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Abstract: This work presents an approach to solving the inverse kinematics of mobile dual-arm
robots based on metaheuristic optimization algorithms. First, a kinematic analysis of a mobile
dual-arm robot is presented. Second, an objective function is formulated based on the forward
kinematics equations. The kinematic analysis does not require using any Jacobian matrix nor its
estimation; for this reason, the proposed approach does not suffer from singularities, which is a
common problem with conventional inverse kinematics algorithms. Moreover, the proposed method
solves cooperative manipulation tasks, especially in the case of coordinated manipulation. Simulation
and real-world experiments were performed to verify the proposal’s effectiveness under coordinated
inverse kinematics and trajectory tracking tasks. The experimental setup considered a mobile dual-
arm system based on the KUKA® Youbot® robot. The solution of the inverse kinematics showed
precise and accurate results. Although the proposed approach focuses on coordinated manipulation,
it can be implemented to solve non-coordinated tasks.

Keywords: inverse kinematics; metaheuristic optimization; mobile dual-arm system; coordinated
manipulation

MSC: 65Y04; 65Z05; 65C35

1. Introduction

The inverse kinematics of robot manipulators is an essential task to solve problems
such as trajectory tracking, visual control, grasping, etc. Although robotic manipulators
have many qualities, they have the drawback that they are fixed to a specific location with
a limited workspace. To increase the manipulator’s workspace, the robot is attached to a
mobile platform. These robots are called mobile manipulators and are used to solve robot
manipulation tasks and mobile navigation simultaneously. However, the total degrees of
freedom (DOFs) of both the manipulator and the platform give, as a result, a redundant
robot [1]. The inverse kinematics for redundant robots is challenging to solve because
redundancy admits several joint configurations to reach the same end-effector pose.

On the other hand, these robots allow us to solve complex tasks where just one manip-
ulator is not enough, such as human-like tasks in domestic and industrial environments. It
is important to remark that cooperative manipulation is a crucial task to solve for multiple
manipulators that work together. Dual-arm systems are commonly used to deal with
cooperative manipulation.

In general, there are non-coordinated manipulation and coordinated manipulation [2].
In non-coordinated manipulation, the robots perform different tasks, and the inverse
kinematics can be solved independently. Robots interact with each other in coordinated
manipulation, and the kinematics must be analyzed carefully to perform a task. Dual-arm
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systems increase the manipulation capabilities with greater accessibility. However, these
systems are still fixed to a specific localization with a limited workspace. The dual-arm
system is attached to a mobile platform to handle this inconvenience. The cooperative
manipulation of mobile dual-arm systems is more challenging because the two manipu-
lators interact on the same mobile platform. This inconvenience complicates the inverse
kinematics, even in the case of non-coordinated manipulation.

Additionally, mobile dual-arm systems are often redundant. In this work, we intro-
duce an approach to solve the inverse kinematics of mobile dual-arm robots. This approach
deals with cooperative manipulation, especially in the case of coordinated manipulation.
However, the proposed approach can also be applied to solve non-coordinated manipula-
tion tasks. Some classical methods to compute the inverse kinematics of robot manipulators
are closed-form methods and numerical approaches [3,4]. There is no guarantee of finding
a closed-form solution with algebraic methods. Closed-form solutions with geometric
approaches are given for simple kinematic structures. If a closed-form solution is not
available, numerical approaches are often used. Most of the numerical methods are based
on differential kinematics [5]. In this case, the inconvenience is given by kinematic singu-
larities. A singularity occurs in a manipulator configuration in which a Jacobian matrix
is rank-deficient. It is crucial to avoid singularities since they reduce the manipulator’s
mobility, infinite solutions may exist, and inadmissible speeds may be computed.

Moreover, task priority inverse kinematics algorithms are used to solve cooperative
tasks in dual-arm systems [6,7]. These methods are based on the relative Jacobian matrix,
which considers the dual-arm system as a unique redundant manipulator. Then, differ-
ential kinematics can be used to solve the inverse kinematics. The disadvantage of these
approaches is the task conflicts given by singularities. Due to all the drawbacks mentioned
above, we propose using metaheuristics algorithms to solve the inverse kinematics of
mobile dual-arm systems in this work.

The use of metaheuristic algorithms to solve inverse kinematics problems has become
more common in recent years. Many versions of particle swarm optimization (PSO)
have been applied to solve inverse kinematics for robotics manipulators [8,9], multi-DOF
manipulators [10], and dual-arm space robots [11]. Moreover, many variants of differential
evolution (DE) also have been implemented to solve the inverse kinematics of robotic
manipulators [12,13] and human-like structures [14]. Artificial bee colony (ABC) and grey
wolf optimization (GWO) have been also used to solve the inverse kinematics of the 4-DOF
SCARA manipulator [15]. Table 1 summarizes some state-of-the-art algorithms. As can be
seen, most of the authors deal with redundant robots. Moreover, most of the applications
are inverse kinematic solutions for robot manipulators. The metaheuristic algorithms are:
ABC, quantum PSO (QPSO), improved PSO (IMPSO), improved self-adaptive DE (ISADE),
chaotic and parallelized ABC (CPABC), evolutionary algorithms (EAs), parallel learning
PSO (PLPSO), genetic algorithms (GAs), and cuckoo search (CS).

Table 1. State-of-the-art literature review. IK means inverse kinematics.

Reference Metaheuristics Robotic System Application

[16] ABC 7-DOF manipulator IK solutions
[17] PSO, DE, QPSO, IMPSO 6-DOF and 7-DOF manipulators IK solutions
[18] IMPSO 6-DOF manipulator IK solutions
[19] ISADE 7-DOF manipulator IK solutions
[20] QPSO 7-DOF manipulator IK solutions
[21] CPABC 7-DOF manipulator IK solutions
[22] EA 14-DOF dual-arm Path planning
[23] PLPSO 6-DOF manipulator IK solutions
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Table 1. Cont.

