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Abstract: In this study, firstly, through an alternative theorem, we study the existence and uniqueness
of solution of some nonlinear PDEs and then investigate the Ulam–Hyers–Rassias stability of solution.
Secondly, we apply a relatively novel analytical technique, the multiple exp function method, to obtain
the multiple wave solutions of presented nonlinear equations. Finally, we propose the numerical
results on tables and discuss the advantages and disadvantages of the method.
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1. Introduction

In the Fall term of the year 1940, Ulam gave an expansive talk about a number of
significant unsolvable problems. Among those was the following issue concerning the
stability of homomorphisms:

〈Suppose T1 is a group and suppose T2 is a metric group with the metric δ(., .).
Given ε > 0, is there a ρ > 0 s.t. if a mapping λ : T1 −→ T2, satisfies
δ(λ(xy), λ(x)λ(y)) < δ, for each x, y ∈ T1, then there is a homomorphism
A : T1 −→ T2, with δ(λ(x), A(x) < ε), for all x ∈ T1 ?〉
Hyers (1941) has exceptionally answered this question of Ulam for the case that T1, T2

are Banach spaces:

〈Let B : G1 −→ G2, be a mapping between Banach spaces s.t. ‖B(y + x) −
B(y) − B(x)‖ ≤ ρ for all y, x ∈ G1, and some ρ > 0. Then the limit Θ(x) =

limn−→∞
B(2nx)

2n exists for each x ∈ G1 and Θ : G1 −→ G2, is the single mapping
s.t. ‖B(x)−Θ(x)‖ ≤ ρ, for each x ∈ G1.〉
Taking this well-known consequence into consideration, the equation B(y + x) =

B(y) + B(x), is said to have the UH stability on (T, G), in which T and G are given spaces,
if for each mapping B : T −→ G satisfying the inequality ‖B(x + y)− B(y)− B(x)‖ ≤ ρ,
for some ρ ≥ 0 and each y, x ∈ T, there is a mapping Θ : T −→ G, s.t. B−Θ is bounded
on T.

Rassias (1978) tried to reduce the condition for the bound of the norm of B(y + x)−
B(y)− B(x) and showed a excellently generalized result of Hyers. In fact, he investigated
the following issue:

〈Suppose B : G1 −→ G2 is a mapping among Banach spaces. If B satisfies
‖B(y + x)− B(y)− B(x)‖ ≤ σ(‖y‖p + ‖x‖p), foe each y, x ∈ G1 and some σ > 0,
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and 0 ≤ p < 1, then there is a unique mapping Θ : G1 −→ G2, s.t. ‖B(x) −
Θ(x)‖ ≤ 2σ

2− 2p ‖x‖
p, for any x ∈ G1.〉

The above result was a significant generalization of that of Hyers and stimulated
many mathematicians to study the stability issues of several equations. By considering
an extensive effect of Rassias on the study of stability problems of diverse equations, the
UH stability of such type is called the UHR stability. During the last twenty years, a lot of
results for the UHR stability of diverse equations have been solved by many authors.

Through the Cadariu–Radu approach dependent on the Diaz–Margolis theorem, we
can prove the uniqueness and existence of solution of nonlinear PDEs and then investigate
the stability of it. Finally, by means of an analytical method, we can achieve the exact
solution mentioned.

Recently, various analytical approaches have been applied to solve nonlinear differen-
tial equations, such as: the sine–cosine technique, the first integral technique and functional
variable technique[1], the variational iteration technique [2], the tanh–sech technique [3],
the Trial equation technique and the modified Trial technique [4], the Jacobi elliptic function
technique [5], the bifurcation technique, the homogenous balance technique [6], the direct
algebraic method and the Sine–Gordon expansion technique [7], the homotopy pertur-
bation technique [8], the Hirotas bilinear techniques, the F-expansion technique [9], the
extended tanh technique [10] and others.

The above approaches are only concerned about traveling wave solutions of NPDEs.
It is obvious that there exist multiple wave solutions to NPDEs, for example, multi-soliton
solutions to diverse important models such as the Toda lattice equation, Kdv equation and
the Hirota bilinear equations. Thus, there should be an analogous analytical approach for
earning multiple wave solutions to NPDEs.

In the present study, we propose an answer by formulating a solution algorithm for
calculating the multiple wave solutions to NPDEs.

Consider the following (3+1)-dimensional nonlinear PDE [11]

ut − uy − ux − uz + uxt + uzy = 0 (1)

and the following (2+1)-dimensional nonlinear PDE [11]

ut + ux + νuy + uxy + ϑuyt + υutx = 0, ν, ϑ, υ ∈ R, (2)

for the following special cases:

ut + ux + 3uy + uxy + uyt + utx = 0, (3)

and

ut + ux − 3uy + uxy − uyt − utx = 0. (4)

In this study, firstly by means of an fixed point approaches, we investigate the unique-
ness, existence and UHR stability of (1) and (3) in Banach spaces. Then, we apply MEFM to
construct the new exact solutions for (1), (3) and (4).

The paper is organized as follows: In Section 2, firstly, we propose the fixed point
theorem, secondly, through a fixed point theorem, we investigate the UHRS for (1) and (3)
in Banach spaces. In Section 3, first we propose the basic idea of MEFM. Then as an
application we apply the mentioned method to construct the new exact solutions for (1), (3)
and (4). In Section 4, we discuss the proposed approach. Finally, in Section 5, we present
the conclusion.
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2. Applying Cadariu–Radu Method

Here, using a fixed point theorem, we investigate the UHR stability for (1) and (3) in
Banach spaces.

