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Abstract: Recently, research on detecting SNP interactions has attracted considerable attention, which
is of great significance for exploring complex diseases. The formulation of effective swarm intelligence
optimization algorithms is a primary resolution to this issue. To achieve this goal, an important
problem needs to be solved in advance; that is, designing and selecting lightweight scoring criteria
that can be calculated in O(m) time and can accurately estimate the degree of association between SNP
combinations and disease status. In this study, we propose a high-accuracy scoring criterion (HSICCR)
by measuring the degree of causality dedicated to assessing the degree. First, we approximate two
kinds of dependencies according to the structural equation of the causal relationship between epistasis
SNP combination and disease status. Then, inspired by these dependencies, we put forward this
scoring criterion that integrates a widely used method of measuring statistical dependencies based
on kernel functions (HSIC). However, the computing time complexity of HSIC is O(m2), which is too
costly to be an integral part of the scoring criterion. Since the sizes of the sample space of the disease
status, SNP loci and SNP combination are small enough, we propose an efficient method of computing
HSIC for variables with a small sample in O(m) time. Eventually, HSICCR can be computed in O(m)

time in practice. Finally, we compared HSICCR with five representative high-accuracy scoring criteria
that detect SNP interactions for 49 simulation disease models. The experimental results show that the
accuracy of our proposed scoring criterion is, overall, state-of-the-art.

Keywords: lightweight scoring criterion; causality; SNP interactions; measuring statistical dependencies

MSC: 62H20

1. Introduction

Since many complex diseases are usually caused by multiple genes and multiple
factors, in recent years, with the emergence of high-throughput genotypic technology,
genome-wide association analysis (GWAS) has been one of the main methods used to study
complex diseases. Furthermore, the identification of single-nucleotide polymorphism
(SNP) interactions from GWAS data is of great importance for exploring the explanation,
prevention and treatment of complex diseases [1,2]. Therefore, over the past decade, this
research topic has attracted considerable attention [3–9].

It is well known that SNP interactions represent combinations of multiple SNPs
that affect complex diseases in a linear or non-linear manner, also known as k-order
epistasis SNPs. The research topic of detecting k-order epistasis SNPs is a typical case
of combinatorial optimization problems in k-dimensional discrete space (k ∈ {2, 3, 4, 5}
in practice), and swarm intelligence optimization (SIO) algorithms are one of the main
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methods used to solve the problems [9–11]. For this study to be successful, an important
problem needs to be solved in advance; that is, designing and selecting lightweight scoring
criteria that can be calculated in O(m) time and can accurately estimate the degree of
association between SNP combinations and disease status.

To date, few lightweight scoring criteria can accurately estimate the degree of associ-
ation of SNP combinations with disease status in most disease models due to the widely
varying characteristics of different disease models. As one of the primary methods used to
work on this combinatorial optimization problem, SIO algorithms mostly tackle this issue
by combining multiple criteria [9–13]; however, using too many objective functions will
often make the proposed algorithm difficult to converge effectively. Therefore, picking a
few high-accuracy objective functions instead of using too many objective functions can
dramatically improve the performance of the used algorithms [14,15].

This paper’s goal is not to contribute toward fixing the issue entirely but to use
a different methodology to propose a scoring criterion that can accurately estimate the
associations in most disease models. The contributions of this paper are:

1. We propose a high-accuracy scoring criterion based on measuring the degree of causal-
ity that integrates a widely used method of measuring statistical dependencies (HSIC);

2. We put forward an efficient algorithm of computing HSIC on two variables with
a small sample in O(m) time, thus enabling us to compute HSICCR in O(m) time
in practice.

2. Related Works

So far, the proposed lightweight scoring criteria can be roughly divided into two
categories.

The first category covers various approaches, which are so-called Bayesian scoring
criteria. The Bayesian scoring criteria calculate the posterior probability distribution, pro-
ceeding from a prior belief on the possible DAG models, conditional on the data [16]. The
K2-Score is an efficient Bayesian scoring criterion that obtains priors under the assump-
tion that all DAG models are equally likely. Other such scoring criteria representatives
include the Bayesian Dirichlet equivalent (BDe) scoring criterion and the Bayesian Dirichlet
equivalent uniform (BDeu) scoring criterion [4,17–19].

The second category is usually known as the information-theoretic scoring criteria.
Mutual information (Mi) is a lightweight method but has preferences for certain disease
models [6,20]. The JS divergence is a symmetrized divergence measure, derived from
the Kullback–Leibler (KL) divergence, which is an asymmetric divergence measure of
two probability distributions [21]. This approach can be utilized to evaluate the SNP
genotype deviation between control samples and case samples. Lately, joint entropy (JE)
and normalized distance with joint entropy (ND-JE) have been proposed as criteria for
guiding harmony search algorithms to discover clues for exploring the epistasis of SNP
combinations [9].