Reference Metaheuristics Robotic System Application

[24] GA, DE 6-DOF manipulator Path planning
[25] DE 7-DOF manipulator IK solutions
[26] CS 6-DOF manipulator Path planning

In previous works, we used the covariance matrix adaptation evolution strategy
(CMA-ES) algorithm to solve the inverse kinematics of robotics arms [27]. The CMA-ES
algorithm stands out over other algorithms such as the bat algorithm (BA), differential
search (DS), GA, and PSO. In [28], we introduced the use of DE to solve the inverse
kinematics of mobile manipulators. In this case, DE outperforms other metaheuristics such
as CS, hybrid biogeography-based optimization (HBBO), and teaching–learning-based
optimization (TLBO). Moreover, in [29], we used the DE algorithm to solve cooperative
manipulation for dual-arm systems. Based on the reported results, DE performed better
than other schemes, such as a hybrid strategy based on DE and PSO (DEMPSO), the
imperialist competitive algorithm (ICA), and improved TLBO (ITLBO). Furthermore, we
solved the inverse kinematics problem for cooperative mobile manipulators based on
self-adaptive DE (SDE) [30]. In this case, SDE achieved better results than DE, constriction
factor PSO (CFPSO), the flower pollination algorithm (FPA), and a variant of ABC called
KABC. Recently, we introduced the use of metaheuristics for the trajectory tracking of robot
manipulators [31]. The DE algorithm outperformed the whale optimization algorithm
(WOA), sine cosine algorithm (SCA), PSO, and HBBO.

The contributions of this paper are given below:

• An approach to solve the inverse kinematics of mobile dual-arm robots is proposed
for cooperative manipulation problems.

• A kinematic model for a mobile dual-arm robot based on the KUKA® (KUKA is a reg-
istered trademark of KUKA Aktiengesellschaft Germany) Youbot® (Youbot is a regis-
tered trademark of KUKA Aktiengesellschaft Germany) system is described.

• An objective function is formulated based on the forward kinematics equations to deal
with coordinated manipulation.

• The proposed approach avoids singularity configurations since it does not require
using any Jacobian matrix.

• A comparative study is included to compare the performance of the DE, CPABC, SDE,
CS, QPSO, IMPSO, and CMA-ES algorithms.

This article is organized as follows: The next section describes the kinematic model
of mobile dual-arm robots, especially for the KUKA® Youbot® system. The proposed
approach is described in Section 3, where the objective function formulation and the inverse
kinematics algorithm for cooperative manipulation tasks are presented. In Section 4, the
experimental results for coordinated inverse kinematics and coordinated trajectory tracking
tasks are given. A brief analysis of the obtained results and the future research directions
are given in Section 5. Finally, conclusions are presented in Section 6.

2. Kinematic Analysis of Mobile Dual-Arm Robots

A mobile dual-arm system is composed of two manipulators attached to a mobile
platform; see Figure 1. The two arms have similar kinematic structures, although they
may be different. On the other hand, the mobile platform can represent a differential-
drive robot, a car-like robot, or an omnidirectional robot. The advantage of using an
omnidirectional robot over the other platforms is the movement capabilities that allow
simultaneous displacements in any direction to reach any position and orientation in
its operational space. In contrast, the differential-drive and car-like robots have limited
movements due to their nonholonomic constraints [32].
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Figure 1. Mobile dual-arm system KUKA® Youbot®. It is composed of two 5-DOF manipulators and
a 3-DOF mobile platform.

In this work, we provide a kinematic model based on the KUKA® Youbot® robot [33].
This system is conformed by two identical manipulators of five DOFs composed of revolute
joints and an omnidirectional mobile platform with three DOFs. Each manipulator is
composed of revolute joints, and there is a gripper in the end-effector. The technical
specification was carefully revised, and the kinematic analysis is given below.

The kinematic chain of the considered mobile dual-arm system is described in Figure 2.
Coordinate homogeneity is considered to establish the kinematic model. Then, the follow-
ing frames are defined: {w} represents the world frame; {p} is a frame attached to the
mobile platform; {bi} is a frame attached to the beginning of the kinematic chain of the
manipulator i; {ei} is a frame attached to the end-effector, with i = 1, 2. Moreover, the pose
of the mobile platform is represented by q0, and the homogeneous matrix wTp transforms
the platform pose relative to the world frame {w}. The matrix pTbi

is a constant transfor-
mation to adjust the distance among the {p} and {bi} frames. Finally, qi contains the joint
configuration of the manipulator i, and the matrix bi Tei represents the forward kinematics
of manipulator i. The vector tr is defined for coordinated manipulation purposes, but we
will talk about this in Section 3.

𝑥

𝑦𝑧

Figure 2. Kinematic chain of the mobile dual-arm system based on the KUKA® Youbot® robot.

The pose of the mobile platform is described as

q0 =
[
xp yp θp

]T (1)
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where xp and yp are the platform position and θp its orientation. The matrix wTp can be
defined as

wTp(q0) =


cos(θp) − sin(θp) 0 xp
sin(θp) cos(θp) 0 yp

0 0 1 0
0 0 0 1

 (2)

The constant matrix pTbi
includes a rotation matrix pRbi

and a translation vector
ptbi

to adjust the orientation and the position of frame {bi} relative to frame {p}. This
transformation is shown below:

pTbi
=

[pRbi
ptbi

0 1

]
(3)

Figure 3 shows the coordinate frames assignment for the KUKA® Youbot® platform
to obtain the matrices in (3). The frames {bi} and {p} are also included. Based on the
provided specifications, the following matrices are established:

pTb1
=


1 0 0 0.15
0 1 0 0
0 0 1 0.14
0 0 0 1

, pTb2
=


−1 0 0 −0.15
0 −1 0 0
0 0 1 0.14
0 0 0 1


The joint configuration of manipulator i is described as

qi =
[
θi

1 θi
2 θi

3 θi
4 θi

5
]T (4)

where θi
j represents the current joint value of the articulation j, where j = 1, 2, 3, 4, 5.

The forward kinematics bi Tei can be obtained based on the Denavit–Hartenberg (DH)
model [5,34].

p
p

b1

b1

b2

b2

0.15𝑚

0.15𝑚

0.14𝑚

𝑥

𝑧𝑥
𝑦

Top view Side view

Figure 3. Coordinate frames assignment for the KUKA® Youbot® mobile platform based on the
technical specifications manual.

