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Abstract: In the present study, the magnetohydrodynamics (MHD) bio-convective flow and heat
transfer of nanofluid, due to the swimming of the gyrotactic micro-organisms over a curved stretched
sheet, is examined. In addition, thermophoresis and Brownian motion behaviors are also investigated
by assuming slip conditions at the boundary. A non-linear system of partial differential equations
(PDEs) is reduced to a system of ordinary differential equations (ODEs). For convergent solutions,
the obtained ODE system is solved by the use of the BVP4C routine integrated MATLAB package. In
addition, the impacts of different influential parameters on motile micro-organisms, temperature,
velocity, and concentration profiles are deliberated. The velocity field is observed to be reduced when
the slip parameter increases. As the main results, it is demonstrated that the distribution of motile
microorganisms against the curvature parameter decreases significantly. Similarly, it is found that the
nanofluid parameters (i.e., Brownian motion and thermophoresis parameters) and the Peclet number
reduce the motile micro-organisms’ number. On the other hand, it is evidenced that the motile
micro-organisms’ distribution can be improved with an increase in bio-convective Schmidt number.

Keywords: bio-convection; gyrotactic micro-organisms; curved stretching sheet; slip condition;
thermophoresis; Brownian diffusion

MSC: 76D05; 82D80

1. Introduction

It is well known that magnetohydrodynamics (MHD) is a concept common to both
Physics and Mathematics that deals with the study of the interactions of magnetic fields
in conducting fluids. The involvement of magnetic fields results in forces that in turn
affect the fluid. The structure and intensity of the magnetic fields themselves are therefore
possibly altered. The relative performance of the advective movements in the fluid is a
key question for a certain conducting fluid experiencing a diffusive impact induced by the
resistivity. It also has several application areas such as aerodynamics, life sciences, polymer
or fiberglass, cooling systems, exchangers, metallurgy, etc. Hady et al. [1] examined the
MHD flow of nanofluid-having gyrotactic micro-organisms with viscous dissipation effects.
Pal and Mondal [2] investigated the nanofluid MHD flow with gyrotactic micro-organisms
including thermal radiation effects. Yasmin et al. [3] discussed MHD micropolar fluid flows
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due to a curved stretching sheet. Nagaraja and Gireesha [4] addressed the MHD flow of
Casson fluid. Additionally, the exponential heat generation and chemical reaction effects
were also investigated. Few attempts on the topic can be mentioned in the studies [5–8].

Bio-convection results from to the upward-swimming of an average number of micro-
organisms that are heavier than water. The swimming micro-organisms are collected at
the upper water surface. When the collected layer of micro-organisms becomes thicker
and thicker, the surface becomes unstable. As a result, a large portion of the gathering falls
deeper into the water. This process is repeated by the micro-organisms, and eventually
results in bio-convection. Kessler [9] was the person who first noticed and studied the gy-
rotaxis of microbes. Recently, it has been discovered that several significant phenomena are
dependent on the gyrotaxis of microorganisms. These physical phenomena include accumu-
lation at free water surfaces [10], turbulent channel flows in photobioreactors [11], the for-
mation of a thin phytoplankton layer brought on by gyrotactic trapping [12], and microscale
patches of motile phytoplankton [13]. Alharbi et al. [14] scrutinized the bio-convection
caused by gyrotactic micro-organisms present in the magnetic hybrid nanofluid. This study
attempted to support the Targeted Drug Delivery (TDD) system. Modal and Pal [15] in-
spected the influence of variable viscosity in the bio-convection of micro-organisms present
in the nanofluid. Bio-convection in the existence of the Marangoni thermo-solutal effect
was considered by Kairi et al. [16]. Khan and Nadeem [17] studied the bio-convection
of Maxwell nanofluid. The notion of variability in the thermal conductivity model to
analyze the bio-convective Williamson nanofluid was looked over by Abdelmalek et al. [18].
Similarly, numerous investigations on the bio-convection of micro-organisms have been
addressed by researchers [19–24].