There are also a few approaches that do not fall into any of the above two main
categories. For example, the LR is a composite indicator that reflects both sensitivity and
specificity and can be used for a related measure to find the likelihood difference between
a disease-causing SNP combination and an SNP combination that is not involved in the
disease process [22,23].

In statistics, G-test is a significant test method of natural ratio or maximum likelihood.
In recent years, scholars have tended to use the G-test independence test instead of the
chi-square independence test recommended in the past. In genome association analysis,
G-test has been extensively used. Different from other scoring criteria, G-test will provide
its p-value when measuring the relationship between an SNP combination and sample
state, which can indicate whether the SNP combination has a significant relationship with
the sample state [24].

Published research has found that the results were different when employing different
scoring criteria, The K2-Score has been widely used to evaluate the association. This
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measure has a high capacity for detecting SNP interactions and is superior in discriminating
certain disease models with low marginal effects. However, for the interaction model with
low minor allele frequencies (MAFs) and low genetic heritability (h), the K2-Score has a low
performance in detecting high-order SNP interactions. The ND-JE is proposed based on the
properties of the disease-causing SNP combination models without marginal effects, so this
metric is more suitable for evaluating diseases with this type of mode. The LR-score aims
to discover the relationship between likelihood differences in functional SNP combinations
and non-functional SNP combinations. The method is well adapted to unbalanced datasets
of cases and controls. In practice, the use of the G-test as a single evaluation criterion for
detection is found to be inadequate, as there are often many SNP combinations with G-test
values close to 0 [6,9,11].

The scoring criterion proposed in this work is based on the theory of causality. It
is distinct from the theoretical approach taken by the current existing criteria. From
the perspective of a comparison with correlation, causality strictly distinguishes “cause”
variables and “result” variables, and plays an irreplaceable role in revealing the mechanism
of the occurrence of things and guiding intervention behaviors [25]. Thus, the proposed
criterion is a useful for and complementary to the current existing criteria.

3. Methodology
3.1. Concepts and Terms

In this work, x = {x1, x2, . . . , xn} represents a set of n SNP loci, and X =


x11 x21 . x1n

. . . .

. . . .
xm1 xm2 . xmn


is a set of m samples of x; Y = {y1, y2, . . . , ym}t denotes a set of m samples of disease status
y. For ∀1 6 i 6 n, 1 6 j 6 m , i, j ∈ Z, xij ∈ {0, 1, 2}, xij is equal to 0, 1 and 2, which implies
that it is the homozygous major allele (AA), heterozygous allele (AT), and homozygous
minor allele (TT), respectively; yj = 0 for control and yj = 1 for case; D = (X,Y) is a dataset
with m samples.

Definition 1 (k-order epistasis SNP combination). Let Sk = {{xi1 , xi2 , . . . , xik }} be a collection
of a set with k SNP loci (1 < k < n). f (D): Sk→ R+ is a score function used for measuring the
association between any k SNP loci and disease status y based on a dataset D. If x has the k-order
epistasis SNP combination on y (denoted as s∗k , s∗k ∈ Sk), and f (D) is a correct score function (or
scoring criterion), then, for ∀sk ∈ Sk, sk 6= s∗k , f (D)(s∗k ) < f (D)(sk) or f (D)(s∗k ) > f (D)(sk).

3.2. Causal Relationship

According to how the data are generated, the structural equation of the causal rela-
tionship between epistasis SNP combination and disease status can be modeled as [26]:

y = f (s∗k ) + ey, (1)
where ey is the noise variable.

From the above equation, we can find that s∗k and ey are independent (denoted as
s∗k ⊥ ey). In other words, among all sk ∈ Sk, s∗k and ey have the lowest degree of dependency.
However, it is unrealistic to measure the dependence degree of any sk and ey as the
evaluation criterion for epistasis detection, because it requires too high a computational
cost to obtain data generated by ey based on the regression method.

Thus, this paper herein let ey be the constant 0, i.e., y ≈ f (s∗k ) , which approximately
introduces two kinds of dependencies as described in Figures 1 and 2, respectively [25].
Obviously, the dependence between s∗ and y is direct (denoted as s∗k 6⊥ y); and the other is
derived from the v-structure, i.e., xi1 and xi2 are dependent given a value of y and s∗k(i1i2)
(denoted as xi1 6⊥ xi2 |y = yi, s∗k(i1i2)

= cj). Let s∗k = {xi1 , xi2 , . . . , xik−1
, xik}, s∗k(i1i2)

represent
s∗k \ {xi1 , xi2}. In particular, the set s∗k(i1i2)

is empty when k is equal to 2.
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Figure 1. Direct dependence.
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Figure 2. V-structure-related dependence.

3.3. Scoring Criterion

These two kinds of dependencies described above inspire us to raise this scoring
criterion, which integrates a widely used method of measuring statistical dependencies
based on kernel functions (HSIC).