Figure 4 illustrates the coordinate frames’ assignment for the KUKA® Youbot® arm
to obtain the DH table provided in Table 2. Each link j is represented by a homogeneous
matrix j−1Tj, which transforms the frame attached to the link j− 1 into the frame link j.
The matrix j−1Tj is expressed as

j−1Tj =


cθj −sθjcαj sθjsαj ajcθj
sθj cθjcαj −cθjsαj ajsθj
0 sαj cαj dj
0 0 0 1

 (5)

where θj is a joint angle, aj is a link length, dj is a link offset, and αj is a link twist. For
brevity, the sin and cos operations are represented with the letters s and c, respectively.
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𝑥0

𝑦0𝑧0

𝑥1

𝑦1

𝑧1

𝑦2

𝑧2

𝑥2

𝑦3

𝑧3, 𝑦4

𝑥3, 𝑥4

𝑧4

𝑧5

𝑦5

𝑥5

0.135𝑚
0.155𝑚

0.033𝑚

0.147𝑚
0.2174𝑚

Figure 4. Coordinate frames’ assignment for the KUKA® Youbot® manipulator based on the technical
specifications manual.

Table 2. DH table for the KUKA® Youbot® manipulator.

Link a (m) α (rad) d (m) θ (rad)

1 0.033 π/2 0.147 θ1
2 0.155 0 0 θ2
3 0.135 0 0 θ3
4 0 π/2 0 θ4
5 0 0 0.2175 θ5

Considering the parameters in Table 2 and using (5), the following matrices can be
obtained:

0T1(θ1) =


cos(θ1) 0 sin(θ1) 0.033 cos(θ1)
sin(θ1) 0 − cos(θ1) 0.033 sin(θ1)

0 1 0 0.147
0 0 0 1


1T2(θ2) =


cos(θ2) − sin(θ2) 0 0.155 cos(θ2)
sin(θ2) cos(θ2) 0 0.155 sin(θ2)

0 0 1 0
0 0 0 1


2T3(θ3) =


cos(θ3) − sin(θ3) 0 0.135 cos(θ3)
sin(θ3) cos(θ3) 0 0.135 sin(θ3)

0 0 1 0
0 0 0 1


3T4(θ4) =


cos(θ4) 0 sin(θ4) 0
sin(θ4) 0 − cos(θ4) 0

0 1 0 0
0 0 0 1


4T5(θ5) =


cos(θ5) − sin(θ5) 0 0
sin(θ5) cos(θ5) 0 0

0 0 1 0.2175
0 0 0 1


Then, the forward kinematics bi Tei (qi) for each arm is calculated as

bi Tei (qi) =
0T5(qi) =

0T1(θ
i
1)

1T2(θ
i
2)

2T3(θ
i
3)

3T4(θ
i
4)

4T5(θ
i
5) (6)
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Given an actual pose of the platform q0 and a joint configuration of each manipulator
qi, the forward kinematics of the mobile dual-arm system can be obtained as follows:

wTei (q0, qi) =
wTp(q0)

pTbi
bi Tei (qi) =

[wRei
wtei

0 1

]
(7)

where wTei (q0, qi) contains the position wtei and orientation wRei of the end-effector {ei}
with respect to the world frame {w}.

The inverse kinematics of mobile dual-arm robots consists of computing the platform’s
actual pose q0 and the joint configurations qi given a desired end-effector pose wTei for
each manipulator. This work proposes an algorithm to solve the inverse kinematics of
mobile dual-arm robots for cooperative manipulation tasks.

3. Description of the Proposed Approach

In a mobile dual-arm cooperative system, the manipulators can interact with each
other to solve coordinated manipulation or work independently to solve non-coordinated
tasks. Moreover, both manipulators perform the manipulation tasks on board the same
mobile platform. Indeed, this complicates the kinematics analysis for both coordinated
and non-coordinated manipulation. The inverse kinematics for mobile dual-arm systems
cannot be solved independently due to both manipulators sharing the same platform pose.
This paper addresses the case of coordinated manipulation. However, this approach can
also be applied to solve non-coordinated tasks.

The proposal is based on the forward kinematic equations considering the two manip-
ulators and the mobile platform. Considering all as a whole system, the inverse kinematics
gives the system configuration no matter if it is a coordinated or a non-coordinated task.
On the other hand, considering the manipulators independently, they cannot achieve their
objective due to the interaction with the robotic platform.

Let us consider the mobile dual-arm robot presented in Figure 2. For coordinated
manipulation, we considered that manipulator 1 has the role of master. Then, a vector tr is
defined to compute the relative position of the end-effector {e2} expressed with respect to
the frame {e1}. Then, we define the desired position t∗e1

for the end-effector of arm 1. The
desired position t∗e2

for the end-effector of arm 2 is given by

t∗e2
= t∗e1

+ tr (8)

For non-coordinated manipulation, the desired position t∗e2
is provided independently

of the desired position t∗e1
.

3.1. Objective Function Formulation

The aim of the proposed inverse kinematics algorithm is to minimize the error be-
tween the desired end-effector position of each arm and the actual end-effectors’ positions.
Furthermore, it is considered to minimize the error between current and previous joints,
including the mobile platform poses. This is useful to reduce the system motion, especially
during coordinated trajectory tracking tasks.

The error between the desired position t∗ei
and the actual position wtei of manipulator

i can be computed as
eti =

∥∥∥t∗ei
− wtei

∥∥∥ (9)

where ‖·‖ denotes the Euclidean norm. The position wtei is obtained based on the forward
kinematics (7) for the actual system configuration (q0, qi).
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To minimize the coordinated manipulation motion, we define errors between the
actual configurations (q0, qi) and the previous configurations

(
qprev

0 , qprev
i

)
. These errors

are defined as
eq0 =

∥∥∥q0 − qprev
0

∥∥∥
eqi =

∥∥∥qi − qprev
i

∥∥∥ (10)

The formulation of an objective function f , which includes the position and motion
errors, is defined as

f = α (et1 + et2) + β eq0 + γ
(
eq1 + eq2

)
(11)

where α, β, and γ are positive factors to scale the contribution of each term. The larger the
value of α is, the higher the priority to minimize position errors. The larger the values of β
are, the less movement for the mobile platform. Similarly, the larger the values of γ are,
the less movement for the joints of each arm. These factors can be selected experimentally,
but we recommend α > γ > β. That is, we provide higher priority to position errors, less
motion for the manipulators, and much for the platform.