Due to its various applications in the area of research and production, boundary layer
flow over-stretching surfaces is an attractive topic for researchers (Wang [25], Noghrehabadi
et al. [26], Rauf et al. [27]). Flows generated by fiber spinning, injection molding, glass
molding, spray coating, and pulling of rinsed wires, paper, rubber, glass-fiber, polymer
sheet production, etc., are some of the useful applications. As an extension of the stretching
surface, the current work is connected with the fluid flow through a curved stretching
surface grabbing the attention of numerous researchers. Hayat et al. [28] studied the entropy
optimization of CNTs (Carbon Nano Tubes) over a curved stretching sheet. Similarly, Raza
et al. [29] examined the entropy optimization of Carreau fluid over a curved stretching
sheet. A non-Fourier heat flux model was taken up by Madhukesh et al. [30] to investigate
the hybrid nanofluid flow. Darcy-Forchheimer flows of CNTs driven by a curved stretching
sheet were considered by Gireesha et al. [31]. Stagnation point flow, involving MHD and
Joule heating, was demonstrated by Zhang et al. [32]. The latest developments concerning
curved stretching sheets are mentioned in Refs [33–38].

The distribution and swimming properties of gyrotactic microorganisms, in a variety
of flows, including horizontal shear flow [11], density stratified flow [39], steady vertical
flow [12,40], free surface flow [9], Poiseuille flow [9], as well as the flow past a single
vertical circular cylinder [41], have all been the subject of extensive research. The findings
demonstrate that gravitational torque and the viscous torque, caused by flow shear in
a fluid flowing with non-zero vorticity, have an impact on the swimming of gyrotactic
phytoplankton species. Although they are crucial for the prediction of the corresponding
concentration distribution, the nanofluid flow behavior relating to the swimming charac-
teristics of gyrotactic microorganisms is currently poorly understood, particularly when
Brownian diffusion and thermophoresis are combined.

Ultimately, the goal of this research is to investigate the MHD bio-convective heat
transfer caused by gyrotactic micro-organism swimming within the nanofluid past a curved
stretched sheet. Using the BVP4c integrated MATLAB package, the solutions to the non-
linear system of ODEs are solved. Differences in motile microorganisms, temperature,
velocity, and concentration profiles are explained in terms of various influencing param-
eters, via graphs and tables. The manuscript is prepared in such a way that: Section 2
presents the problem formulation. The numerical scheme’s validation is explained in
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Section 3. Section 4 contains comments on the collected results, while Section 5 has a list of
significant observations.

2. Problem Formulation

Consider a two-dimensional MHD nanofluid flow conveying nano-sized particles
and gyrotactic micro-organisms across a curved surface of radius R, as seen in Figure 1.
Indeed, the curved sheet is stretched linearly along the s−direction with a variable velocity
Uw = as, in which a velocity slip condition Uslip is imposed at the fluid-solid interface,
where a is a positive constant. In addition, a uniform magnetic flux density B0 is applied
radially on the developed electrically conducting nanofluid flow.
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Figure 1. Flow configuration.

The following physical suppositions are adopted:

- The present bio-convective flow is related to a dilute non-homogeneous mixture.
- The studied mixture behaves as an electrically conducting Newtonian media.
- The constituents of the nanofluidic medium are in thermal equilibrium.
- The present MHD non-homogeneous flow is developed in the laminar regime.
- The main governing equations are derived accordingly based on the boundary layer

approximations by combining a known non-homogeneous nanofluid model with the
conservation equation of gyrotactic micro-organisms.

- As long as the classical formulation of Buongiorno’s approach [42] is adopted as a
suitable model to describe the present non-homogeneous nanofluid flow, the thermo-
physical expressions of the nanofluid (i.e., density, viscosity, heat capacitance, thermal
conductivity, and electrical conductivity) should not be mentioned, because they are in-
cluded implicitly in the control flow parameters. Therefore, the effects of nanoparticles’
shape and initial volume fraction can be excluded from this investigation.

- In most practical studies, the nanoparticles are prepared in a spherical form.
- Joule heating, Hall current effect, magnetic induction phenomenon, and viscous

dissipation are ignored in this investigation as physical constraints.

