0.2452 0.2488 0.2483 0.2499 0.3393 0.4143 0.2476 1.6245 1.5579 1.6245
CongressEW 0.0913 0.1185 0.1417 0.2052 0.2785 0.3823 0.1108 0.2064 0.1981 0.1820
Exactly2 0.4766 0.4849 0.4896 0.4986 0.5410 0.5818 0.4796 0.4865 0.4965 0.4953
M-of-n 0.0000 0.0000 0.0129 0.2142 0.4827 0.5707 0.0000 0.0000 0.1193 0.0298
Vote 0.1395 0.1642 0.1745 0.2511 0.2961 0.3957 0.1511 0.1802 0.1858 0.1755
krvskp 0.1274 0.1134 0.1476 0.3156 0.1708 0.5600 0.1236 0.1578 0.2224 0.1879
heart 0.3317 0.3538 0.3644 0.4737 0.4441 0.5671 0.3496 0.3665 0.4426 0.3850

Table 8 demonstrates the Min values of fitness obtained by the counterparts over all
the datasets. The MPAO, PSO, and MPA showed lower values in most datasets, 13, 11, and
8 of the 15 datasets, respectively, as these algorithms could reach the optimal values.

Table 8. Results of the minimum value of the fitness value.

MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

ionosphere 0.0000 0.0000 0.1066 0.1066 0.2132 0.2132 0.0000 0.1508 0.1846 0.1066
breastcancer 0.0000 0.0000 0.0000 0.0000 0.1508 0.1508 0.0000 0.1508 0.1846 0.1508
glass 0.0911 0.0911 0.0911 0.0911 0.1229 0.1602 0.1166 0.7891 1.0000 0.8009
sonar 0.0000 0.0000 0.0000 0.1961 0.1387 0.1961 0.0000 0.1961 0.2402 0.2402
Lymphography 0.1644 0.1644 0.1644 0.2325 0.3288 0.3288 0.2325 0.2847 0.3288 0.3288
waveform 0.5940 0.5973 0.6073 0.6177 0.6151 0.6876 0.5980 0.6456 0.6603 0.6621
clean1data 0.1296 0.1296 0.0917 0.2050 0.1833 0.2750 0.0917 0.2050 0.2425 0.2050
SPECT 0.2443 0.2443 0.2443 0.2732 0.2993 0.3455 0.2732 0.2993 0.3232 0.3232
ecoli 0.2014 0.2014 0.2014 0.2014 0.2038 0.2518 0.2014 1.5000 1.3002 1.5000
CongressEW 0.0000 0.0000 0.0000 0.0958 0.1916 0.1355 0.0000 0.0958 0.1659 0.1659
Exactly2 0.4336 0.4427 0.4382 0.4382 0.4775 0.4733 0.4382 0.4517 0.4817 0.4940
M-of-n 0.0000 0.0000 0.0000 0.0000 0.2966 0.0000 0.0000 0.0000 0.0000 0.0000
Vote 0.0000 0.1155 0.1155 0.1155 0.2000 0.2000 0.0000 0.1633 0.1633 0.1633
krvskp 0.1001 0.0791 0.1001 0.1119 0.1001 0.2347 0.0867 0.1415 0.2093 0.1697
heart 0.2443 0.2443 0.2732 0.3232 0.3232 0.4232 0.2732 0.3665 0.3863 0.3455

On the other side, Table 9 demonstrates the Max values of the fitness function,
which were obtained during the conducted experiments using the counterparts across
the 15 datasets of the UCI. The MPAO obtained the Max values over most cases (10 out of
15 datasets), followed by the SSA (only in six cases), MPA (in five cases) and WOA (in four
cases). The other algorithms, including GA, AO, MFO, and SMA, could not provide any
maximal values over all the experiments.

The results’ stability was calculated for each algorithm and analyzed based on the
standard deviation (Std) measure. The Std was computed for the independent experiments
over each benchmark by setting the fitness as the input value. In this regard, the lower
Std refers to better stability for the results, which means no substantial changes over the
experiments. Table 10 demonstrates the Std values, where the MPAO realized the lower
value over seven out of 15 datasets. The PSO showed the best values in three datasets, the
MFO in two, and the GA and MPA in only one. The other counterparts did not realize the
best results over any datasets.
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Table 9. Results of the maximum value of the fitness value.

MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

ionosphere 0.2132 0.2384 0.2611 0.3693 0.3371 0.8394 0.2132 0.2132 0.2384 0.2132
breastcancer 0.1846 0.2384 0.2384 0.3844 0.3371 0.6124 0.1846 0.1846 0.2132 0.2384
glass 0.2146 0.2442 0.2442 0.2649 0.2788 0.4274 0.2881 1.0903 1.0370 1.0903
sonar 0.1387 0.1961 0.2774 0.4160 0.3922 0.7071 0.1961 0.2774 0.3101 0.3101
lymphography 0.4350 0.4932 0.5452 0.6975 0.6576 0.8383 0.4350 0.4350 0.4350 0.4350
waveform 0.6711 0.6591 0.6741 0.7642 0.7244 1.1398 0.6627 0.6765 0.6997 0.6794
clean1data 0.2050 0.2593 0.2899 0.3780 0.3430 0.5941 0.2750 0.2593 0.3040 0.2899
SPECT 0.3455 0.5037 0.5183 0.5183 0.6229 0.8725 0.4887 0.3232 0.3665 0.3863
ecoli 0.3094 0.3225 0.3225 0.3225 0.5876 0.7949 0.3225 1.6868 1.6868 1.6868
CongressEW 0.1916 0.2142 0.2142 0.3453 0.4175 0.7663 0.1916 0.3318 0.2142 0.2142
Exactly2 0.5177 0.5177 0.5477 0.6000 0.6033 0.7183 0.5215 0.5138 0.5138 0.4980
M-of-n 0.0000 0.0000 0.2449 0.5899 0.6132 0.8319 0.0000 0.0000 0.3578 0.0894
Vote 0.2309 0.2309 0.2582 0.4000 0.5538 0.6110 0.2309 0.2309 0.2309 0.2000
krvskp 0.1621 0.1415 0.2152 0.5318 0.3744 0.7242 0.1459 0.1659 0.2399 0.2001
heart 0.3665 0.4232 0.4405 0.5859 0.5730 0.7727 0.4232 0.3665 0.5183 0.4232

Table 10. Results of the standard deviation of the fitness value.

MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

ionosphere 0.0623 0.0635 0.0455 0.0765 0.0436 0.1248 0.0578 0.0523 0.0661 0.0481
breastcancer 0.0602 0.0786 0.0688 0.0862 0.0414 0.1206 0.0647 0.0470 0.0562 0.0497
glass 0.0264 0.0391 0.0366 0.0446 0.0373 0.0792 0.0389 0.0326 0.0462 0.0253
sonar 0.0643 0.0768 0.0883 0.0649 0.0777 0.1514 0.0775 0.0839 0.0678 0.0858
lymphography 0.0910 0.0927 0.0931 0.1426 0.0901 0.1311 0.0747 0.0758 0.1163 0.0535
waveform 0.0195 0.0181 0.0195 0.0385 0.0296 0.1368 0.0191 0.0189 0.0555 0.0190
clean1data 0.0239 0.0331 0.0478 0.0446 0.0500 0.0755 0.0474 0.0455 0.0544 0.0417
SPECT 0.0346 0.0638 0.0688 0.0677 0.0738 0.1178 0.0509 0.0519 0.0651 0.0482
ecoli 0.0283 0.0321 0.0294 0.0297 0.1097 0.1517 0.0305 0.0379 0.1036 0.0243
CongressEW 0.0599 0.0619 0.0461 0.0792 0.0608 0.1638 0.0622 0.0691 0.1088 0.0463
Exactly2 0.0203 0.0206 0.0271 0.0376 0.0318 0.0713 0.0221 0.0412 0.0407 0.0263
M-of-n 0.0000 0.0000 0.0547 0.2399 0.0804 0.1568 0.0000 0.1100 0.1269 0.1248
Vote 0.0584 0.0332 0.0428 0.0777 0.1006 0.1164 0.0474 0.0675 0.0873 0.0443
krvskp 0.0138 0.0179 0.0305 0.1170 0.0693 0.1245 0.0157 0.0268 0.1164 0.0278
heart 0.0326 0.0460 0.0484 0.0700 0.0624 0.0863 0.0392 0.0390 0.0794 0.0452

The feature numbers resulting across all 15 datasets are reported in Table 11. The
recorded results in that table are evidence of the efficacy and superiority of the MPAO
algorithm. It obtained the best results in seven out of 15 datasets, showing the minor
selected feature number that realizes high performance. It was followed by the SMA and
the WOA, which achieved the least features in only three and two datasets, respectively,
whereas the remaining algorithms were out of the competition.