3.2. Inverse Kinematics Based on Metaheuristics Optimization Algorithms

We propose to solve the objective function (11) using metaheuristics algorithms. Most
metaheuristics strategies are population-based optimization algorithms, where every mem-
ber represents a potential solution. In this case, a population member contains a candidate
configuration of the mobile dual-arm system. Moreover, metaheuristics algorithms require
random initializations inside of a search space.

The joint rotation limits bound the search space of metaheuristics algorithms. The
KUKA® Youbot® technical specifications provide the following upper qiu and lower qiu
joint limits.

q1l = q2l =
[
−169◦ −65◦ −150◦ −102.5◦ −167.5◦

]T

q1u = q2u =
[
169◦ 90◦ 146◦ 102.5◦ 167.5◦

]T

The translations of the mobile platform and its rotation have no limits. However, we
propose the following workspace to keep the platform movements bounded:

q0l =
[
−1.5m −1.5m −180◦

]T

q0u =
[
1.5m 1.5m 180◦

]T

where q0l and q0u are the lower and upper boundaries, respectively. All lower and upper
boundaries are shown in degree values for clarity, although in the optimization process,
the algorithms use radians. Then, we define the lower and upper boundaries of the

whole mobile dual-arm system as ql =
[
qT

0l
qT

1l
qT

2l

]T
and qu =

[
qT

0u
qT

1u
qT

2u

]T
,

respectively. These boundaries are needed to randomly initialize candidate solutions.
Moreover, ql , qu ∈ RD, where D = 13 is the dimension of the optimization problem.

To generate random solutions, we propose to use the following equation:

qr = ql + (qu − ql)� r (12)

where � indicates the elementwise product and r ∈ RD is a uniformly distributed random
vector, where each element is in the range [0, 1]. The random vector qr represents an initial
solution for a candidate configuration.
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The lower and upper boundaries also represent constraints that must be considered
for real-world implementations. We considered solving the inverse kinematics of mobile
dual-arm robots as a global constrained optimization problem, which is expressed as

arg min
q

f (q), subject to ql < q < qu (13)

where q defines the optimal configuration of the mobile dual-arm system with q =[
qT

0 qT
1 qT

2
]T . The set of solutions that satisfy F = {q : ql < q < qu} is called the

feasible solutions. In contrast, unfeasible solutions are given by F̄ = {q : q /∈ F}. To deal
with the constraints, we recalculated the vector q for those infeasible solutions using (12).

3.3. Coordinated Trajectory Tracking Algorithm

A path is divided into K points to solve coordinated trajectory tracking tasks. Every
point k = 1, 2, 3, · · · , K becomes a desired position t∗k for end-effector 1. The relative desired
position for end-effector 2 is computed using (8). Then, the inverse kinematics is solved
based on the optimization problem expressed in (13) to obtain an optimal configuration
qk. The solution qk becomes the previous configuration for the next desired point t∗k+1.
The goal is to find the set of solutions Q = {q1, q2, q3, · · · , qK} that define the trajectory
tracking. A summary of the proposed coordinated trajectory tracking algorithm is given in
Figure 5.

Begin

End

Define w𝐓e1 , w𝐓e2, and 𝐭𝑟 values

Provide 𝛼, 𝛽, 𝛾 and 𝛿 settings
Identify 𝐪𝑙 and 𝐪𝑢 boundaries

Set initial configurations 𝐪0
𝑝𝑟𝑒𝑣

, 𝐪1
𝑝𝑟𝑒𝑣

, 𝐪2
𝑝𝑟𝑒𝑣

Solve argmin
𝐪

𝑓 𝐪 subject to 𝐪𝑙 < 𝐪 < 𝐪𝑙

Set previous joint variable 𝐪0
𝑝𝑟𝑒𝑣

← 𝐪0
𝐪1
𝑝𝑟𝑒𝑣

← 𝐪1,  𝐪2
𝑝𝑟𝑒𝑣

← 𝐪2

¿Are the total 
𝐾 points 
reached?

True

False

Assign desired 𝐭e1
∗ ← 𝐭𝑘

∗

Compute 𝐭e2
∗ ← 𝐭𝑒1

∗ + 𝒕𝑟

Figure 5. Coordinated trajectory tracking algorithm.

4. Experimental Results

The experiments aimed to test the performance of the proposed inverse kinematics of
mobile dual-arm robots for cooperative manipulation. The considered tasks are coordinated
inverse kinematics and coordinated trajectory tracking. The applicability of the proposed
approach is demonstrated using the mobile dual-arm system based on the KUKA® Youbot®

robot. Moreover, the tests were conducted in simulations and real-world experiments.
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For the coordinated inverse kinematics tests, we propose to use the following de-
sired positions.

Target point 1:

tr =
[
0.2 −0.3 −0.2

]T

t∗e1
=
[
0.5 −0.2 0.45

]T

Target point 3:

tr =
[
−0.2 −0.5 −0.1

]T

t∗e1
=
[
0.5 0.2 0.4

]T

Target point 2:

tr =
[
0.0 −0.5 0.0

]T

t∗e1
=
[
0.3 0.2 0.5

]T

Target point 4:

tr =
[
0.0 −0.3 0.2

]T

t∗e1
=
[
−0.25 0.3 0.3

]T

Four trajectories with different difficulty degrees are defined for coordinate trajectory
tracking. Each trajectory was divided into K = 200 points. The vector t∗k =

[
xk yk zk

]T

defines the k-th trajectory point. The trajectories are

Trajectory 1: Sinusoidal

xk = 0.5

zk = 0.4 + 0.05 sin(30 yk)

yk ∈ [−0.25, 0.75]

Trajectory 3: Trapezoidal

xk = 0.5

rk = 0.45 + 0.1 sin(30 yk)

yk ∈ [−0.25, 0.75]

zk =


0.5 if rk > 0.5
0.4 if rk < 0.4
rk otherwise

Trajectory 2: Circular

xk = 0.5

yk = 0.25 + 0.05 cos(θk)

zk = 0.45 + 0.05 sin(θk)