Based on the aforementioned assumptions, the governing conservation equations are
written in the steady state as follows [37]:
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∂p
∂r

, (2)
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where the symbols u and v denote the s− and r−velocity components. p means the pres-
sure, σ is the nanofluid electrical conductivity. (ρCP) reflects the nanofluid heat capacitance.
DT represents the thermophoresis coefficient. T, Tw and T∞ designate the nanofluid tem-
perature, the wall temperature, and the ambient temperature, respectively. DB refers to
the coefficient of Brownian diffusion. C, Cw and C∞ indicate the nanofluid concentration
(i.e., nanoparticles’ volume fraction), the wall concentration, and the ambient concentration,
respectively. Dm signifies the coefficient of motile micro-organisms’ diffusion. N, Nw and
N∞ stand for the motile micro-organisms’ concentration, the motile micro-organisms’ con-
centration at the wall, and the motile micro-organisms’ concentration at the ambient region,
respectively. b symbolizes the chemotaxis constant. Wc marks the maximum cell speed.

For the flow problem the appropriate boundary conditions are:{
u = Uslip + Uw, v = 0, T = Tw, C = Cw, N = Nw at r = 0,

u→ 0, ∂u
∂r → 0, T → T∞, C = C∞, N = Nw as r → ∞

}
(7)

Here the velocity slip is given by:

Uslip = β

(
∂u
∂r
− u

r + R

)
, (8)

where β denotes the slip length. β = 0 denotes the no-slip boundary condition. The
following new variables are defined to simplify the flow equations:

η
r =

√
a
υ , F′ = u

Uw
, F = − (r+R)

R
√

aυ
v , θ = T−T∞

Tw−T∞
,

φ = C−C∞
Cw−C∞

, χ = N−N∞
Nw−N∞

, P = p
ρU2

w

. (9)

Using Equation (9), Equations (1)–(6) takes the following non-dimensional form as follows:

P′ − F′2

(η + A)
= 0, (10)

F′′′ +
F′′

(η + A)
− F′

(η + A)2 +
AFF′′

(η + A)
+

AFF′

(η + A)2 −
AF′2

(η + A)
− 2AP

(η + A)
−MF′ = 0, (11)

θ′′ +
θ′

(η + A)
+

PrAFθ′

(η + A)
+ PrNt θ′

2
+ PrNb θ′φ′ = 0, (12)

φ′′ +
φ′

(η + A)
+

ScAFφ′

(η + A)
+

Nt
Nb

[
θ′′ +

θ′

(η + A)

]
= 0, (13)

χ′′ +
χ′

(η + A)
+

SbAFχ′

(η + A)
+ Pb

[
χ′φ′ + (τ0 + χ)φ′′

]
= 0 (14)

.
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The related boundary conditions in the non-dimensional form are given by:{
F = 0, F′ = 1 + β1

(
F′′ − 1

A F′
)

, θ = φ = χ = 1 at η = 0,
F′ = F′′ = θ = φ = χ = 0 as η → ∞

}
. (15)

The parameters in non-dimensional forms are represented in Table 1 below:

Table 1. Non-dimensional parameters and their related expressions.

Parameters Expressions Parameters Expressions

M =
σB2

0
ρa

Magnetic parameter Nb =
τDB(Cw−C∞)

υ

Brownian motion
parameter

A =
√

a
υ R Curvature parameter Sc = υ

DB
Schmidt number

β1 = β
√

a
υ

Slip parameter Sb = υ
Dm

Bio-convective Schmidt
number

Pr = υ(ρCP)
k

Prandtl Number Pb = bWc
Dm

Bio-convective Peclet
number

Nt = τDT(Tw−T∞)
υT∞

Thermophoresis
parameter τ0 = N∞

Nw−N∞

Dimensionless
bio-convective factor

Res =
Uws

υ
Reynolds number τ =

(ρCP )np

(ρCP )

Dimensionless thermal
factor

The physical quantities of interest are represented as follows:

C f =
τrs

ρU2
w

, where τw = µ

(
∂u
∂r
− u

r + R

)
r=0

, (16)

Nus =
sqw

k(Tw − T∞)
, where qw = −k

(
∂T
∂r

)
r=0

, (17)

Shs =
sqj

DB(Cw − C∞)
, where qj = −DB

(
∂C
∂r

)
r=0

, (18)

Mns =
sqm

Dm(Nw − N∞)
, where qm = −Dm

(
∂N
∂r

)
r=0

, (19)

where τw represents the surface shear stress. qw denotes the wall heat flux. qj designates the
wall mass flux. qm stands for the wall motile micro-organisms’ flux. The non-dimensional
forms of Equations (16)–(19) are given as:

C f Re
1
2
s = F′′ (0)− F′(0)

A
, (20)

NusRe−
1
2

s = −θ′(0), (21)

ShsRe−
1
2

s = −φ′(0), (22)

MnsRe−
1
2

s = −χ′(0). (23)

3. Validation

To validate the methodology used in the present study, we compare the obtained
results for different values of the slip parameter (β1) with those of Wang [24], Noghrehabadi
et al. [25], Sahoo and Do [26] and Abbas et al. [37], by assuming that M = 0 and A = 1000.
When the curvature parameter A tends towards the infinity value, the curved stretching
surface is assumed to be a flat stretching surface. Thus, by fixing A = 1000, the results are
found to be in good agreement. The current results are shown in Table 2, which provides



Mathematics 2022, 10, 4133 6 of 18

a basis for comparison with Wang [24], Noghrehabadi et al. [25], Sahoo and Do [26], and
Abbas et al. [37].

Table 2. Comparison of C f Re
1
2
s for various values of β1, when M = 0 and A = 1000.

β1 [24] [25] [26] [37] Present Results

0.0 −1.0 −1.0002 −1.0011 −1.0000 −1.00068
0.1 - −0.8720 −0.8714 −0.8720 −0.87262
0.2 - −0.7763 −0.7749 −0.7763 −0.77682
0.3 −0.701 −0.7015 −0.6997 −0.7015 −0.70193
0.5 - −0.5911 −0.5891 −0.5911 −0.59149
1.0 −0.430 −0.4301 −0.4284 −0.4301 −0.43034
2.0 −0.284 −0.2839 −0.2828 −0.2839 −0.28407
3.0 - −0.2140 −0.2133 −0.2140 −0.21412
5.0 −0.145 −0.1448 −0.1444 −0.1448 −0.14487

10.0 - −0.0812 −0.0810 −0.0812 −0.08125
20.0 −0.0438 −0.0437 −0.0437 −0.0437 −0.04379

4. Results and Discussion

The MATLAB software is used herein, through the so-called BVP4C routine, to solve
the coupled set of nonlinear ODEs given by Equations (10)–(14) and their accompanying
boundary conditions. To achieve mathematical results, we have utilized the following
values for various non-dimensional parameters: M = 0.5, A = 0.5, β1 = 1.0, Pr = 4.0,
Nt = 0.2, Nb = 0.3, Sc = 6.0, Sb = 6.0, Pb = 0.1, τ0 = 1. With the exception of the
modified parameters displayed in the figures, these are maintained as constant. We have
discussed the influence of various parameters, such as magnetic parameter (M), curvature
parameter (A), slip parameter (β1), thermophoresis parameter (Nt), Prandtl number (Pr),
Brownian motion parameter (Nb), bio-convection Schmidt number (Sb), Schmidt number
(Sc), bio-convection Peclet number (Pb). Some of these were examined based on the local
motile micro-organisms’ number. Table 3 summarizes the values for the physical quantities
of interest given in Equations (20)–(23).

Table 3. Numerical values of C f Re
1
2
s , NusRe−

1
2

s , ShsRe−
1
2

s , and MnsRe−
1
2

s .

Parameters Values CfRe
1
2
s NusRe−

1
2

s ShsRe−
1
2

s MnsRe−
1
2

s

M
0.5 −0.685157 0.341839 1.173836 0.867494
1.0 −0.737808 0.247285 0.899088 0.583058
1.5 −0.761642 0.203697 0.790827 0.433161

A
1.0 −0.643659 0.312729 1.078490 0.876261
1.5 −0.612839 0.31028 1.076535 0.903080
2.0 −0.592397 0.310773 1.081319 0.922313

β1

1.0 −0.685157 0.341839 1.173836 0.867494
1.5 −0.510308 0.284749 0.992354 0.696359
2.0 −0.406574 0.245495 0.880211 0.574382

Pr
3.0 −0.685157 0.353240 1.160884 0.870119
4.0 −0.685157 0.341839 1.173836 0.867494
5.0 −0.685157 0.320823 1.192109 0.863649

Nb
0.2 −0.685156 0.446899 1.079823 0.888697
0.3 −0.685157 0.341839 1.173836 0.867494
0.4 −0.685157 0.258463 1.211724 0.858719

Nt
0.2 −0.685157 0.341839 1.173836 0.867494
0.3 −0.685157 0.299689 1.172226 0.869968
0.4 −0.685157 0.264082 1.179707 0.870639
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Table 3. Cont.