First we state the alternative fixed point method from the literature [12].

Theorem 1. Consider the complete [0, ∞]-valued metric ε on χ and Θ on χ with
ε(ΘΩ, Θf) ≤ ℵε(Ω,f), in which ℵ < 1 is a Lipschitz constant. Suppose f ∈ χ. If we can find a
ρ0 ∈ N s.t. ε(Θρf, Θρ+1f) < ∞, for any ρ ≥ ρ0, then we have

• the fixed point Ω∗ of Θ is the convergence point of the sequence {Θρf};
• in the set {Ω ∈ χ | ε(Θρ0f, Ω) < ∞}, Ω∗ is the single fixed point of Θ;
• (1− ℵ)ε(Ω, Ω∗) ≤ ε(Ω, ΘΩ) for every Ω ∈ χ.

2.1. Stability Result for (1)

Consider (1). Assume a variation given by

µ = Sx + Ry + Az−ωt, u := U(µ), (5)

where S, R and A are constants. We now rewrite Equation (1) in the following NODE

−(ω + R + S + A)U′ + (RA−ωS)U′′ = 0. (6)

Integrating Equation (6) twice leads to

−(ω + R + S + A)
∫ µ

0
U(s)ds + (RA−ωS)U + { = 0, (7)

where { is a constant. We rewrite (7), as follows:

N
∫ µ

0
U(s)ds + MU + { = 0, (8)

in which N := −(ω + R + S + A) and M := RA−ωS.

Theorem 2. Assume U ∈ C[0, T], (T > 0), satisfies the following integral inequality:∣∣∣∣N ∫ µ

0
U(s)ds + MU(µ) + {

∣∣∣∣ ≤ φ(µ) (9)

and also, assume ∫ µ

0
φ(s)ds ≤ $φ(µ) for some $ > 0, (10)

where φ : [0, T] → (0, ∞) is a continuous function. Suppose 0 < | N
M |$ < 1. Then can find a

U◦ ∈ C[0, T], such that

U◦ = −
N
M

∫ µ

0
U◦(s)ds− {, (11)

and

|U(µ)−U◦(µ)| ≤
1

1− | N
M |$

φ(µ). (12)

Proof. Let χ := C[0, T], and define a mapping ε : χ −→ [0, ∞], given by

ε(U(µ), Û(µ)) = inf
{

Ξ ≥ 0 : |U(µ)− Û(µ)| ≤ Ξφ(µ), µ ∈ [0, T]
}

. (13)
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It is straight forward to prove that (χ, ε) is a complete generalized metric space.
Now, define Θ : χ −→ χ as

ΘU = − N
M

∫ µ

0
U(s)ds− {. (14)

We prove that the self-mapping Θ is contractive on χ. Assume U, Û ∈ χ, Ξ ≥ 0, and
ε(U(µ), Û(µ)) ≤ Ξ. Now for any µ ∈ [0, T], we have

|ΘU(µ)−ΘÛ(µ)| ≤
∣∣∣∣ N

M

∣∣∣∣ ∫ µ

0
|U(s)− Û(s)|ds

≤
∣∣∣∣ N

M

∣∣∣∣ ∫ µ

0
Ξφ(s)ds

≤
∣∣∣∣ N

M

∣∣∣∣$Ξφ(µ).

Therefore we obtain

ε(ΘU(µ), ΘÛ(µ)) ≤
∣∣∣∣ N

M

∣∣∣∣$ ε(U(µ), Û(µ)).

and we have the contractive property of Θ, because 0 < | N
M |$ < 1.

On the other hand, according to (9), we have

ε(ΘU(µ), U(µ)) < 1.

Thus, the assumptions of Theorem 1 are satisfied, and we have

|U(µ)−U◦(µ)| ≤
1

1− | N
M |$

φ(µ). (15)

where U◦ = − N
M
∫ µ

0 U◦(s)ds− { is a unique map in
{

κ ∈ χ : ε(ΘU◦, κ) < ∞
}

.

2.2. Stability Result for (1)

In this subsection, using a fixed point theorem, we investigate the UHRS for (3), in
Banach spaces.

Consider (3). Assume a complete variation given by

µ = Sx + Ry−ωt, u := U(µ), (16)

where S, R and ω are constants. We now rewrite Equation (3) in the following NODE

(−ω + S + 3R)U′ + (SR−ωS−ωR)U′′ = 0. (17)

Integrating Equation (17) twice leads:

(−ω + S + 3R)
∫ µ

0
U(s)ds + (SR−ωS−ωR)U + { = 0, (18)

where { is a constant. We rewrite (18), as follows:

N
∫ µ

0
U(s)ds + MU + { = 0, (19)

in which N := −ω + S + 3R and M := SR−ωS−ωR.
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Theorem 3. Assume U ∈ C[0, T], (T > 0), satisfies the following integral inequality:∣∣∣∣N ∫ µ

0
U(s)ds + MU(µ) + {

∣∣∣∣ ≤ φ(µ) (20)

and also, assume ∫ µ

0
φ(s)ds ≤ $φ(µ), $ > 0, (21)

where φ : [0, T]→ (0, ∞) is a continuous function. Let 0 < | N
M |$ < 1. Then there exists a unique

function U◦ ∈ C[0, T], which satisfies

U◦ = −
N
M

∫ µ

0
U◦(s)ds− {, (22)

and

|U(µ)−U◦(µ)| ≤
1

1− | N
M |$

φ(µ). (23)