θk ∈ [0, 2π]

Trajectory 4: Rose curve

xk = 0.5

yk = 0.25 + rk cos(θk)

zk = 0.35 + rk sin(θk)

rk = 0.035 + 0.015 cos(3 θk)

θk ∈ [0, 2π]

For all experiments, the parameter settings related to the objective function were
selected as α = 1.2, β = 0.1, and γ = 0.4. These values were selected experimentally, but
we ensured that α > γ > β. Moreover, the following initial configurations were fixed as

qprev
0 =

[
0 0 π/2

]T

qprev
1 =

[
−π/2 π/2 −π/4 π/4 0

]T

qprev
2 =

[
π/2 π/2 −π/4 π/4 0

]T

The performance of the proposed approach was analyzed and compared using the
following metaheuristics algorithms: DE, CPABC, SDE, CS, QPSO, IMPSO, and CMA-ES.
The comparisons were performed to find the algorithm that best minimizes the position
and motion errors.

The parameter settings for the considered metaheuristics were conducted as follows:
First, the common parameters were the population size of 30 members and a total of
1000 iterations. The particular parameter settings are given in Table 3.
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Table 3. Parameter settings in state-of-the-art literature review.

Reference Algorithm Parameter Settings

[28] DE DE/rand/1/bin, F = 0.6, CR = 0.9
[21] CPABC Limits L = 40, MR = 0.8, SF = 0.6
[30] SDE F = 0.5, CR = 0.8
[26] CS Discover rate P = 0.25
[20] QPSO β0 = 0.5, β1 = 1.0

[17] IMPSO wi = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, C1 = 1.4962,
C2 = 1.4962

[27] CMAES Standard (µ, λ)-CMA-ES, λ = 30

The metaheuristics algorithms presented in Table 3 were considered for comparison pur-
poses because they have been used previously in the literature to solve the inverse kinematics
of fixed robotics manipulators, as reported in the following works [17,18,21,26–28,30].

In all experiments, the specifications of the test machine were an Intel Core i7-4770®

(Intel i7 is a registered trademark of Intel Corporation USA) CPU 3.4 GHz and 16 GB of
RAM. Moreover, the experiments were performed in the Matlab R2021a environment®

(Matlab is a registered trademark of the MathWorks, Inc., USA).

4.1. Simulation Experiments for Coordinated Inverse Kinematics

This section presents a comparative analysis of different metaheuristics optimization
algorithms for solving coordinated inverse kinematics tasks. The aim of the simulations
was to identify those algorithms that best minimized the position errors et1 and et2 . The
best algorithms are compared later in coordinated trajectory tracking tasks to analyze the
motion error results.

For comparison purposes, every metaheuristic ran 100 times independently. To qualify
the results, the statistical performance was measured with the mean, standard deviation
(STD), and the best and worst results. The best algorithms report a small mean value with
a low standard distribution, which is a small difference between the best and worst results.
These measures are shown in tables, where the position error reported is et1 + et2 , which is
given in meters (m).

In these tests, we considered that a coordinated inverse kinematics task is successfully
solved if the reported position error result is less than 1× 10−4, which is an error below
0.1 mm. Then, a mean value below 1× 10−4 indicates accurate results. Moreover, a low
STD value indicates better precision. Additionally, the difference between the best and the
worst measures shows the amount of dispersion related to the accuracy.

The coordinated inverse kinematics results are provided in Tables 4–7. CMA-ES
showed the highest precision and accuracy in all cases. It showed the lowest mean and
STD values. It also showed the smallest worst measures. Clearly, CMA-ES outperformed
the other algorithms. The performances of DE and SDE were quite similar. Their results
were precise and accurate. DE and SDE stood out with all measured values below 1× 10−4.
The worst results of Tables 4–6 indicated that SDE performed slightly better than DE. QPSO
presented the best measure in Table 4. Moreover, IMPSO showed the bests measures in
Tables 5–7. The performances of QPSO and IMPSO were similar, but not the best. All mean
and STD measures of IMPSO were higher than 1× 10−4, which means low precision and
accuracy. Table 7 indicates that QPSO also had low precision and accuracy. CS showed
balanced results. The results were accurate even if they did not demonstrate the best mean
and STD values. In all tests, those results are provided below 1× 10−4. CPABC performed
poorly in all tests. It did not provide precise nor accurate results. In almost all cases, the
measured values presented were above 1× 10−4.
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Table 4. Position error results for target point 1. The best results are highlighted in bold.

DE CPABC SDE CS QPSO IMPSO CMA-ES

Mean 5.136 × 10−6 0.022031 5.440 × 10−7 0.00013183 0.0008852 0.0018518 7.965× 10−15

STD 2.360 × 10−5 0.097928 1.193 × 10−6 6.929 × 10−5 0.0037455 0.0084942 1.509× 10−14

Best 7.488 × 10−9 1.717× 10−15 3.683 × 10−9 2.513 ×10−5 6.245× 10−17 8.370 ×10−17 6.973 ×10−16

Worst 0.00016689 0.58487 6.887× 10−6 0.0003229 0.022734 0.055906 1.03× 10−13

Table 5. Position error results for target point 2. The best results are highlighted in bold.

DE CPABC SDE CS QPSO IMPSO CMA-ES

Mean 1.036 × 10−5 0.00051808 2.768 × 10−6 0.0003566 0.0002991 0.0062474 3.803× 10−13

STD 2.287 × 10−5 0.0018515 5.428 × 10−6 0.00021011 0.00099298 0.035237 1.469× 10−12

Best 1.257 × 10−8 7.467× 10−15 1.049 × 10−8 9.012 × 10−5 1.875× 10−13 1.746× 10−16 4.616×10−16

Worst 0.00010999 0.011715 3.109 × 10−5 0.0010176 0.0062429 0.24645 8.107× 10−12

Table 6. Position error results for target point 3. The best results are highlighted in bold.