Parameters Values CfRe
1
2
s NusRe−

1
2

s ShsRe−
1
2

s MnsRe−
1
2

s

Sc
5.0 −0.685156 0.360332 1.033888 0.898135
5.5 −0.685157 0.350414 1.106071 0.882278
6.0 −0.685157 0.341839 1.173836 0.867494

Sb
5.0 −0.685157 0.341839 1.173836 0.730776
5.5 −0.685157 0.341839 1.173836 0.801320
6.0 −0.685157 0.341839 1.173836 0.867494

Pb
0.2 −0.685157 0.341838 1.173835 0.507114
0.4 −0.685157 0.341838 1.173834 −0.246490
0.6 −0.685157 0.341838 1.173834 −1.053887

4.1. Curvature Parameter Effects

Figure 2 demonstrates a deteriorating impression of velocity F′(η) when A becomes
larger. Physically, the increasing curvature of the sheet significantly increases the resistance
of the flow which slows down the velocity. The same figure shows a similar decreasing
pattern for temperature θ(η); as the resistance towards fluid flow is larger for the improving
curvature parameter, the concentration of the fluid also improves, which slows the temperature
evolution. Figure 3 shows how the nanofluid concentration φ(η) and the concentration of
motile micro-organisms χ(η) behave as the radius of curvature, A, increases. As this parameter
is increased, the CBL and MMBL are seen to decrease, which is also reflected in the reduction
of concentration φ(η) and concentration of motile micro-organisms χ(η).
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4.2. Magnetic Parameter Effects

The effect of the magnetic parameter M on the dimensionless velocity, tempera-
ture, concentration, and concentration of motile micro-organisms’ fields are shown in
Figures 4 and 5. The magnetic parameter is the proportion of electromagnetic force to
inertial force; thus, when M increases, the velocity field decreases. Due to the presence of
a magnetic field, the Lorentz forces are considered to be in hydro-magnetic flow. As M
increases, the strength of the induced magnetic forces increases, with a drop in the velocity
field. In addition, the temperature field increases with increasing M at any point on the
BL. This is because when a magnetic field is applied to a flow area, it produces a Lorentz
force, which acts as a retarding force, causing the temperature of the fluid inside the BL to
rise, as seen in Figure 4. Furthermore, the sheet’s surface temperature may be controlled by
varying the strength of the applied magnetic field, which also helps in improving the φ(η)
and χ(η), as can be seen in Figure 5.
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4.3. Slip Parameter Effects

Figure 6 shows the velocity and temperature fields for varying values of β1. The
velocity decreases as the slip parameter increases, while the temperature increases. This is



Mathematics 2022, 10, 4133 9 of 18

because when the slip condition occurs, the stretching sheet’s velocity differs from the flow
near the sheet’s velocity. The fluid does not receive a majority of the stretching velocity. As
a result, the velocity profile is reduced. In contrast, when β1 is increased, subsequently,
the rate of heat transmission from the surface to the ambient fluid is significantly reduced.
Thus, the temperature field improves. The same effects are observed for concentration and
concentration motile micro-organisms’ profiles in Figure 7. Increases in the slip parameter
induce surface friction, which generates a frictional force that causes the particles moving
through the fluid to slow down. As a result, the distributions of the nanofluid concentration
and the concentration of motile micro-organisms are amplified.
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4.4. Prandtl Number Effects

Figure 8 shows how different values of the Prandtl number, Pr, affect the temperature
and concentration distribution. As can be seen in Figure 8, increasing the Pr lowers the
temperature and concentration. Pr is calculated by the amount of momentum to thermal
diffusion. As the Pr rises, thermal and mass diffusion decreases, resulting in a smaller TBL
and CBL, as it turned out to reduce θ(η) and φ(η).
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4.5. Thermophoresis and Brownian Motion Parameter Effects

From Figure 9, we can see the behavior of Nt on θ(η) and φ(η). As is evident in the
figure, θ(η) and φ(η) are both increased for Nt. Logically, Nt determines the intensity of the
TBL and CBL. When Nt rises, the particles begin to move faster, leading to increased kinetic
energy within the flow domain; this leads to a rise in θ(η) and TBL thickness. Similarly, a
marginal change in Nt causes φ(η) to significantly enhance.
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Figure 9. Influence of the thermophoresis parameter on θ(η) and φ(η).