Proof. Let χ := C[0, T], and define a mapping ε : χ −→ [0, ∞], given by

ε(U(µ), Û(µ)) = inf
{

Ξ ≥ 0 : |U(µ)− Û(µ)| ≤ Ξφ(µ), µ ∈ [0, T]
}

. (24)

It is straight forward to prove that (χ, ε) is a complete generalized metric space [12].
Now, define Θ : χ −→ χ as

ΘU = − N
M

∫ µ

0
U(s)ds− {. (25)

We now show that Θ is contractive on χ. Assume U, Û ∈ χ, Ξ ≥ 0, and ε(U(µ), Û(µ)) ≤ Ξ.
Therefore for any µ ∈ [0, T], we have

|ΘU(µ)−ΘÛ(µ)| <

∣∣∣∣− N
M

∣∣∣∣ ∫ µ

0
|U(s)− Û(s)|ds

≤
∣∣∣∣ N

M

∣∣∣∣ ∫ µ

0
Ξφ(s)ds

≤
∣∣∣∣ N

M

∣∣∣∣Ξ$φ(µ).

Therefore we obtain

ε(ΘU(µ), ΘÛ(µ)) ≤
∣∣∣∣ N

M

∣∣∣∣$ ε(U(µ), Û(µ)).

which concludes the contractive property of Θ, because 0 < | N
M |$ < 1.

On the other hand, according to (20), we obtain

ε(ΘU(µ), U(µ)) ≤ 1.

Thus the assumptions of Theorem 1 are satisfied, and we have

|U(µ)−U◦(µ)| ≤
1

1− | N
M |$

φ(µ). (26)
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where U◦ = − N
M
∫ µ

0 U◦(s)ds− { is a unique map in
{

κ ∈ χ : ε(ΘU◦, κ) < ∞
}

.

3. Applying MEFM

In this section, first we propose the basic idea of MEFM [13]. Then, as an application, we
apply the mentioned method to construct the new exact solutions for some nonlinear PDEs.

3.1. The Algorithm of MEFM

Here, we formulate the multi-exp-function method by considering

N(t, x, ux, ut, uxx, utt, uxxx, . . .) = 0, u = u(x, t).

• Step 1: Let

µi = ci exp(µi), µi = Six−ωit, µi = µi(x, t), i ∈ [1, n], (27)

where ci, Si and ωi are arbitrary constants, angular wave numbers and wave frequencies,
respectively. Note that

µi,x = Siµi, µi,t = −ωiµi, i ∈ [1, n]. (28)

• Step 2: Now, let

u(x, t) : =
K(µ1, µ2, · · · , µn)

H(µ1, µ2, · · · , µn)
, (29)

K : =
n

∑
r,s=1

M

∑
i,j=0

Prs,ijµ
i
rµ

j
s,

H : =
n

∑
r,s=1

N

∑
i,j=0

Qrs,ijµ
i
rµ

j
s,

where Qrs,ij and Prs,ij are constants to be determined from Equation (27).
Here, we obtain

Ñ(x, t, µ1, µ2, · · · , µn) = 0. (30)

• Step 3: By solving a system of algebraic equations on variables ki, wi, Prs,ij and Qrs,ij,
the multiple wave solutions u reads

u(x, t) =
K(c1 exp(S1x−ω1t), · · · , cn exp(Snx−ωnt))
H(c1 exp(S1x−ω1t), · · · , cn exp(Snx−ωnt))

. (31)

3.2. Application

We apply MEFM to construct the analytical solutions for (3+1)-dimensional nonlinear
PDE (1) and spacial cases of (2+1)-dimensional nonlinear PDE (2).

3.2.1. Example 1

Here, we apply MEFM to construct the analytical solutions for (3+1)-dimensional
nonlinear PDE presented in (1).

• One wave solutions for (1):
First introduce a variable µ1 = µ1(x, y, z, t) as follows

µ1 = v1 exp(S1x + R1y + A1z−ω1t), (32)
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where v1, S1, R1, A1 and ω1 are constants. Note µ1 has the following linear partial differen-
tial relations

µ1,x = S1µ1, µ1,y = R1µ1, µ1,z = A1µ1, µ1,t = −ω1µ1. (33)

Then, we consider a pair of polynomials of degree one

K(µ1) = P0 + P1µ1, (34)

H(µ1) = Q0 + Q1µ1, (35)

where P0, P1, Q0, and Q1 are constants to be determined from (1). Therefore, we have

u(x, t) =
K(µ1)

H(µ1)
=

P0 + P1µ1

Q0 + Q1µ1
. (36)

Now, by substituting (36) into (1) and solving the system of algebraic equations,
we obtain:

P1 =
Q1P0

Q0
, (37)

ω1 : arbitrary,

and

P1 = arbitrary, (38)

ω1 : −R1,

A1 = −S1.