For ∀sk ∈ Sk, then, for ∀xi1 , xi2 ∈ sk, given y = p (p ∈ {0, 1}) and sk(i1i2) = q
(q ∈ {c1, c2, . . . , c3k−2}), let Dpq

i1i2
= (Xpq

i1i2
, Ypq

i1i2
) be a slice of D on xi1 , xi2 under the constraint;

mpq
i1i2

is the number of rows of the data slice (mq
i1i2

= m0q
i1i2

+ m1q
i1i2

); HSIC(X, Y) is used to
measure the degree of statistical dependence of two random variables (x and y) based on
dataset (X, Y); the scoring criterion can be computed by the following Equations (2)–(6).

bq
i1i2

=
m0q

i1i2

mq
i1i2

HSIC(X0q
i1

, X0q
i2
) +

m1q
i1i2

mq
i1i2

HSIC(X1q
i1

, X1q
i2
) (2)

bq = ∑
i1 6=i2,xi1

,xi2∈sk

(
mq

i1i2

∑ia 6=ib ,xia ,xib
∈sk

mq
iaib

bq
i1i2

) (3)
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mq = ( ∑
ia 6=ib ,xia ,xib

∈sk

mq
iaib

)/c2
k (4)

HSICq
CR =

m
m + mq HSIC(Xi1i2 ...,ik , Yi1i2 ...,ik ) +

mq

m + mq bq (5)

HSICCR(Xi1i2 ...,ik , Yi1i2 ...,ik : data) =
q=3k−2

∑
q=1

HSICq
CR (6)

To facilitate the reader’s understanding, we now define following notations:

1. The value of bq
i1i2

is a linear weighted sum of HSIC(X0q
i1

, X0q
i2
) and HSIC(X1q

i1
, X1q

i2
)

based on respective sample sizes;
2. For all xi1 , xi2 ∈ sk, the value of bq is a linear weighted sum of all bq

i1i2
since there are

c2
k v-structures given sk(i1i2) = q;

3. The value of HSICq
CR is a linear weighted sum of HSIC(Xi1i2 ...,ik , Yi1i2 ...,ik ) and bq based

on sample size of Di1i2 ...,ik and average sample size of all Dq
iaib

, which is a component
and basis of HSICCR ;

4. In particular, bq
i1i2

= bq as is HSICq
CR = HSICCR when k = 2;

5. For robustness purposes, let bq
i1i2

= 0 if and only if the denominator of the weighted
factor term is 0, like bq;

6. The effort to calculate scoring criterion is reduced to calculate HSIC(Xi1i2 ...,ik , Yi1i2 ...,ik )

once, and is reduced up to C2
k ∗ 3k−2 times to calculate the type of problem bq

i1i2
(fortunately, k ∈ {2, 3, 4, 5} in practice).

Thus, our estimate of s∗k can eventually be obtained by solving the problem

max f (D)(sk)
sk∈Sk

= HSICCR(Xi1i2 ...,ik , Yi1i2 ...,ik ) (7)

3.4. Method for Measuring Statistical Dependence
3.4.1. HSIC

HSIC is a measuring statistical dependence criterion proposed by other authors [27,28]
based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces
(RKHSs), denoted by HSIC

(
Pxy
)

as follows:

HSIC
(

Pxy
)
= Ex,x′ ,y,y′

[
k(x, x′)l(y, y′)

]
+

Ex,x′
[
k(x, x′)

]
Ey,y′

[
l(y, y′)

]
−

2Ex,y[Ex′ [k(x, x′)]Ey′ [l(y, y′)]],

(8)

where k(, ) and l(, ) are two kernel functions.
Let X and Y be the separable sample spaces of random variables x and y, respectively,

assuming that (X, Γ) and (Y, Λ) are furnished with probability measures px, py, respectively
(Γ being the Borel sets on X, and Λ the Borel sets on Y); pxy is a joint measure over
(X×Y, Λ× Γ); HSIC

(
Pxy
)
≥ 0 (the higher the degree of dependence of x and y, the greater

the value) and HSIC
(

Pxy
)

is zero if and only if x and y are independent.
In order to show that HSIC is a practical criterion for measuring independence or the

degree of dependence given a finite number of observations, it consists of an empirical
estimator with O(m−1) expectation bias, denoted by HSIC(D), formulated as follows:

HSIC(D) = (m− 1)−2trace(KHLH), (9)

where D:={(x1, y1), . . . , (xm, ym)} v X×Y, K, H, L ∈ Rm×m,Ki,j := k(xi, xj), Li,j := l(yi, yj),
Hi,j := δij −m−1.
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An advantage of HSIC compared with other kernel-based independence criteria is
that it can be computed in O(m2) time. However, such computational costs are too high as
an integral part of the scoring criterion. Fortunately, the sample space of the disease status,
SNP loci and k-order SNP combination is finite discrete. Thus, immediately below, we put
forward an efficient HSIC calculation method for variables with a small sample, which
can be approximately calculated in O(m) time. Thus, as k ∈ {2, 3, 4, 5}, we can compute
HSICCR in O(c2

k ×m) ≈ O(m) time in practice.