The change in the Nt causes the fluid particles to move quickly, releasing surplus
thermal energy and causing a rise in CBL thickness. As a result, φ(η), demonstrated in
Figure 10, shows a significant increase. The temperature gradient is significantly affected by
the Brownian motion parameter Nb. When Nb grows, it produces an increase in θ(η), which
promotes the TBL thickness. Upgrading Nb causes faster fluid particle movement, and, as a
result, a rise in θ(η) and TBL thickness is noted, as can be seen in Figure 10. As mentioned
earlier, speeding up the particle movement diminishes the concentration gradient; the
particles begin to migrate quickly from regions of greater to lower concentration when the
mobility of the fluid particles upsurges, with an upsurge in Nb. Thus, an increase in Nb
causes a drop in φ(η), as shown in Figure 10.
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4.6. Schmidt and Peclet Number Effects

The Schmidt number Sc has a considerable influence on the mass distribution as it
increases. Such influence on φ(η) and χ(η) is depicted in Figures 11 and 12. The Schmidt
number describes the mass momentum transition. It is a physical number that is cal-
culated as the proportion of kinematic viscosity to mass diffusivity in the flow regime,
where mass and momentum diffusion circulation mechanisms occur simultaneously. From
Figures 11 and 12, it is clear that increasing the Schmidt and bio-convection Schmidt num-
bers reduces the mass and the micro-organism diffusion and, as a result, φ(η) and χ(η)
are decreased.
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Figure 12. Influence of the bio-convection Schmidt number on χ(η).

Figure 13 demonstrates the effect of Pb on χ(η). The increment in Pb enhances χ(η).
By using values greater than one and less than one, the estimated Peclet number establishes
whether diffusion or convection is the dominant mode of mass movement. Diffusion is a process
in which molecules move down a concentration gradient in a net flux. Despite convection being
far faster than diffusion, diffusion is the most efficient mode of transport for very small volumes,
such as in microfluidic systems. It is noticeable that the diffusion propagation transport is more
dominant compared with the advection propagation rate. Hence, by increasing the values of
the Peclet number, the motile micro-organisms’ profile χ(η) increases.
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4.7. Effects of Various Parameters on Motile Microorganisms’ Number

Figures 14–17 are discussed to show the variations in the micro-organisms’ number,

MnsRe−
1
2

s with Nt, Nb, Pb, and Sb. In Figure 14, Sb is varied between the range 5 ≤ Sb ≤ 7
along the thermophoresis parameter in the range 0.2 ≤ Nt ≤ 0.6. The variations clearly

show that MnsRe−
1
2

s decreases for Nt and increases for Sb. Similar effects are observed
in Figure 15; by fixing the values of Sb, Nb is changed between 0.2 ≤ Nb ≤ 0.6. This is
because the thermophoretic diffusion and Brownian motion diminish the concentration
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of the motile micro-organism gradient of the flowing fluid, as the mobility of the micro-
organism increases. The fluctuations in the microorganisms’ number with Pb, along with
Nt and Nb, are described in Figures 16 and 17. We follow the same range of values for
Nt and Nb, whereas Pb is changed between 0 ≤ Pb ≤ 1. As shown by the fluctuations,

MnsRe−
1
2

s decreases with Nt, Nb, and Pb. For the values Pb < 1 diffusion is more dominant
than convection. Hence, we see the micro-organisms’ number as a decreasing function.
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5. Conclusions

A numerical study is carried out concerning the bio-convection heat transfer of
nanofluid flow near a curved stretched sheet containing gyrotactic micro-organisms. This
research marks the impact of thermophoresis and Brownian motion in nanofluids that
contains both nanoparticles and gyrotactic microorganisms, utilizing the well-known Buon-
giorno model. Two-dimensional Navier-Stokes, energy, and concentration equations are
solved using the BVP4c integrated MATLAB package. The effects of various design pa-
rameters on the MHD flow and heat transfer are investigated. The following are the main
observations of this study:

• The curvature parameter reduces the profiles of velocity F′(η), temperature θ(η),
concentration φ(η), and concentration of motile micro-organisms χ(η), and their
respective boundary layer thicknesses.