DE CPABC SDE CS QPSO IMPSO CMA-ES

Mean 8.119 × 10−6 0.0036393 2.754 × 10−6 0.00026886 0.0002542 0.0034882 8.839× 10−13

STD 1.843 × 10−5 0.021661 5.134 × 10−6 0.00016798 0.001258 0.020727 2.685× 10−12

Best 5.514 × 10−8 7.992× 10−15 2.743 × 10−8 3.107 × 10−5 1.257× 10−13 2.310× 10−16 1.994× 10−15

Worst 0.00011067 0.15316 2.599 × 10−5 0.00074317 0.0085917 0.14618 1.523× 10−11

Table 7. Position error results for target point 4. The best results are highlighted in bold.

DE CPABC SDE CS QPSO IMPSO CMA-ES

Mean 4.213 × 10−6 0.02832 3.229 × 10−6 0.00043625 0.023282 0.040247 8.710× 10−14

STD 5.632 × 10−6 0.087143 1.264 × 10−5 0.00028418 0.015985 0.09733 2.608 × 10−13

Best 8.997 × 10−8 1.023× 10−15 1.919 × 10−9 5.754 × 10−5 5.658× 10−12 7.850× 10−17 8.01 × 10−16

Worst 2.941 × 10−5 0.39983 8.697 × 10−5 0.0014147 0.064859 0.4156 1.488× 10−12

Figure 6 illustrates the convergence curves of all compared algorithms. These results
were the fitness convergence rates for the best position error results. The graphs show
the first 300 iterations because posterior results did not report significant differences. As
can be seen, the fastest convergence rates were given by CMA-ES. IMPSO also had fast
convergence, as shown in Figure 6b–d. Moreover, the converge curves of DE, CS, CPABC,
and SDE were similar. Finally, the slowest convergence rate was provided by QPSO.

Based on the results of these tests, we noticed that CMA-ES outperformed the other
algorithms. It showed the highest accuracy and precise results with faster convergence
rates. Moreover, the performances of DE and SDE were also remarkable. The perfor-
mance of CS stood out over IMPSO, QPSO, and CPABC. Finally, the IMPSO, QPSO, and
CPABC algorithms were not considered for further comparison tests because of their
poor performance.
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Figure 6. Convergencecurves’ results. The results for the best position errors are presented.

4.2. Simulation Experiments for Coordinated Trajectory Tracking

This section presents the simulation results for coordinated trajectory tracking tasks.
We compared the performance of the metaheuristics algorithms that best performed in the
coordinated inverse kinematics tests. The compared algorithms were DE, SDE, CS, and
CMA-ES. We were interested in finding the algorithm that best minimized the position
errors et1 and et2 , but also presented minimum motion errors eq0 , eq1 , and eq2 . The best
algorithm was used for the real-world implementations.

For the comparison analysis, the position errors are reported as et1 + et2 and the motion
errors as eq0 + eq1 + eq2 . We used boxplots to graphically show the statistical variation of
the inverse kinematics results related to each point in the trajectory. The best algorithms
show a small data dispersion with a low median value. In addition, these results should
present the fewest outliers.

In these simulations, the position and motion errors were compared using boxplots.
To qualify the position error results, the statistical performance was measured with the
mean, STD, and min and max value results. Moreover, the motion errors are illustrated
with graphs to visually analyze the motion during the training tasks. Additionally, the
desired trajectory and the actual trajectory provided by the optimization algorithms are also
compared with graphs. Finally, each metaheuristics algorithm used a total of 300 iterations.

The position error results of the coordinated trajectory tasks are given in Figure 7.
Clearly, CS showed the worst results. It had a larger data dispersion with the presence of
outliers. In all cases, the reported median value was around 0.01 m, which is not adequate
for trajectory tracking. Moreover, it seems that DE, SDE, and CMAES performed similarly.
They provided a small data dispersion with lower median values. However, these results
are analyzed in tables for a fair comparison. Such results are given in Tables 8–11.

Based on the results provided in Tables 8–11, we noticed that the CMA-ES algorithm
outperformed the others. It had the best mean, STD, and min and max results. These
demonstrated that CMA-ES provided accurate and precise coordinate tracking results.
DE and SDE also provided acceptable results with high accuracy and precision. They
performed similarly in all cases, with measures below 1× 10−4. The performance of CS was
poor. All reported measures were bigger than 1× 10−4, which demonstrated low accuracy
and precision.
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Figure 7. Position error results of coordinated trajectory tracking tests.

Table 8. Position error results for sinusoidal trajectory. The best results are highlighted in bold.

DE SDE CS CMA-ES

Mean 5.104 × 10−5 5.5523 × 10−5 0.0099478 1.1142× 10−8

STD 7.5244 × 10−5 3.94 × 10−5 0.0055781 2.9257× 10−8

Min 6.0195 × 10−6 4.3216 × 10−6 0.0028493 2.6832× 10−13

Max 0.00087922 0.00026586 0.036553 3.7112× 10−7

Table 9. Position error results for circular trajectory. The best results are highlighted in bold.

DE SDE CS CMA-ES

Mean 4.0829 × 10−5 5.2769 × 10−5 0.009863 3.4473× 10−9

STD 2.9189 × 10−5 3.8536 × 10−5 0.0046131 6.085× 10−9

Min 3.7308 × 10−6 6.9321 × 10−6 0.0025768 3.7374× 10−15

Max 0.00021541 0.0002404 0.027738 4.8502× 10−8

Table 10. Position error results for trapezoidal trajectory. The best results are highlighted in bold.

DE SDE CS CMA-ES

Mean 4.1641 × 10−5 4.6393 × 10−5 0.010247 7.3893× 10−9

STD 3.4045 × 10−5 3.4973 × 10−5 0.0047796 2.0364× 10−8

Min 4.1663 × 10−6 5.7924 × 10−6 0.0015987 3.4801× 10−16

Max 0.00024229 0.00019833 0.030391 1.2199× 10−7

Table 11. Position error results for rose curve trajectory. The best results are highlighted in bold.