3.4.2. Efficient Computation

Proposition 1 (Efficient computation). Let x and y be two random discrete variables with p and
q states, respectively, where p2 × q2 < m, or p2 × q2 ≈ m. Then, we can compute trace(KHLH)
in O(m) time.

Proof. Let e be a column vector with a length of m, e =


1
.
.
1

, L =


l1t

.

.
lmt

, and I be an

identity matrix with a size of m ∗m; we have H = I − 1
m eet and LH = L− 1

m Leet.

As 1
m Le =


1
m l1te

.

.
1
m lmte

, which implies that each i-th element of 1
m Le is the mean of the

corresponding row elements of L, we have L− 1
m Leet =


l1t

.

.
lmt

−


1
m l1

.

.
1
m lm

et, where each li is

the sum of the corresponding row elements of L.

Let L =


1
m l1

.

.
1
m lm

et be an m × m matrix (Lij =
1
m li) and K =


1
m k1

.

.
1
m km

et be an m × m

matrix (Kij =
1
m ki); we have trace(KHLH) = trace((K− K)(L− L)).

Let P be an m×m row transformation matrix; we have trace(PKHPLH) = trace(P(K−
K)P(L− L)) = trace((K− K)(L− L))=trace(KHLH).

Thus, without a loss of generality, we can assume that: D={(c1, yi1), . . . (c1, yi2−1),
(c2, yi2), . . . (c2, yi3−1), . . . (cp, yip), . . . (cp, yim)}, i.e., the number of observed instances of x
with the value of cj (denoted as xt(cj)) is ij+1 − ij(ip+1 = im + 1); K can be viewed as a
p× p partitioned matrix. Let K jl be the j× lth block having xt(cj)× xt(cl) elements, all
having the same value ( k(cj, cl)). Let K̂ = K− K, where all elements in K̂ jl have the same

value equal to k(cj, cl)−
∑

p
n=1 xt(cn)×k(cj ,cn)

m (denoted as K̂(j, l)).
Let yx(j, i) be the number of observed instances with the value (ci, dj) (1 ≤ j ≤ q, dj is

the j-th state of y); the definition of L̂ and L is similar to that of K̂ and K. We also view L̂ as
a p× p partitioned matrix, where each Ljl has the same number of rows and columns as

K jl ; for ∀p, 1 ≤ p ≤ m, 1
m lp =

∑
q
v=1 yt(dv)×k(dh ,dv)

m (denoted as l(dh)), where yp = dh.
As trace(K̂L̂) = ∑

p
i=1 ∑

p
j=1 < K̂ij, (L̂ji)T > (<.,.> denoted as inner product operator)

and < K̂ij, (L̂ji)T >= K̂(i, j)× ∑
q
u=1 yx(u, j)× ∑

q
v=1(yx(v, i)× (l(du, dv)− l(du)), we can

obtain that the computational complexity of trace(K̂L̂) is O(p2q2).
As described above, we can know that the total computational complexity of xt, yt

and yx is O(m), and that those of K and L are O(p2) and O(q2), respectively.
Hence, we have that the total computational complexity of HSIC is O(m), where

p2 × q2 < m, or p2 × q2 ≈ m.
The proof is complete.
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In fact, the proof above gives the simplified process of efficient computation to HSIC.
The detailed processes are shown in Algorithms 1–5. Algorithm 1 is the main process of
the method, consisting of three functions:

1. (X, Y) is m observations of a tuple of x and y with p and q states, respectively;
2. kernels includes two kernel functions used to calculate Ki,j and Li,j, the parameters of

which are delta(1) and delta(2), respectively;
3. GetIn f o (see Algorithm 2) is used to calculate xt, yt and yx ;
4. For all 1 ≤ j, l ≤ p, KH (see Algorithm 3) is used to calculate K̂(j, l);
5. Trace (see Algorithm 4) is used to calculate trace(K̂L̂);
6. RowAverage (see Algorithm 5) is used to calculate K and L.

Algorithm 1 Calculate value = HSIC(X, Y, p, q, m, kernels, deltas)

Require: |X| = |Y| = m
1: [xt, yt, yx]⇐ GetIn f o(X, Y, p, q, m)
2: K̂ ⇐ KH(xt, p, kernels(1), deltas(1), m)
3: value⇐ Trace(K̂, yt, yx, p, q, kernels(2), deltas(2), m)

Algorithm 2 Calculate [xt, yt, yx]= GetIn f o(X, Y, p, q, m)

1: xt⇐ zeros(1, p)
2: yt⇐ zeros(1, q)
3: yx ⇐ zeros(q, p)
4: col ⇐ 1
5: while col ≤ m do
6: stx ⇐ X(col)
7: sty⇐ Y(col)
8: xt(stx)⇐ x(stx) + 1
9: yt(sty)⇐ y(sty) + 1

10: yx(sty, stx)⇐ yx(sty, stx) + 1
11: col ⇐ col + 1
12: end while

Algorithm 3 Calculate K̂ = KH(xt, p, kernel, delta, m)