Table 11. Ratio of the selected feature for all datasets.

MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

ionosphere 0.2167 0.3963 0.4551 0.4078 0.4580 0.3775 0.2459 0.3162 0.4510 0.3627
breastcancer 0.2042 0.4350 0.4474 0.3971 0.4580 0.3072 0.2565 0.4706 0.5392 0.4216
glass 0.4667 0.5263 0.5906 0.5767 0.6085 0.4848 0.5185 0.7407 0.5556 0.7407
sonar 0.3167 0.5035 0.4930 0.5258 0.5254 0.4472 0.3913 0.5444 0.5167 0.4000
lymphography 0.3920 0.5088 0.5439 0.5152 0.5132 0.4545 0.4815 0.4630 0.4815 0.5000
waveform 0.6138 0.6917 0.7093 0.7987 0.6757 0.3129 0.7352 0.6667 0.5873 0.8730
clean1data 0.2523 0.4896 0.5060 0.3951 0.5066 0.2584 0.3330 0.4578 0.4759 0.5040
SPECT 0.3427 0.5024 0.5000 0.5475 0.5541 0.4788 0.4255 0.3788 0.4242 0.2273
ecoli 0.6484 0.7895 0.7744 0.8027 0.5238 0.5238 0.7714 0.6667 0.8095 0.7619
CongressEW 0.3462 0.4868 0.4803 0.4205 0.4821 0.3490 0.3850 0.5417 0.4792 0.2083
Exactly2 0.3522 0.5830 0.5020 0.1888 0.5568 0.3897 0.3877 0.3590 0.5641 0.5641
M-of-n 0.5240 0.5668 0.5547 0.6818 0.5531 0.4567 0.5354 0.5897 0.5128 0.5897
Vote 0.3438 0.4605 0.4803 0.5795 0.4881 0.4808 0.3625 0.5156 0.5417 0.5000
krvskp 0.4938 0.5687 0.5673 0.6970 0.6005 0.3025 0.6111 0.5556 0.5926 0.5556
heart 0.5192 0.5628 0.5749 0.6538 0.5824 0.5089 0.5108 0.5385 0.4872 0.5897
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The computational time consumed by each algorithm is reported in Table 12. In this
context, a smaller value is expected to be the best value. Regardless, this is not evidence
of better performance as the quick algorithm is not always the accurate one. The time
is observed in Table 8, where the SMA represents the algorithm that showed the lower
computation time over 11 datasets, which is followed by the MFO with two datasets. The
PSO and GOA showed the best time in only one dataset. Accordingly, the proposed MPAO
showed a higher computation time because of the operator hybridization; however, the
performance of this algorithm was better than those shown by the remaining algorithms.

Table 12. Computation time by each algorithm.

MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

ionosphere 44.35 24.54 28.05 49.52 24.64 25.01 49.06 28.51 28.81 28.07
breastcancer 43.77 24.16 27.48 48.51 24.13 24.53 48.35 26.19 26.75 26.19
glass 44.87 25.73 30.63 49.62 26.82 24.84 51.20 25.04 23.50 24.49
sonar 43.04 23.82 27.10 47.72 23.81 24.63 47.35 25.94 26.21 26.04
lymphography 36.31 19.24 22.98 37.26 20.28 17.36 40.87 20.02 19.85 21.84
waveform 272.64 163.37 190.83 332.82 165.56 64.50 312.20 180.09 148.55 192.38
clean1data 52.34 31.37 36.03 61.48 31.73 28.34 57.58 33.20 34.53 34.49
SPECT 41.76 23.72 27.03 45.11 23.66 22.35 46.44 23.95 26.56 23.63
ecoli 29.68 17.78 21.48 35.74 18.48 17.31 36.59 20.35 18.78 20.57
CongressEW 44.47 25.02 28.44 49.36 24.92 24.58 49.38 27.90 28.45 27.61
Exactly2 45.52 28.33 29.87 46.78 27.37 26.21 48.98 28.26 31.09 28.51
M-of-n 49.75 28.13 31.80 56.89 27.82 26.61 55.30 30.10 30.05 30.01
Vote 43.33 24.10 27.49 48.08 24.14 23.83 48.01 27.16 27.15 27.24
krvskp 174.72 96.15 111.78 203.56 99.59 58.54 197.99 101.23 104.37 102.83
heart 43.05 23.91 27.18 47.66 23.89 23.75 47.72 26.88 26.60 26.69