Thus, the one wave solutions can be proposed by

u1,1(x, t) =
P0 +

Q1P0

Q0
exp(S1x + R1y + A1z−ω1t)

Q0 + Q1 exp(S1x + R1y + A1z−ω1t)
(39)

and

u1,2(x, t) =
P0 + P1 exp(S1x + R1y− S1z + R1t)

Q0 + Q1 exp(S1x + R1y− S1z + R1t)
. (40)

Equation (39) is displayed in Figure 1 for S1 = Q1 = −0.70, R1 = −P0 = −0.90,
Q0 = 0.40, ω1 = 0.5, (1), (4) and (7) are three dimensional with y = z = 2. Now (2), (5) and
(8) exploits the z−axis orientation. (3), (6) and (9) are contour plots. Further, Equation (40) is
displayed in Figure 2 for S1 = −3.70, R1 = −2.90, Q0 = 0.40, Q1 = −0.70, P0 = 0.90, P1 = 3,
(1), (4) and (7) are three dimensional with y = z = 2. Now (2), (5) and (8) exploits the
z−axis orientation. (3), (6) and (9) are contour plots.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 1. The 3D and 2D with the diagram of Equation (39), in three different domains.

(1)
(2) (3)

(4) (5) (6)

(7)

(8) (9)

Figure 2. The 3D and 2D with the diagram of Equation (40), in three different domains.
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• Two wave solutions for (1):
Here, introduce a variable µi = µi(x, y, z, t), i = 1, 2, as follows

µi = vi exp(Six + Riy + A1z−ωit), i = 1, 2 (41)

where vi, Si, Ri, Ai and ωi are constants. Note µi has the following linear partial differential
relations

µi,x = Siµi, µi,y = Ri, µi,z = Aiµ1, µi,t = −ωiµi, i = 1, 2. (42)

Then, we consider a pair of polynomials of degree two

K(µ1, µ2) = 2(S1µ1 + S2µ2 + P12(S1 + S2)µ1µ2), (43)

H(µ1, µ2) = 1 + µ1 + µ2 + P12µ1µ2, (44)

where P12 is a constant to be determined from (1). Therefore, we have

u(x, t) =
2(S1µ1 + S2µ2 + P12(S1 + S2)µ1µ2)

1 + µ1 + µ2 + P12µ1µ2
. (45)

Now, by substituting (45) into (1) and solving the system of algebraic equations,
we obtain:

P12 = 1,

R2 = −S2,

A1 = −S1,

ω1 = −R1,

ω2 = −A2,

and

P12 = 1,

R1 = −S1,

A2 = −S2,

ω1 = −A1,

ω2 = −R2.

By setting the above values in (45), the two wave solutions can be proposed by

u2,1(x, t) =
[

2(S1 exp(S1x + R1y− S1z + R1t) + S2 exp(S2x− S2y + A2z + A2t) (46)

+ (S1 + S2) exp(S1x + R1y− S1z + R1t) exp(S2x− S2y + A2z + A2t))
]/

[
1 + exp(S1x + R1y− S1z + R1t) + exp(S2x− S2y + A2z + A2t)

+ exp(S1x + R1y− S1z + R1t) exp(S2x− S2y + A2z + A2t)
]

,
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and

u2,2(x, t) =
[

2(S1 exp(S1x− S1y + A1z + A1t) + S2 exp(S2x + R2y− S2z + R2t) (47)

+ (S1 + S2) exp(S1x− S1y + A1z + A1t) exp(S2x + R2y− S2z + R2t))
]/

[
1 + exp(S1x− S1y + A1z + A1t) + exp(S2x + R2y− S2z + R2t)

+ exp(S1x− S1y + A1z + A1t) exp(S2x + R2y− S2z + R2t)
]

.

Equation (46) is displayed in Figure 3 for R1 = 0.80, A2 = 0.40, S1 = 0.90, S2 = −7, (1),
(4) and (7) are three dimensional with y = 3, z = 2. Now (2), (5) and (8) exploits the z−axis
orientation. (3), (6) and (9) are contour plots. Further, Equation (47) is displayed in Figure 4
for R2 = 3.90, A1 = 5.60, S1 = 5.90, S2 = −7.70, (1), (4) and (7) are three dimensional
with y = 3, z = 2. Now (2), (5) and (8) exploits the z−axis orientation. (3), (6) and (9) are
contour plots.

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 3. The 3D and 2D with the diagram of u2,1, in three different domains.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 4. The 3D and 2D with the diagram of equation u2,2, in three different domains.

• Three wave solutions for (1):
Here, introduce a variable µi = µi(x, y, z, t), i = 1, 2, 3, as follows

µi = vi exp(Six + Riy + Aiz−ωit), i = 1, 2, 3 (48)

where vi, Si, Ri, AI and ωi are constants. Note µi has the following linear partial differen-
tial relations

µi,x = Siµi, µi,y = Riµ1, µi,z = Aiµ1, µi,t = −ωiµi, i = 1, 2, 3. (49)

Then, we consider a pair of polynomials of degree three

K(µ1, µ2, µ3) = 2(S1µ1 + S2µ2 + S3µ3 + P12(S1 + S2)µ1µ2 + P13(S1 + S3)µ1µ3

+P23(S2 + S3)µ2µ3 + P12P13P23(S1 + S2 + S3)µ1µ2µ3),

and

H(µ1, µ2, µ3) = 1 + µ1 + µ2 + µ3 + P12µ1µ2 + P13µ1µ3 + P23µ2µ3

+P12P13P23µ1µ2µ3,

where P12, P13, and P23 are constants to be determined from (1). Therefore, we have

u(x, t) =
[

2(S1µ1 + S2µ2 + S3µ3 + P12(S1 + S2)µ1µ2 + P13(S1 + S3)µ1µ3 (50)