1: K ⇐ RowAverage(p, k, delta, m, xt)
2: K̂ ⇐ zeros(p, p)
3: i⇐ 1
4: while i ≤ p do
5: j⇐ 1
6: while j ≤ p do
7: K̂(i, j)⇐ kernel(i, j, delta)− K(i)
8: j⇐ j + 1
9: end while

10: i⇐ i + 1
11: end while
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Algorithm 4 Calculate value = Trace(K̂, yt, yx, p, q, kernel, delta, m)

1: L⇐ RowAverage(q, kernel, delta, m, yt)
2: value⇐ 0
3: i⇐ 1
4: while i ≤ p do
5: j⇐ 1
6: while j ≤ p do
7: u⇐ 1
8: t⇐ 0
9: while u ≤ q do

10: v⇐ 1
11: s⇐ 0
12: while v ≤ q do
13: s⇐ s + yx(v, i)× (kernel(u, v, delta)− L(u))
14: v⇐ v + 1
15: end while
16: t⇐ t + yx(u, j)× s
17: u⇐ u + 1
18: end while
19: value← value + K̂(i, j)× t
20: j⇐ j + 1
21: end while
22: i⇐ i + 1
23: end while
24: value⇐ value/((m− 1) ∗ (m− 1))

Algorithm 5 Calculate M = RowAverage(p, kernel, delta, m, y)

1: M⇐ zeros(1, p)
2: i⇐ 1
3: while i ≤ p do
4: j⇐ 1
5: while j ≤ p do
6: M(i)⇐ M(i) + y(j) ∗ kerenl(i, j, delta)
7: j⇐ j + 1
8: end while
9: M(i)⇐ M(i)/m

10: i⇐ i + 1
11: end while

4. Experiments

We employed representation of the data in a matrix Xpq
ij
∈ {0, 1, 2}

mpq
ij
×1

to calculate

HSIC(Xpq
i1

, Xpq
i2
) by using a Gaussian kernel (σ2 = 0.1). In addition, we mapped Xi1i2 ...,ik ∈

{0, 1, 2}m×k onto Xi1i2 ...,ik ∈ {0, 1}m×3k to compute HSIC(Xi1i2 ...,ik , Yi1i2 ...,ik ) by also using a
Gaussian kernel (σ2 = 1), i.e., 0 7→ (1, 0, 0), 1 7→ (0, 1, 0) and 2 7→ (0, 0, 1). The advantages
and disadvantages of the two representations have been explained by the other authors [29].

4.1. Evaluation Criterion

The evaluation criterion that we adopted in the experiments is by [9]:

Power =
]S
]T

, (10)

where ]S is the number of found disease-causing SNP combinations (the epistasis SNPs
score the highest) and ]T is the number of datasets. Each dataset includes one disease-
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causing SNP combination. Power is a measure of the accuracies of scoring criteria from
genome data.

4.2. Simulated Datasets

For any data set, the worst-case scenario for checking the correctness of the scoring
criteria is extensive testing of all SNP combinations. It is too computationally expensive for
k = 4 and k = 5 cases. Therefore, tests were only conducted for k = 2 and k = 3.

4.2.1. Disease Models with k = 2

For k = 2, we used thirty-five disease models without marginal effects (DNME1–35) and
six disease models with marginal effects (DME1–6). The models were designed based on
interaction structures with different diseases, MAFs, prevalence (p) and h (the parameter
settings are described in the supplementary files). Each data set contains 1000 SNPs
and includes pairs of interacting SNPs (M0P0 and M1P1) generated according to the
disease model setting, while other SNPs are generated using MAFs uniformly selected in
[0.05, 0.5). For each model, we generated two simulated 100 data sets using the software
GAMETES2.1 [30] with sample sizes of 400 (200 controls and 200 cases) and with sample
sizes of 800 (400 control and 400 cases) [31].

Disease Models without Marginal Effects

We divided all DNMEs into seven subgroups for analysis according to the different
combined values of h and MAF (DNME1–5 MAF = 0.2, h = 0.2; DNME6–10 MAF = 0.4,
h = 0.2; DNME11–15 MAF = 0.2, h = 0.1; DNME16–20 MAF = 0.4, h = 0.1; DNME21–25 MAF
= 0.2, h = 0.05; DNME25–30 MAF = 0.4, h = 0.05; DNME1–5 MAF = 0.2, h = 0.025).

The analysis results of subgroups of DNME1–35, each of which has 400 samples, are
shown in Figure 3:

1. Except for Mi, using tests on DNME1–10, the accuracy of all scoring criteria is close
to 100%;

2. All criteria are not very accurate using tests on DNME21–25 and DNME31–35;
3. Mi has an extremely poor accuracy on all subgroup tests;
4. LR has the highest accuracy using tests on DNME11–15 and DNME16–20, close to

100%, but is only a little more accurate than Mi on DNME21–25, DNME26–30 and
DNME31–35 tests;

5. The accuracy rates of both ND-JE and G-test rank in the middle overall, but G-test
has the highest accuracy on the DNME26–30 test;

6. The accuracy rate of K2-Score ranks second on DNME11–15 and DNME21–25 tests,
third on the DNME26–30 test and slightly worse than ND-JE, HSCR and G-test on
the DNME16–20 test, but is only a little more accurate than Mi on the most difficult
model (DNME31–35) test;

7. HSICCR has the highest accuracy on the two most difficult model subgroup (DNME21–25
and DNME31–35) tests, especially on DNME31–35, where the accuracy is much higher
than other criteria, and the overall accuracy on other model subgroups tests is similar
to the other four criteria.