Furthermore, as was previously illustrated, the accuracy assesses the classification
quality according to the values of true positives, false positives, true negatives, and false
negatives. Herein, the values obtained by this measure are expected to be closer to one,
which indicates a higher accuracy. Table 13 reports the values of the compared counterparts.
The proposed MPAO achieved better accuracy concerning the classification of the selected
feature. It showed the best accuracy values in 13 of the 15 datasets, followed by the PSO in
two, whereas MPA and SSA obtained the best accuracy in only one dataset. The remaining
algorithms showed acceptable accuracy but did not outperform the proposed algorithm.

Table 13. Results of the accuracy measure for all datasets.

MPAO PSO GA AO MFO SMA MPA SSA GOA WOA

ionosphere 0.9820 0.9749 0.9611 0.9334 0.9275 0.8149 0.9814 0.9716 0.9583 0.9735
breastcancer 0.9845 0.9767 0.9701 0.9427 0.9340 0.8106 0.9823 0.9735 0.9583 0.9659
glass 0.8189 0.8083 0.8064 0.7053 0.7188 0.5678 0.8113 0.8113 0.7610 0.8050
sonar 0.9940 0.9879 0.9777 0.9161 0.9139 0.7436 0.9908 0.9423 0.9231 0.9231
lymphography 0.9414 0.9331 0.9161 0.8489 0.8147 0.6680 0.9369 0.9009 0.8739 0.9009
waveform 0.8034 0.8055 0.7997 0.7845 0.7848 0.5801 0.8038 0.7920 0.7784 0.7869
clean1data 0.9743 0.9622 0.9549 0.9194 0.9348 0.7723 0.9681 0.9468 0.9300 0.9300
SPECT 0.9058 0.8830 0.8727 0.8372 0.8173 0.7157 0.8860 0.9005 0.8856 0.8706
ecoli 0.8274 0.8170 0.8202 0.8101 0.6587 0.5471 0.8176 0.8254 0.8214 0.8254
CongressEW 0.9881 0.9821 0.9778 0.9516 0.9187 0.8270 0.9839 0.9480 0.9602 0.9664
Exactly2 0.7725 0.7644 0.7596 0.7500 0.7063 0.6564 0.7712 0.7627 0.7533 0.7547
M-of-n 1.0000 1.0000 0.9968 0.8965 0.7606 0.6497 1.0000 1.0000 0.9573 0.9973
Vote 0.9771 0.9719 0.9677 0.9309 0.9022 0.8298 0.9749 0.9667 0.9644 0.9689
krvskp 0.9836 0.9868 0.9773 0.8867 0.9660 0.6709 0.9845 0.9750 0.9504 0.9645
heart 0.8889 0.8727 0.8649 0.7707 0.7989 0.6709 0.8788 0.8657 0.8010 0.8507

For further analysis, Table 14 shows the results of the Wilcoxon rank sum test as a
statistical test. This measure tests if there is a significant difference between the proposed
method and the other methods at a level equal to 0.05. From Table 14, we can notice
that there are significant differences between the MPAO and AO, MFO, SMA, SSA, GOA,
and WOA in most datasets, and there are significant differences between the MPAO and
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PSO, GA, and MPA in 46% of the datasets. These results show the superiority of the
proposed MPAO.

Table 14. Results of the Wilcoxon rank sum test for all methods.