+ P23(S2 + S3)µ2µ3 + P12P13P23(S1 + S2 + S3)µ1µ2µ3)

]/
[

1 + µ1 + µ2 + µ3 + P12µ1µ2 + P13µ1µ3 + P23µ2µ3 + P12P13P23µ1µ2µ3

]
.
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Now, by substituting (50) into (1) and solving the system of algebraic equations, we obtain:

P12 = 1,

P13 = 0,

P23 = 1,

A1 = −S1,

A3 = −S3,

R2 = −S2,

ω1 = −R1,

ω2 = −A2,

ω3 = −R3,

P12 = 0, (51)

P13 = 1,

P23 = 1,

A1 = −S1,

A2 = −S2,

R3 = −S3,

ω1 = −R1,

ω2 = −R2,

ω3 = −A3,

P12 = 0, (52)

P13 = 1,

P23 = 1,

R1 = −S1,

R2 = −S2,

A3 = −S3,

ω1 = −A1,

ω2 = −A2,

ω3 = −R3,

P12 = arbitrary, (53)

P13 = 0,

P23 = 0,

R1 = −S1,

R2 = −S2,

R3 = −S3,

ω1 = −A1,

ω2 = −A2,

ω3 = −A3.
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Thus, the three wave solutions can be proposed by

u3,1(x, t) =
[

2(S1 exp(S1x + R1y− S1z + R1t) (54)

+ S2 exp(S2x− S2y + A2z + A2t) + S3 exp(S3x + R3y− S3z + R3t)

+ (S1 + S2) exp(S1x + R1y− A1z + R1t) exp(S2x− S2y + A2z + A2t)

+ (S2 + S3) exp(S2x− S2y + A2z + A2t) exp(S3x + R3y− S3z + R3t))
]/

[
1 + exp(S1x + R1y− A1z + R1t) + exp(S2x− S2y + A2z + A2t)

+ exp(S3x + R3y− S3z + R3t) + exp(S1x + R1y− S1z + R1t)

exp(S2x− S2y + A2z + A2t) + exp(S2x− S2y + A2z + A2t)

exp(S3x + R3y− S3z + R3t)
]

,

and also, by inserting (51), (52), and (53) in (50), we obtain u3,2(x, t), u3,3(x, t) and u3,4(x, t),
respectively.

Equation (54) is displayed in Figure 5 for R1 = 0.50, R3 = −0.70, S1 = 0.20, S2 = 0.70,
S3 = −0.30, A1 = 0.80, and equation u3,2 is displayed in Figure 6 for R1 = −0.50, R2 = −0.70,
S1 = 0.20, S2 = 0.70, S3 = −0.30, A3 = 0.80, in different domains. Equation u3,3 is
displayed in Figure 7 for R3 = −2.70, A1 = −2.70, A2 = 2.80, S1 = 2.20, S2 = 2.70,
S3 = −2.30, (1), (4) and (7) are three dimensional with y = z = 2. Now (2), (5) and (8)
exploit the z−axis orientation. (3), (6) and (9) are contour plots. Further, equation u3,4
is displayed in Figure 8 for P12 = 3.50, A1 = −3, A2 = −5, A3 = 7, S1 = 0.20, S2 = 0.70,
S3 = −0.30, (1), (4) and (7) are three dimensional with y = z = 2. Now (2), (5) and (8)
exploit the z−axis orientation. (3), (6) and (9) are contour plots.

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(13) (14) (15) (16) (17) (18)

Figure 5. Cont.
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(19) (20) (21) (22) (23) (24)

Figure 5. The 3D and 2D with the diagram of u3,1, in four different domains, for R1 = 0.50, R3 =

−0.70, S1 = 0.20, S2 = 0.70, S3 = −0.30, and A1 = 0.80. (2), (8), (14), (20) display the x−axis
orientation, (3), (9), (15), (21) display the y−axis orientation, (4), (10), (16), (22), (5), (11), (17), (23)
display the z−axis orientation, and (6), (12), (18), (24) are contour plots.

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(13)
(14)

(15)
(16) (17) (18)

(19) (20) (21) (22) (23) (24)

Figure 6. The 3D and 2D with the diagram of u3,2, in four different domains, in four differ-
ent domains, for R1 = −0.50, R2 = −0.70, S1 = 0.20, S2 = 0.70, S3 = −0.30, and A3 = 0.80.
(2), (8), (14), (20) diasplay the x−axis orientation, (3), (9), (15), (21) display the y−axis orientation,
(4), (10), (16), (22), (5), (11), (17), (23) display the z−axis orientation, and (6), (12), (18), (24) are
contour plots.
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(1) (2) (3)

(4)
(5) (6)

(7) (8) (9)

Figure 7. The 3D and 2D with the diagram of u3,3, in three different domains, for R3 = −2.70,
A1 = −2.70, A2 = 2.80, S1 = 2.20, S2 = 2.70, and S3 = −2.30. (2), (5) and (8) display the z−axis
orientation and (3), (6) and (9) are contour plots.

(1) (2) (3)

Figure 8. Cont.
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(4) (5) (6)

(7) (8) (9)

Figure 8. The 3D and 2D with the diagram of u3,4, in three different domains, for P12 = 3.50,
A1 = −3, A2 = −5, A3 = 7, S1 = 0.20, S2 = 0.70, and S3 = −0.30. (2), (5) and (8) display the z−axis
orientation and (3), (6) and (9) are contour plots.