DE SDE CS CMA-ES

Mean 3.5829 × 10−5 4.2613 × 10−5 0.0092417 2.3824× 10−9

STD 2.8703 × 10−5 2.9939 × 10−5 0.0048608 3.9706× 10−9

Min 5.3653 × 10−6 4.1256 × 10−6 0.0014107 3.6486× 10−12

Max 0.0001964 0.00018327 0.031768 2.4175× 10−8
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To visually see the differences in the position errors between CMA-ES and SDE, we
considered including trajectory tracking graphs. The coordinated trajectory tracking results
are provided in Figure 8. These results illustrate the successful trajectory tracking for all
tests. As can be seen, the CMA-ES results fit perfectly in all given trajectories. Moreover,
CMA-ES performed better than SDE. However, both algorithms provided excellent results.
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Figure 8. Coordinated trajectory tracking comparative results. The compared algorithms are CMA-ES
and SDE. The “Desired” label means the desired end-effector trajectory.

The motion error results from the coordinate trajectory tracking tasks are given in
Figure 9. As expected, CS reported the worst results. It had the largest data dispersion
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with the presence of outliers in all tests. In contrast, DE, SDE, and CMA-ES performed
similarly. Their data dispersion was small for the results in the sinusoidal, circular, and
rose curve trajectories; see Figure 9a, Figure 9b, and Figure 9d, respectively. Moreover,
their results in Figure 9c indicated that the trapezoidal trajectory was more difficult to
solve since more movement is required to follow the trajectory. Indeed, we considered
including motion comparison graphs to analyze the performance of CMA-ES against CS
for the trapezoidal trajectory. We did not consider including DE nor SDE for comparison
because they performed similarly.
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Figure 9. Motion error results of coordinated trajectory tracking tests.

Figure 10 shows the motion results for the coordinate trapezoidal tracking. We com-
pared the performance of CMA-ES against CS to emphasize the need for small motion
errors. As we can see, CMA-ES showed smooth tracking results. In contrast, CS presented
discontinuous motions. In real-world applications, it is important to avoid these rough
motions since they can seriously damage and wear out the joints.

Based on the presented results, the CMAES algorithm was the most reliable method
to solve coordinated trajectory tracking tasks. However, the DE and SDE algorithms are
also recommended.

4.3. Real-World Experiments for Coordinated Trajectory Tracking

In this section, we are interested in presenting the applicability of the proposed
approach in a real-world implementation. We propose to solve coordinated trajectory
tracking based on the CMA-ES algorithm. The applicability was demonstrated using the
KUKA® Youbot® system; see Figure 1.

The experiments were performed using the Robot Operating System (ROS) toolbox
for Matlab. There exists an ROS component to access the KUKA® Youbot® hardware. This
component provides a PID algorithm to control the joint positions of each manipulator.
Moreover, this component also provides the current state of the joints based on encoder
measures, and the current pose is given by odometry. To control the mobile platform pose,
we used an adaptive PID scheme [35].
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Figure 10. Joint motion comparative results for coordinated trapezoidal tracking. The compared
algorithms are CMA-ES and CS.

The coordinated trapezoidal trajectory task was considered for this test. The optimal
solution found by CMA-ES represented a reference configuration q∗. Indeed, we had a
reference for the platform q∗0 , a joint reference configuration for manipulator 1 q∗1 , and a
reference for manipulator 2 q∗2 .

The presented results in this test were the comparative motion results between the
reference and actual system configuration and the coordinated trajectory tracking results.

The motion control results for the mobile platform are given in Figure 11. Moreover, the
motion control results for manipulator 1 and manipulator 2 are given in Figures 12 and 13,
respectively. For some of the first reference values, there was a greater following error.
However, after the control laws reached the references, the following error was minimal.
The reported results suggested that the reference and the actual values were practically the
same. If the current system configuration were the same as the reference values, then the
coordinate trajectory tracking should succeed.
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Figure 11. Motion results for the mobile platform. The “Reference” label indicates the optimal pose
value provided by the CMA-ES algorithm, and the “Measured” label is the current odometry value.
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Figure 12. Motion result for manipulator 1. The “Reference” label indicates the optimal joint value
provided by the CMA-ES algorithm, and the “Measured” label is the current measurement.
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Figure 13. Motion result for manipulator 2. The “Reference” label indicates the optimal joint value
provided by the CMA-ES algorithm, and the “Measured” label is the current measurement.

The coordinated trajectory tracking results are provided in Figure 14. As can be
seen, both manipulators on board the same mobile platform succeeded in following the
references as expected. We noticed that there were bigger tracking errors at the beginning
of the trajectory, but this is normal since the actual position related to the initial system
configuration was not close to the first reference point. When the control algorithm reached
the reference, both trajectories were practically the same. We concluded that the coordinated
trapezoidal tracking was successful.
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Figure 14. Coordinated trajectory tracking results. The “Reference” label represents the trajectory
achieved by the CMA-ES algorithm, and the “Measured” label is the current end-effector position.
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5. Discussion

Gradient-based optimization algorithms are used to compute the minimum of a dif-
ferentiable function. In the presence of multiple minima, these approaches may fail to
find a global minimum. On the other hand, metaheuristics algorithms achieve global
solutions, and the definition of the objective function does not necessarily have to be differ-
entiable [36]. Metaheuristics algorithms are commonly used to solve the inverse kinematics
of robotic manipulators. In this work, we proposed to solve the inverse kinematics of mo-
bile dual-arm robots for coordinated manipulation. We considered including a comparative
analysis among DE, CPABC, SDE, CS, QPSO, IMPSO, and CMA-ES to solve the inverse
kinematics problems.

The comparative analyses indicated that CMA-ES outperformed the other algorithms
with the highest accuracy and precise results. In the coordinated inverse kinematics tests,
CMA-ES reported the smallest position error results with values below 1× 10−12 m. In
the coordinated trajectory tracking tests, CMA-ES also reported the smallest position
error results with values below 1× 10−8 m. In both tests, it also reported the smallest
STD values and fastest convergence rates. Additionally, CMA-ES showed a minimal
motion error, which is a smooth movement during trajectory tracking. For these reasons,
we considered the CMA-ES algorithm the most reliable method for solving coordinated
manipulation tasks.

The comparative analyses also indicated that DE and SDE stood out in both the coor-
dinated inverse kinematics and coordinated trajectory tracking tests. Their performances
were similar with position error values below 1× 10−5 m in both tests. Their STD values
results were also remarkable. DE and SDE provided accurate and precise results with low
movement errors.