When the size of samples increased from 400 to 800, the accuracy of all criteria was
greatly improved. The analysis results of subgroups of DNME1–35, each of which has
800 samples, are shown in Figure 4:

1. Except for Mi, the accuracy of all criteria is close to 100% excluding tests on the two
most difficult model subgroups (DNME21–25 and DNME31–35);

2. Although the accuracy rate of Mi can be significantly improved with the increase in
the size of samples, it is still relatively poor overall;

3. With the number of samples increasing, there is still no change in the overall ranking,
but the accuracy of the K2-Score on the DNME31–35 test rises to second;

4. HSICCR has the highest accuracy on the two most difficult model subgroup tests.
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DNME1–5 DNME6–10 DNME11–15 DNME16–20 DNME21–25 DNME26–30

DNME1–5 DNME6–10 DNME11–15 DNME16–20 DNME21–25 DNME26–30 DNME31–35

DNME31–35

Figure 3. Disease model without marginal effects, with 400 samples and with k = 2.

DNME1–5 DNME6–10 DNME11–15 DNME16–20 DNME21–25 DNME26–30 DNME31–35

Figure 4. Disease model without marginal effects, with 800 samples and with k = 2.

Table 1 reveals the total average accuracy. From Table 1, we can find that Mi has a poor
average accuracy; HSICCR has the best average accuracy regardless of the model’s sample
scale of 400 or 800; although HSICCR is only slightly higher than the other four criteria on
the total average accuracy, and the average accuracy on the most difficult model subgroup
test is much better than other criteria.
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Table 1. The number of times, out of 3500 data sets generated by 35 models without marginal effects,
where k = 2, that each scoring criterion identified epistasis SNPs of snp1000 for sample sizes of 400
and 800. The fourth column gives the total accuracy over all sample sizes. The last column gives the
accuracy over all sample sizes in the most difficult subgroup models. The scoring criteria are listed in
descending order of total accuracy.

Scoring Criterion 400 Samples 800 Samples Total (%) DNME31–35 (%)

HSICCR 2535 3220 5755 (82.2%) 445 (44.5%)
K2-Score 2479 3186 5665 (80.9%) 336 (33.6%)

G-test 2443 3169 5612 (80.2%) 314 (31.4%)
ND-JE 2440 3163 5603 (80.0%) 301 (30.1%)

LR 2437 3158 5595 (79.9%) 297 (29.7%)
Mi 494 1971 2465 (35.2%) 192 (19.2%)

Disease Models with Marginal Effects

We tested six DMEs for analysis according to MAF = 0.1 and the different combined
values of heritability and prevalence (DME1 h = 0.031 and p = 0.050; DME2 h = 0.014 and
p = 0.050; DME3 h = 0.01 and p = 0.050; DME4 h = 0.016 and p = 0.046; DME5 h = 0.009 and
p = 0.026; DME6 h = 0.008 and p = 0.017).

The analysis results of DME1–6, each of which has 400 samples, are shown in Figure 5:

1. The accuracy of all scoring criteria is close to 100% tested on DME1, except for Mi;
2. Mi has extremely poor accuracy on all six models tests;
3. Except for Mi, the accuracy rate of LR is worse than the other four criteria on DME2–6

tests, except that the accuracy on the DME3 test is nearly the same as that of HSICCR;
4. The accuracy rate of ND-JE ranks third on DME1 and DME3 tests, and fourth on the

other four models tests;
5. The accuracy rate of G-test ranks first on the DME1 test, second on DME2 and DME3

tests and third on the other four models tests;
6. HSICCR has the highest accuracy rate on DME4 and DME6 tests, its accuracy rate on

the DME5 test is slightly worse than LR and the accuracy rate on DME1–2 tests ranks
third, whereas the accuracy rate on the DME3 test is a little better than Mi;

7. K2-Score has the highest accuracy rate on DME1–3 and DME5 tests, its accuracy rate on
DME4 and DME6 tests ranks second and it significantly outperforms the others on the
most difficult model (DME3) test (although its accuracy rate in DME3 is below 50%).
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Figure 5. Disease model with marginal effects, with 400 samples and k = 2.
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When the size of samples increased from 400 to 800, the accuracy of all criteria was
greatly improved. The analysis results of DME1–6, each of which has 800 samples, are
shown in Figure 6:

1. Although the accuracy of Mi can be significantly improved with the increase in the
size of samples, it is still relatively poor overall;

2. The accuracy rates of the other five scoring criteria all exceed 95% tested by the models,
except on DME3;

3. K2-Score has the highest accuracy rate on the most difficult model test (over 90%),
the accuracy rate of G-test ranks second (over 80 %) and the accuracy rates of ND-JE,
HSICCR and LR are not good enough, at just over 70%.
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Figure 6. Disease model with marginal effects, with 800 samples and k = 2.