3.2.2. Example 2

Here, we apply MEFM to construct the new exact solutions for the (2+1)-dimensional
Equation (3).

• One wave solutions for (3):
Firstly, introduce a variable µ1 = µ1(x, y, t) as follows

µ1 = v1 exp(S1x + R1y−ω1t), (55)

where v1, S1, R1 and ω1 are constants. Obviously, µ1 has the following linear partial
differential relations

µ1,x = S1µ1, µ1,y = R1µ1, µ1,t = −ω1µ1. (56)

Therefore, we consider a pair of polynomials of degree one

K(µ1) = P0 + P1µ1, (57)

H(µ1) = Q0 + Q1µ1, (58)

where P0, P1, Q0, and Q1 are constants to be determined from (1). Therefore, we have

u(x, t) =
K(µ1)

H(µ1)
=

P0 + P1µ1

Q0 + Q1µ1
. (59)

Now, by substituting (59) into (3) and solving the system of algebraic equations,
we obtain:

P1 : arbitrary, (60)

ω1 = (1.500 + 0.866i)R1,

S1 = −R1(1.500 + 0.866i)R1 − 1.500 + 0.866i)
−R1 + (1.500 + 0.866i)R1 − 1

.

Thus, the one wave solutions can be proposed by
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u1(x, t) =
[

P0 + P1 exp(−R1(1.500 + 0.866i)R1 − 1.500 + 0.866i)
−R1 + (1.500 + 0.866i)R1 − 1

x + R1y− (1.500 + 0.866i)R1)t)
]/

[
Q0 + Q1 exp(−R1(1.500 + 0.866i)R1 − 1.500 + 0.866i)

−R1 + (1.500 + 0.866i)R1 − 1
x + R1y− (1.500 + 0.866i)R1)t)

]
(61)

The real and imaginary part of Equation (61) are displayed in Figures 9 and 10 for
P1 = 0.20, P0 = 0.90, Q0 = 0.70, Q1 = 0.50, R1 = −0.90. (1) is three dimensional with
y = z = 2. (2), (4) and (5) exploit z−axis, x−axis, y−axis orientation, respectively, and (3)
is contour plot.

(1) (2) (3) (4) (5)

Figure 9. The 3D and 2D with the diagram of real part of Equation (61).

(1) (2) (3) (4) (5)

Figure 10. The 3D and 2D with the diagram of imaginary part of Equation (61).

• Two wave solutions for (3):
Here, introduce a variable µi = µi(x, y, t), i = 1, 2, as follows

µi = vi exp(Six + Riy−ωit), i = 1, 2 (62)

where vi, Si, Ri, and ωi are constants. Obviously, µi has the following linear partial differ-
ential relations

µi,x = Siµi, µi,y = Ri, µi,t = −ωiµi, i = 1, 2. (63)

Then, we consider a pair of polynomials of degree two

K(µ1, µ2) = 2(S1µ1 + S2µ2 + P12(S1 + S2)µ1µ2), (64)

H(µ1, µ2) = 1 + µ1 + µ2 + P12µ1µ2, (65)

where P12 is a constant to be determined from (1). Therefore, we have

u(x, t) =
2(S1µ1 + S2µ2 + P12(S1 + S2)µ1µ2)

1 + µ1 + µ2 + P12µ1µ2
. (66)
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Now, by substituting (66) into (3) and solving the system of algebraic equations,
we obtain:

P12 = 1,

S1 = (−3
2
+

1
2

√
3i)R1,

S2 = (−3
2
+

1
2

√
3i)R2,

ω1 =
R1((−

3
2
+

1
2

√
3i)R1 +

3
2
+

1
2

√
3i)

(−3
2
+

1
2

√
3i)R1 + R1 + 1

,

ω2 =
R2((−

3
2
+

1
2

√
3i)R2 +

3
2
+

1
2

√
3i)

(−3
2
+

1
2

√
3i)R2 + R2 + 1

.

By setting above values in (66), the two wave solutions can be proposed by u2(x, t).
The real and imaginary part of equation u2(x, t) are displayed in Figures 11 and 12 for

R1 = 0.90, R2 = 0.80. (1) is three dimensional with y = z = 2. (2), (4) and (5) exploit z−axis,
x−axis, y−axis orientation, respectively, and (3) is contour plot.

(1) (2) (3) (4) (5)

Figure 11. The 3D and 2D with the diagram of the real part of equation u2(x, t).

(1) (2) (3) (4) (5)

Figure 12. The 3D and 2D with the diagram of the imaginary part of equation u2(x, t).