PSO GA AO MFO SMA MPA SSA GOA WOA

ionosphere 0.048 0.021 0.000 0.000 0.000 0.030 0.020 0.009 0.024
breastcancer 0.469 0.058 0.003 0.000 0.000 0.537 0.044 0.000 0.001
glass 0.653 0.049 0.003 0.000 0.000 0.045 0.000 0.000 0.000
sonar 0.040 0.435 0.000 0.000 0.000 0.819 0.000 0.000 0.000
Lymphography 0.333 0.005 0.011 0.000 0.000 0.631 0.003 0.000 0.000
waveform 0.621 0.142 0.042 0.026 0.000 0.030 0.016 0.001 0.002
clean1data 0.017 0.001 0.000 0.000 0.000 0.366 0.000 0.000 0.000
SPECT 0.656 0.078 0.000 0.001 0.000 0.187 0.208 0.168 0.000
ecoli 0.030 0.587 0.779 0.107 0.000 0.010 0.000 0.000 0.000
CongressEW 0.144 0.007 0.001 0.000 0.000 0.284 0.000 0.000 0.000
Exactly2 0.882 0.648 0.266 0.000 0.000 0.950 0.008 0.002 0.019
M-of-n 0.090 0.049 0.082 0.000 0.000 0.049 0.098 0.002 0.471
Vote 0.049 0.354 0.034 0.000 0.000 0.048 0.052 0.007 0.069
krvskp 0.118 0.042 0.001 0.013 0.000 0.714 0.000 0.000 0.000
heart 0.035 0.031 0.000 0.000 0.000 0.009 0.009 0.000 0.000

5.3. Experiment 3: Solving Different Real Engineering Problems

This experiment evaluates the proposed MPAO using four well-known engineering
issues, including (a) tension/compression spring, (b) rolling element bearing, (c) speed
reducer, and (d) gear train design. These issues were handled by the proposed MPAO and
some meta-heuristic methods formerly performed in the literature. The following subsec-
tion aims to evaluate the effectiveness of the proposed MPAO algorithm by comparing
its results with the other methods for solving these optimization issues. In all tables, the
boldface refers to the best value.

5.3.1. Tension/Compression Spring Problem

The issue of optimizing tension/compression spring is a portion of the multidisci-
plinary engineering optimization issue. This issue aims to decrease the spring weight. To
solve this issue, it needs three kinds of optimized variables, such as the diameter of the
wire (d), the mean coil diameter (D), and the number of active coils (N).

This problem was intensively handled through various optimization algorithms such
as: MVO [47], GSA [47], WOA [48], GWO [49], MFO [42], SSA [50] and RO [9]. The
comparison results of the tension/ compression spring problem between the proposed
MPAO algorithm and the other methods are listed in Table 15. It is obviously observed
from Table 15 that the proposed MPAO obtained the minimum cost value with 0.012665,
which was ranked in the first place, followed by the GWO algorithm with 0.012666, which
was ranked second. At the same time, both SSA and WOA obtained a similar cost value
of 0.0126763, followed by MFO and RO algorithms with a slightly lower value. On the
contrary, GSA and MVO obtained the highest cost values, with 0.0127022 for GSA and
0.01279 for MVO, which were ranked last. For the tension/compression spring problem,
the cost value of the proposed MPAO algorithm is better than other algorithms.

Table 15. Results of the Tension/Compression Spring.

Algorithm d D N Optimal Cost

MPAO 0.0516890 0.3567090 11.289455 0.012665
MVO [47] 0.0525100 0.3760000 10.335100 0.012790
GSA [47] 0.0502760 0.3236800 13.525410 0.012702
WOA [48] 0.0512070 0.3452150 12.004032 0.012676
GWO [49] 0.0516900 0.3567370 11.288850 0.012666
MFO [42] 0.05199500 0.364109 10.868400 0.012670
SSA [50] 0.0512070 0.3452150 12.004032 0.012676
RO [9] 0.0513700 0.3490960 11.762790 0.012679
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5.3.2. Rolling Element Bearing Problem

Another basic portion of the multidisciplinary engineering design issues is called
rolling element bearing, which aims to maximize the dynamic type of the load-carrying
capability of the bearing of the rolling part. To solve this issue, it needs ten kinds of
decision variables. In these kinds of designs, problem restrictions are implemented based
on manufacturing conditions and kinematics. A comparison between the proposed MPAO
and the CHHO [51], HHO [51], SCA [52], MFO [42], MVO [53], TLBO [9], and PVS [54]
algorithms for solving that problem is illustrated in Table 16. Concerning the results of the
optimal costs displayed in Table 16, the proposed MPAO showed the best value for that
problem with 85539.192. The MVO algorithm ranked second with 84491.266 cost value,
which is followed by the HHO, MFO, CHHO, and SCA. On the other hand, the TLBO and
PVS algorithms showed the lowest value for that problem, with 81859.74 for TLBO and
81859.741 for PVS. The problem results indicate the superiority of the proposed MPAO
method in solving the rolling element bearing design problem.