Table 2 reveals the total average accuracy. From Table 2, we can find that Mi has a poor
average accuracy; the K2-Score has the best average accuracy rate regardless of the model’s
sample scale of 400 or 800, where the main reason is that its accuracy rate on the DME3 test
is much better than the other five scoring criteria; although the average accuracy of HSICCR
tested on DME3 is not good enough, it ranks second in the overall average accuracy rate.

Table 2. The number of times, out of 600 data sets generated by six models with marginal effects,
where k = 2, that each scoring criterion identified epistasis SNPs of snp1000 for sample sizes of 400
and 800. The fourth column gives the total accuracy over all sample sizes. The last column gives the
accuracy over all sample sizes in the most difficult model. The scoring criteria are listed in descending
order of total accuracy.

Scoring Criterion 400 Samples 800 Samples Total (%) DME3 (%)

K2-Score 419 586 1005 (83.8%) 159 (79.5%)
HSICCR 379 570 949 (79.1%) 86 (43%)
G-test 353 578 931 (77.6%) 108 (54%)
ND-JE 286 567 853 (71.1%) 92 (46%)

LR 273 559 832 (69.3%) 86 (43%)
Mi 55 349 404 (33.7%) 48 (24%)

4.2.2. Disease Models with k = 3

For k = 3, the data sets are generated by eight third-order epistasis pathogenic models
(DM1–8), which are modeled by GAMETES2.1 according to the combinations of different
MAFs ([0.2, 0.4]) and different heritability ([0.025, 0.05, 0.1, 0.2]) (DM1 MAF = 0.2, h = 0.025;



Mathematics 2022, 10, 4134 13 of 17

DM2 MAF = 0.2, h = 0.05; DM3 MAF = 0.2, h = 0.1; DM4 MAF = 0.2, h = 0.2; DM5 MAF
= 0.4, h = 0.025; DM6 MAF = 0.4, h = 0.05; DM7 MAF = 0.4, h = 0.1; DM8 MAF = 0.4
h = 0.2). The ]quantiles of each combination is five. Every quantile of each pathogenic
model corresponds to 100 simulated data files. Each file contains 100 SNPs and 1600
samples (800 normal, 800 diseased), and includes three interacting SNPs (M0P0, M1P1 and
M2P2) generated according to the disease model settings, while other SNPs were generated
using MAFs uniformly selected in [0.05, 0.5]. Therefore, the total number of the data sets is
4000 [6]. Detailed parameter settings are described in the supplementary file.

The analysis results of DM1–8, each of which has 1600 samples, are shown in Figure 7:

1. The accuracy of all scoring criteria is close to 100% tested on DM2, DM3–4 and DM7–8;
2. The accuracy of all scoring criteria is close to 80% on the DM1 test;
3. The K2-Score has a poor accuracy rate on the most difficult model (DM5) test, whose

accuracy is just close to 10%;
4. The accuracy rates of the scoring criteria on the DM6 test are good enough, and the

accuracy rates of the scoring criteria are close to 100%, except the K2-Score;
5. HSICCR has the highest accuracy rate on the DM5 test, and its accuracy rate is the

only one that exceeds 60% among all scoring criteria.
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Figure 7. Disease model with 1600 samples and k = 3.

Table 3 reveals the total average accuracy. From Table 3, we can find that the K2-Score
has a poor average accuracy on the most difficult model test; the total average accuracy
rates for all scoring criteria are good enough, with all criteria except the K2-Score achieving
over 90% accuracy. Although HSIC has the best total average accuracy, its accuracy is not
significantly better than other four criteria; however, tested on the most difficult model, the
accuracy rate of HSICCR outperforms LR by 3.2%, and significantly outperforms the other
four criteria, especially the K2-Score.
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Table 3. The number of times, out of 4000 data sets generated by eight models, where k = 3, that each
scoring criterion identified epistasis SNPs of snp100 for 1600 samples. The second column gives the
total accuracy over a sample size of 1600. The last column gives the accuracy over a sample size of
1600 in the most difficult model. The scoring criteria are listed in descending order of total accuracy.

Scoring Criterion Total (%) DM5 (%)

HSICCR 3710 (92.8%) 316 (63.2%)
LR 3702 (92.6%) 300 (60%)

ND-JE 3700 (92.5%) 290 (58%)
Mi 3696 (92.4%) 289 (57.8%)

G-test 3677 (91.9%) 257 (51.4%)
K2-Score 3402 (85.1%) 63 (12.6%)

4.2.3. The Running Time Analysis

To demonstrate that our proposed method can be used as a lightweight scoring
criterion, we proved in the previous section that its time complexity is O(m). Furthermore,
we calculated the average running time per dataset (unit in seconds) for the two-order
with a sample size of 800 and the three-order in the simulation experiments, and we found
that the average running time per dataset of our proposed method is between the other
five lightweight methods (see Table 4). This further demonstrates the applicability of our
proposed method as a lightweight scoring criterion.