• Three wave solutions for (3):
Here, introduce a variable µi = µi(x, y, t), i = 1, 2, 3, as follows

µi = vi exp(Six + Riy−ωit), i = 1, 2, 3 (67)

where vi, Si, Ri, and ωi are constants. Obviously, µi has the following linear partial differ-
ential relations

µi,x = Siµi, µi,y = Riµ1, µi,t = −ωiµi, i = 1, 2, 3. (68)

Then, we consider a pair of polynomials of degree three

K(µ1, µ2, µ3) = 2(S1µ1 + S2µ2 + S3µ3 + P12(S1 + S2)µ1µ2

+P13(S1 + S3)µ1µ3 + P23(S2 + S3)µ2µ3 + P12P13P23(S1 + S2 + S3)µ1µ2µ3),
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and

H(µ1, µ2, µ3) = 1 + µ1 + µ2 + µ3 + P12µ1µ2 + P13µ1µ3 + P23µ2µ3

+P12P13P23µ1µ2µ3,

where P12, P13, and P23 are constants to be determined from (1). Therefore, we have

u(x, t) =
[

2(S1µ1 + S2µ2 + S3µ3 + P12(S1 + S2)µ1µ2 (69)

+P13(S1 + S3)µ1µ3 + P23(S2 + S3)µ2µ3 + P12P13P23(S1 + S2 + S3)µ1µ2µ3)

]/
[

1 + µ1 + µ2 + µ3 + P12µ1µ2 + P13µ1µ3 + P23µ2µ3 + P12P13P23µ1µ2µ3

]
.

Now, by substituting (69) into (3) and solving the system of algebraic equations,
we obtain:

P12 = 1,

P13 = 1,

P23 = 1,

R1 = −S1((−0.500 + 0.866i)S1 − 1.500 + 0.866i))
−S1 + (−0.500 + 0.866i)S1 − 3

,

R2 = −S2((−0.500 + 0.866i)S2 − 1.500 + 0.866i))
−S2 + (−0.500 + 0.866i)S2 − 3

,

R3 = −S3((−0.500 + 0.866i)S3 − 1.500 + 0.866i))
−S3 + (−0.500 + 0.866i)S3 − 3

,

ω1 = (−0.500 + 0.866i)S1,

ω2 = (−0.500 + 0.866i)S2,

ω3 = (−0.500 + 0.866i)S3,

and

P12 = 0,

P13 : arbitrary,

P23 = 0,

R1 = (−0.500 + 0.288i)S1,

R2 = −S2((−0.500 + 0.866i)S2 − 1.500 + 0.866i))
−S2 + (−0.500 + 0.866i)S2 − 3

,

R3 = (−0.500 + 0.288i)S3,

ω1 =
S1((−1.500 + 0.866i− S1)

(0.500 + 0.866i)S1 + 1.500 + 0.866i + S1
,

ω2 = (−0.500 + 0.866i)S2,

ω3 =
S3((−1.500 + 0.866i− S3)

(0.500 + 0.866i)S3 + 1.500 + 0.866i + S3
.

By inserting above values in (69), we obtain u3,1(x, t), u3,2(x, t), respectively.
The real and imaginary part of equation u3,1(x, t) and u3,2(x, t) are displayed in

Figures 13–16 for S1 = 0.20, S2 = 0.70, S3 = −0.50. (1) is three dimensional with y = z = 2.
(2), (4) and (5) exploit z−axis, x−axis, y−axis orientation, respectively, and (3) is contour
plot, in different domains.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Figure 13. The 3D and 2D with the diagrams of the real part of equation u3,1, in three different
domains, for S1 = 0.20, S2 = 0.70, S3 = −0.50. (2), (7), (12), (4), (9), (14), and (5), (10), (15) dis-
play z−axis, x−axis and y−axis orientations, respectively, and (3), (8), (13) are contour plots, in
different domains.

(1) (2) (3) (4) (5)

Figure 14. Cont.
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(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Figure 14. The 3D and 2D with the diagram of the imaginary part of equation u3,1, in three different
domains, for S1 = 0.20, S2 = 0.70, S3 = −0.50. (2), (7), (12), (4), (9), (14), and (5), (10), (15) display
z−axis, x−axis and y−axis orientations, respectively, and (3), (8), (13) are contour plots, in different
domains.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 15. Cont.
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(11) (12) (13) (14) (15)

Figure 15. The 3D and 2D with the diagram of the real part of equation u3,2, in three different domains,
for S1 = 0.20, S2 = 0.70, S3 = −0.50. (2), (7), (12), (4), (9), (14), and (5), (10), (15) display z−axis,
x−axis and y−axis orientations, respectively, and (3), (8), (13) are contour plots, in different domains.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Figure 16. The 3D and 2D with the diagram of the imaginary part of equation u3,2, in three differ-
ent domains, for S1 = 0.20, S2 = 0.70, S3 = −0.50. (2), (7), (12), (4), (9), (14), and (5), (10), (15)
display z−axis, x−axis and y−axis orientations, respectively, and (3), (8), (13) are contour plots, in
different domains.

3.2.3. Example 3

Here, we apply MEFM to construct the new exact solutions for the (2+1)-dimensional
equation (4).
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• One wave solutions for (4):

P1 : arbitrary,

R1 = −S1(3.302S1 − 2.302)
4.302S1 − 3

,

ω1 = 3.302S1.

According to the above values, we obtain u′1(x, t). , respectively.
Equation u′1(x, t) is displayed in Figure 17 for S1 = −0.90, P0 = 0.90, P1 = 0.20, Q0 =

0.70, Q1 = 0.50. (1) is three dimensional with y = z = 2. (2), (4) and (5) exploit z−axis,
x−axis, y−axis orientation, respectively, and (3) is contour plot, in different domains.

(1) (2) (3) (4) (5)

Figure 17. The 3D and 2D with the diagram of equation u′1(x, t).