Table 16. Results of the rolling element bearing.

Algorithm r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 Opt. Cost

MPAO 125.723 21.423 11.001 0.5150 0.5150 0.5000 0.6999 0.3000 0.1000 0.6144 85,539.19159
CHHO [51] 125.723 21.423 11.001 0.5150 0.5150 0.4944 0.6986 0.3000 0.0335 0.6005 83,455.82500
HHO [51] 125.000 21.075 11.076 0.5150 0.5150 0.4055 0.6060 0.3000 0.0844 0.6000 84,072.58400
SCA [52] 125.000 21.033 10.966 0.5150 0.5500 0.5000 0.7000 0.3000 0.0278 0.6291 83,431.11000
MFO [42] 125.000 21.033 10.966 0.5150 0.5150 0.5000 0.6758 0.3002 0.0240 0.6100 84,002.52400
MVO [53] 125.600 21.600 10.973 0.5150 0.5150 0.5000 0.6878 0.3013 0.0362 0.6106 84,491.26600
TLBO [9] 125.719 21.426 11.000 0.5150 0.5150 0.4243 0.6395 0.3000 0.0689 0.7995 81,859.74000
PVS [54] 125.719 21.426 11.000 0.5150 0.5150 0.4004 0.6802 0.3000 0.0800 0.7000 81,859.74100

5.3.3. Speed Reducer Problem

Speed reducer is also an important engineering issue. The actual aim of this issue is to
reduce the speed reducer weight with the following limitations: bending stress of the gear
teeth, the stress of the surface, the shafts stresses, and the shafts’ transverse deflections. The
speed reducer problem has some variables that need to be optimized, as shown in Figure 2.
In this subsection, these variables are extensively addressed through different bio-inspired
optimization methods such as CHHO [51], HHO [51], MDE [55], PSO-DE [56], PSO [57],
MBA [58], SSA [57], and ISCA [57]. Table 17 displays the assessment of the speed reducer
design problem between the proposed MPAO and the other methods. From the results
shown in Table 17, it can be observed that the proposed MPAO algorithm is competitive
as it obtained the optimal weight compared to other methods with 2994.4725. In addition,
CHHO can be considered equally competitive in line with the proposed MPAO algorithm
as it ranked second with 2994.4737, which is followed by MBA with 2994.4824, PSO-DE
with 2996.3481, MDE with 2996.3566, and ISCA with 2997.1295. On the other hand, the SSA,
PSO, and HHO came in the last rank as they obtained the highest cost values. These results
indicate that the proposed MPAO algorithm outperforms other methods in obtaining the
optimal cost value for the speed reducer problem.

Figure 2. Speed reducer problem.
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Table 17. Results of the speed reducer problem.

Algorithm X1 X2 X3 X4 X5 X6 X7 Opt. Weight

MPAO 3.500 0.700 17.000 7.300 7.715322 3.350216 5.286655 2994.4725
CHHO [51] 3.500 0.700 17.000 7.300 7.715 3.350215 5.286655 2994.4737
HHO [51] 3.560 0.700 17.000 8.019 8.019 3.494800 5.286700 3060.3720
MDE [55] 3.500 0.700 17.000 7.300 7.800 3.350221 5.286685 2996.3566
PSO-DE [56] 3.500 0.700 17.000 7.300 7.800 3.350214 5.286683 2996.3481
PSO [57] 3.581 0.700 17.828 7.984 7.821 3.153980 5.187300 3005.3248
MBA [58] 3.500 0.700 17.000 7.300 7.716 3.350218 5.286654 2994.4824
SSA [57] 3.500 0.700 17.000 7.800 7.850 3.352470 5.286700 3002.5678
ISCA [57] 3.500 0.700 17.000 7.300 7.800 3.351290 5.286980 2997.1295

5.3.4. Gear Train Design Problem

Gear train is another kind of engineering optimization issue, which have four types of
variables as shown in Figure 3. This kind of engineering issue aims to reduce the teeth ratio
and the scaler value of the gear. Therefore, the decision parameter consists of the number
of teeth on each gear.