The performance of CS was quite good in the coordinated inverse kinematics tasks,
but its performance was poor in coordinated trajectory tracking. It seems that CS required
more iterations to improve its performance. Moreover, the performance of CPABC, QPSO,
and IMPSO was poor in both tests. The performance of these algorithms can be improved
by carefully modifying their parameter settings. We concluded that these algorithms are
not convenient to solve coordinated manipulation tasks.

Closed-form solutions give exact solutions for simple systems; for complex systems,
they do not ensure a solution. In this case, the use of iterative methods is advised, which
gives an approximate solution. The small position errors provided by the CMA-ES approach
indicate highly precise results. It is important to note that such results are achieved in
simulations. However, a position error of less than 1× 10−12 meters is difficult to achieve in
real-world experiments due to hardware limitations. The use of industrial robots with the
capability of high precision is required. Moreover, macro-robots are often used for medical
proposes, which can achieve highly precise positions [37].

Although the proposed algorithm focuses on solving coordinate manipulation prob-
lems, this approach can also be applied to solve non-coordinated tasks. In non-coordinated
manipulation, it is required to provide two independent inverse kinematics targets. The
users need to provide the values of t∗e1

and t∗e2
independently. The rest of the inverse

kinematics algorithm is practically the same.
This paper introduced a kinematic model for mobile dual-arm robots, using as the case

of study the KUKA® Youbot® system. This system is composed of two 5-DOF manipulators
attached to a 3-DOF omnidirectional platform. However, it is important to remark that the
proposed scheme is not limited to this system; other manipulator configurations can be
used to replace the ones used in this work. Since the forward kinematics is based on the
DH model, no modifications to the inverse kinematics algorithm are required.

The proposed approach only considers the kinematic analysis to compute the mobile
platform pose and the joint configuration of each arm to reach their desired end-effector
position. Since the proposed approach is based on the forward kinematics equations, then
the dynamical analysis is not required. Moreover, the optimal obtained configuration by
the proposal was used as a reference for control purposes. Then, control strategies based
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on dynamic analysis can be used to control the system. Since the proposed approach com-
putes the mobile and manipulators’ references, the control strategies can be implemented
independently, with the advantage that the dynamic analysis of the complete system is
not required.

To show the applicability of the proposed approach, real-world experiments were
performed using the mobile dual-arm KUKA® Youbot® system to solve a coordinated
trajectory tracking task. Moreover, we used a generic PID algorithm to control each
manipulator’s joint position and an adaptive neuron PID to control the mobile platform
pose. The reported results showed that the error references were close to zero, which
implies that the cooperative task was successful.

Additional objectives in the optimization problems to solve the inverse kinematics of
robotic manipulators have been proposed in recent years. Repulsive potential fields can be
considered in the formulation of the objective function to deal with collision avoidance [38].
The use of the penalty function can also be used to handle joint limit constraints [29,30].
Moreover, the combination of metaheuristics algorithms and artificial neural networks
provides the capacity to reduce time consumption [39,40]. Indeed, the use of recurrent
neuronal networks is an appealing topic to deal with real-time inverse kinematics, and this
has been proven to solve the control of redundant manipulators [41].

As a final remark, metaheuristics algorithms are often used for offline applications
because they are time-consuming. However, the use of dedicated hardware such as the
NVIDIA CUDA parallel architecture presents an interesting framework to significantly
reduce time consumption, which is appealing for online and real-time applications [42].

6. Conclusions

This work introduced an approach for solving the inverse kinematics of mobile dual-
arm robots for cooperative manipulation. Simulation and real-world experiments were
performed to prove the effectiveness of the proposed approach for solving coordinated
inverse and coordinated trajectory tracking tasks. Moreover, to solve the inverse kinemat-
ics, we used metaheuristics optimization algorithms. Then, comparative analyses were
performed among the DE, CPABC, SDE, CS, QPSO, IMPSO, and CMA-ES algorithms. The
experimental setup considered a mobile dual-arm system based on the KUKA® Youbot®

system, which is composed of two 5-DOF manipulators attached to a 3-DOF omnidirec-
tional platform.

Based on the comparative results, we can conclude that CMA-ES outperformed the
other algorithms in all experiments. It reported the highest accuracy and precise results
with the fastest convergence rates for coordinated inverse kinematics tasks. CMA-ES also
provided the smoothest joint motions during coordinated trajectory tracking tasks. The
performance of DE and SDE was also remarkable. They performed similarly in all tests
with high accuracy and precision. They also provided smooth joint motions. CS performed
better than CPABC, QPSO, and IMPSO in coordinated inverse kinematics tasks. However,
it is not recommended for coordinated trajectory tracking due to its high motion errors.
The CPABC, QPSO, and IMPSO algorithms are not recommended to solve the inverse
kinematics of mobile dual-arm robots.

Additionally, the CMA-ES algorithm was tested for coordinated trajectory tracking
in real-world experiments. The obtained optimal configurations were used as references.
Then, ROS components were used to control the system. Since the references and the
actual robot configuration perfectly matched, the results proved the applicability of the
proposed approach.

Although the proposed approach focuses on solving coordinated inverse kinematics
and coordinated trajectory tracking tasks, it can be implemented to solve non-coordinated
manipulation as well. In future research, this work can be extended to solve the inverse
kinematics of mobile dual-arm robots with non-holonomic platforms. Additionally, we
propose to design a control scheme based on the dynamic model for the manipulator and
the mobile platform to reach the references provided by the presented proposed approach.
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The presented kinematic model considers an omnidirectional platform. It is appealing
to propose an approach for mobile dual-arm robots with differential-drive or car-like
platforms. However, the inverse kinematics approach must consider the non-holonomic
constraints. We leave this approach for future research.
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The following abbreviations are used in this manuscript:
DOFs Degrees of freedom
STD Standard deviation
DE Differential evolution
CPABC Chaotic and parallelized artificial bee colony
SDE Self-adaptive differential evolution
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QPSO Quantum particle swarm optimization
IMPSO Improved particle swarm optimization
CMA-ES Covariance matrix adaptation evolution strategy
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