• Two wave solutions for (4):

P12 = 1,

R1 = −
S1((

3
2
+

1
2

√
13)S1 −

1
2
− 1

2

√
13)

S1 + (
3
2
+

1
2

√
13)S1 − 3

,

R2 = (−1
6
+

1
6

√
13)S2,

ω1 = (
3
2
+

1
2

√
13)S1,

ω2 = −
S2((−

1
6
+

1
6

√
13)S2 +

3
2
− 1

2

√
13)

S2 + (−1
6
+

1
6

√
13)S2 − 1

.

According to the above values, we obtain u′2(x, t). respectively.
Equation u′2(x, t) is displayed in Figure 18 for S1 = −0.90, S2 = 0.70. (1) is three

dimensional with y = z = 2. (2), (4) and (5) exploit z−axis, x−axis, y−axis orientation,
respectively, and (3) is contour plot, in different domains.

(1) (2) (3) (4) (5)

Figure 18. The 3D and 2D with the diagram of equation u′2(x, t).

• Three wave solutions for (4):
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P12 = 1,

P13 = 1,

P23 = 1,

R1 = −S1(3.302S1 − 2.302)
4.302S1 − 3

,

R2 = −S2(3.302S2 − 2.302)
4.302S2 − 3

,

R3 = 0.432S3,

ω1 = 3.302S1,

ω2 = 3.302S2,

ω3 =
S3(0.434S3 − 0.302)

1.434S3 − 1
,

and

P12 = 1,

P13 = 0,

P23 = 1,

R1 = −S1(3.302S1 − 2.302)
4.302S1 − 3

,

R2 = −S2(3.302S2 − 2.302)
4.302S2 − 3

,

R3 = −0.767S3,

ω1 = 3.302S1,

ω2 = 3.302S2,

ω3 = − S3(4.302− S3)

0.302S3 − 1.302
.

According to the above values, we obtain u′3,1(x, t) and u′3,2(x, t)., respectively.
Equation u′3,1(x, t) is displayed in Figure 19 for S1 = 0.20, S2 = 0.70, S3 = −0.50.

(1) is three dimensional with y = z = 2. (2), (4) and (5) exploit z−axis, x−axis, y−axis
orientation, respectively, and (3) is contour plot, in different domains. Equation u′3,2(x, t) is
displayed in Figure 20 for S1 = 0.20, S2 = 0.70, S3 = −0.50. (1) is three dimensional with
y = z = 2. (2), (4) and (5) exploit z−axis, x−axis, y−axis orientation, respectively, and (3)
is contour plot, in different domains.

(1) (2) (3) (4) (5)

Figure 19. Cont.
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(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Figure 19. The 3D and 2D with the diagram of equation u′3,1(x, t), in three different domains, for
S1 = 0.20, S2 = 0.70, and S3 = −0.50. (2), (7), (12), (4), (9), (14) and (5), (10), (15) display z−axis,
x−axis, y−axis orientations, respectively, and (3), (8), (13) are contour plots, in different domains.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Figure 20. The 3D and 2D with the diagram of equation u′3,2(x, t), in three different domains, for
S1 = 0.20, S2 = 0.70, and S3 = −0.50. (2), (7), (12), (4), (9), (14) and (5), (10), (15) display z−axis,
x−axis, y−axis orientations, respectively, and (3), (8), (13) are contour plots, in different domains.

4. Results and Discussion

In Figures 1–3, for specific values, we propose the numerical solutions of (1). As you
can see, in each stage, the obtained results are nearer to each other than the previous stages.
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We can conclude that the presented MEFM results in the unique solution of nonlinear PDEs
in higher stages.

Indeed, in Section 2, we studied the existence and uniqueness the solution of (1),
and then we investigated the stability of that. Next, by an analytical method, MEFM, we
obtained the solutions of the mentioned nonlinear PDE. Now, in this section, according to
Tables 1–3, we can prove that in higher stages of MEFM, the obtained solutions overlap
each other. In other words, we can observe the uniqueness of solution of (1).

Although this method can construct the multiple wave solutions to nonlinear equa-
tions, calculating each wave solution separately takes a lot of time; this can be one of the
shortcomings of this method.

Table 1. Numerical solutions for one wave solutions of (1).

x, y, z, t u11(x, y, z, t) u12(x, y, z, t)

0.001 0.888977 0.555496
0.01 0.889778 0.554962
0.1 0.897864 0.549552

1.001 0.984586 0.491037

Table 2. Numerical solutions for two wave solutions of (1).

x, y, z, t u21(x, y, z, t) u22(x, y, z, t)

0.001 0.425164 0.425174
0.01 0.426648 0.426748
0.1 0.441306 0.442298

1.001 0.562420 0.570334

Table 3. Numerical solutions for three wave solutions of (1).

x, y, z, t u31(x, y, z, t) u32(x, y, z, t) u33(x, y, z, t) u34(x, y, z, t)

0.001 1.033866 1.033866 1.033852 1.033919
0.01 1.038666 1.038666 1.038521 1.039200
0.1 1.086627 1.086627 1.085062 1.092440

1.001 1.518980 1.518980 1.501674 1.576044

5. Conclusions

In this study, firstly, through an alternative theorem, we studied the existence and
uniqueness of solution of some nonlinear PDEs which contains high nonlinear terms
and then investigated the UHR stability of solution. Secondly, we applied a relatively
novel analytical technique, the MEFM, to obtain the multiple wave solutions of presented
nonlinear equations. Finally, we presented the numerical results in tables and discuss the
advantages and disadvantages of the presented method.
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