Figure 3. Gear train design problem.

To test the effect of the proposed MPAO algorithm in handling the problem of gear
design, we compared to six optimization methods, including: CHHO [51], HHO [51],
IMPFA [59], GeneAS [60], Kannan and Kramer [60], and Sandgren [60]. The test results
of the proposed MPAO and other methods are listed in Table 18. The test result of the
proposed MPAO algorithm is the best optimal value with 2.701E-12, which is followed by
the IMPFA algorithm with 1.392E-10. Kannan and Kramer, GeneAS, and CHHO provided
close results with 0.144121 for Kannan and Kramer, 0.144242 for GeneAS, and 0.1434 for
CHHO. At the same time, HHO and Sandgren do not perform well, as they provide the
lowest optimal value. The comparative results reveal that the proposed MPAO method is
more precisely competent for handling the gear train design problem.

Table 18. Results of the gear train design problem.

Algorithm X1 X2 X3 X4 Opt. Cost

MPAO 42.92 16.45 18.78 49.03 2.700 ×1012

CHHO [51] 41.00 47.00 16.00 17.00 0.1434000
HHO [51] 56.00 58.00 22.00 21.00 0.14563000
IMPFA [59] 30.80 23.92 12.00 12.00 1.3915×1010

GeneAS [60] 50.00 33.00 14.00 17.00 0.14424200
Kannan and Kramer [60] 41.00 33.00 15.00 13.00 0.14412100
Sandgren [60] 60.00 45.00 22.00 18.00 0.14666700
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To sum up, the outcomes of the previous experiments and the statistical analyses show
that the proposed algorithm outperformed all others in obtaining the optimal outcomes
and demonstrated its efficiency in most cases in solving FS, global optimization, and
engineering problems. Evaluating the efficacy of MPAO relies on different performance
metrics, including Min, Max, and Std of the fitness value, besides the classification accuracy,
number of features, computation time, and Wilcoxon rank sum test. The MPAO showed
some advantages, such as fast convergence, maintaining the search space with good
exploration behavior, and escaping from the local optima in most cases. However, it
showed a limitation in requiring a higher computation time, which needs to be improved
in future study. In general, the better performance of the proposed MPAO can be due to
the exploration’s improvement and exploitative capabilities, along with the utilization of
AO parameters.

6. Conclusions

This study suggested an improved marine predators algorithm (MPA) efficient opti-
mization technique for handling global optimization, feature selection (FS), and real-world
engineering problems. The proposed algorithm in this paper used the strategy of the
narrowed exploration of the Aquila optimizer (AO) to update the search space and explore
more regions in the search domain to enhance the exploration behavior of the MPA. There-
fore, the narrowed exploration of the AO increased the searchability of the MPA, thereby
improving its ability to obtain the optimal or near-optimal results and thus helping the
original MPA to overcome the local optima issues in the search domain effectively. The
MPAO was evaluated for solving three problems: global optimization, feature selection,
and real engineering cases. At first, the MPAO was evaluated on ten benchmark global
optimization functions and outperformed the other algorithms in 60% of the functions.
Concerning the FS experiment, a set of UCI datasets and four evaluation criteria were
considered to prove the effectiveness of the suggested MPAO compared to nine metaheuris-
tic optimization algorithms. Moreover, four engineering optimization issues were also
considered to demonstrate the superiority of the suggested MPAO. The findings showed
that the performance measures proved the superiority of the suggested MPAO compared
to other methods in terms of Max, Min, and Std of the fitness function and accuracy over all
considered FS issues. It outperformed the compared method in 87% of the datasets in terms
of classification accuracy. The MPAO provided better results than the compared methods
regarding real engineering problems. In the future, the proposed method will be used to
solve more real-world problems, such as wind speed estimation, business optimization
issues, and large-scale optimization problems.
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