In the experiment, all scoring criteria were implemented based on Matlab, and all tests
were run on the environment of Windows 10 64 desktop computer with 11th Gen Intel(R)
Core(TM) i7-1165G7 @ 2.80 GHz, and 16.0 GB memory.

Table 4. Average running time (s) for the six scoring criteria per dataset for both the two-order tests
and the three-order tests in the simulation experiments.

Scoring Criterion 2-Order (s) 3-Order (s)

HSICCR 120.2426 80.3045
LR 77.3055 55.4438

ND-JE 134.922 76.5377
Mi 78.3 55.6138

G-test 77.6589 56.5221
K2-Score 125.0655 81.4237

4.3. Case Study: A Real Chronic Dialysis Data

A real data set of 193 cases and 704 controls was selected from the mitochondrial D-
loop region of chronic dialysis patients who were observed in a study by other authors [32].
The genotypes and locations of 77 SNPs are presented in Table 5 [33].

The 77 SNPs contained in the subset of the chronic dialysis data set were used in the
case study, which aims to give our readers more specificity regarding our proposed scoring
criterion. First, for this dataset, we performed a full-space two-order SNP combination
detection, meaning that the HSICCR values were evaluated for 2926 (C2

77) possible combina-
tions. Then, we selected the top ten HISCCR-valued combinations as candidate two-order
epistasis SNP combinations to be raised for medical researchers, and the 10 candidate
combinations are presented in Table 6.
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Table 5. Positions of chronic dialysis-associated 77 SNPS in mitochondrial d-loop region. a Left and
right letters are major and minor genotypes, respectively. The number is the SNP position in the
mitochondrial D-loop region.

SNP D-Loop Position

1∼5 A16051G a T16086C T16092M T16093C C16108T
6∼10 C16111T T16126C G16129A T16136C T16140C

11∼15 G16145A C16148T T16157C A16162G A16164G
16∼20 C16167T T16172C T16209C T16217C C16218T
21∼25 T16223C A16227G C16234T A16235G T16243M
26∼30 C16248T T16249C C16256T C16257W C16260T
31∼35 C16261T C16266D A16272G G16274A C16278T
36∼40 C16290T C16291T C16295T C16297T C16298T
41∼45 C16304T A16309G T16311C A16316G G16319A
46∼50 T16324C C16327T A16335G C16355T T16356C
51∼55 T16357C T16362C G16390A A16399G A16463G
56∼60 C16519T A93G G103A T146M C150T
61∼65 C151T T152C A153G G185A A189G
66∼70 C194T T195C T199C A200G T204C
71∼75 G207A A210G T217C A234G A235G
76∼77 T317C C461T

Table 6. The top ten highest HISCCR-valued two-order SNPs were used as ten candidate combinations.

Rank Combination HSICCR

1 41, 21 0.035922
2 52, 21 0.033105
3 41, 17 0.019069
4 56, 21 0.018961
5 68, 39 0.018545
6 21, 19 0.017254
7 60, 21 0.014506
8 17, 8 0.011645
9 17, 14 0.0097405

10 75, 36 0.0095467

5. Conclusions

In this paper, we verified with rigorous mathematical proof that HSICCR can be
computed in O(m) time. Moreover, we compared HSICCR with five representative scoring
criteria for 49 simulation disease models. The experimental results show that: Mi has a poor
accuracy on two-order disease models; the K2-Score has a poor accuracy on three-order
difficult disease models; the accuracy rates of LR are not good enough on two-order disease
models tests; HSICCR, G-test and ND-JE have a high accuracy on all three classes of disease
models tests; the accuracy rates of HSICCR rank first on two-order disease models without
marginal effects tests and three-order disease model tests, and rank second on two-order
disease models with marginal effects tests, although its advantage is not significant.

The advantages of HSICCR are: the methodology used is different from other scoring
criteria, which makes it more complementary to other scoring criteria; it has a high accuracy
on most disease models.

In the future, we will further investigate proposing efficient SIO algorithms to solve
this problem by combining HSICCR and other effective lightweight criteria that already
exist as weighted single or multi-objective functions. In addition, we will work with several
local medical research institutions to use their real disease case-control study data to mine
for disease-related SNP combinations by using our proposed approach. This will ultimately
provide new guidance for drug development in complex diseases.
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k = 2; Table S2: Models 1 to 10 without marginal effects when k = 2; Table S3: Models 11 to 20 without
marginal effects when k = 2; Table S4: Models 21 to 30 without marginal effects when k = 2; Table S5:
Models 31 to 35 without marginal effects when k = 2.
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