• There is a rise in the profiles of temperature θ(η), concentration φ(η), and concentration
of motile micro-organisms χ(η), along with a decrement in the velocity profile F′(η) as
the magnetic parameter is increased. A similar trend is noticed for the slip parameter.
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• The profiles of temperature θ(η) and concentration φ(η) tend to diminish due to the
impact of the Prandtl number.

• The Brownian motion has opposite effects on the profiles of the temperature θ(η)
(i.e., increasing function) and concentration φ(η) (i.e., decreasing function). However,
the thermophoresis parameter rises the temperature and concentration distributions.

• The increasing values of Schmidt and bio-convection Schmidt numbers decrease the
profiles of concentration φ(η) and concentration of motile micro-organisms χ(η).

• The augmenting values of the Peclet number improve significantly the profile of motile
micro-organisms’ concentration χ(η).

• The motile micro-organisms’ number is reduced with the increasing values of the
Brownian motion parameter, the thermophoresis parameter, and the Peclet number,
whereas it enhances with the bio-convection Schmidt number.

Many fields, including pharmacodynamics, drug delivery methods, tumor treatment,
hemodynamics, biological polymer synthesis, bacteria-powered micro-mixers, bio-energy
systems, pollution dispersion in aquifers, and others [43–47], could benefit from the use
of the aforementioned problem. Increasing a nanofluid’s stability as a suspension is
another justification for including microorganisms in it. The same flagella that propel
microorganisms will also cause some mixing at the micro-scale (on a scale that is similar
to the size of a nanoparticle and a bacterium), which may prevent nanoparticles from
aggregating and agglomerating, and also lead to the macroscopic motion of the host fluid.
In this way, the relevance of bioconvection effects in the boundary layer close to the wall
has been highlighted by the application of our model to nanofluid heat transfer in the
laminar domain.

Author Contributions: Conceptualization, P.R., N.A.A., A.W., N.A.S. and Y.J.; methodology, P.R.,
N.A.A., A.W., N.A.S. and Y.J. software, P.R., N.A.A., A.W., N.A.S. and Y.J.; validation, P.R., N.A.A.,
A.W., N.A.S. and Y.J.; formal analysis, P.R., N.A.A., A.W., N.A.S. and Y.J.; investigation, P.R., N.A.A.,
A.W., N.A.S. and Y.J.; resources, P.R., N.A.A., A.W., N.A.S. and Y.J.; writing—original draft prepara-
tion, P.R., N.A.A., A.W., N.A.S. and Y.J.; writing—review and editing, P.R., N.A.A., A.W., N.A.S. and
Y.J.; visualization, P.R., N.A.A., A.W., N.A.S. and Y.J.; supervision, P.R., N.A.A., A.W., N.A.S. and Y.J.;
funding acquisition, Y.J. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Research Foundation of Korea (NRF) funded
by the Korean government (MSIT) [NRF-2021R1I1A3047845, NRF-2022R1A4A3023960] and BK21
Four program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education of Korea (Center for Creative Leaders in Maritime Convergence).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BL Boundary Layer
MBL Momentum Boundary Layer
TBL Thermal Boundary Layer
CBL Concentration Boundary Layer
MMBL Motile Micro-organisms’ Boundary Layer
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Nomenclature

Alphabets
A Curvature parameter
a Stretching rate constant
b Chemotaxis constant
{C, Cw, C∞} Concentration characteristics
CP Specific heat capacity
C f Skin friction coefficient
DB Brownian diffusion coefficient
DT Thermophoresis diffusion coefficient
Dm Motile micro-organisms’ diffusion coefficient
{F, F′} Dimensionless nanofluid velocity components
k Thermal conductivity
M Magnetic parameter
Mns Local motile micro-organisms’ number
{N, Nw, N∞} Motile micro-organisms’ concentration characteristics
Nb Brownian motion parameter
Nt Thermophoresis parameter
Nus Local Nusselt number
p Pressure
P Dimensionless pressure
Pb Bio-convective Peclet number
Pr Prandtl number
qw Wall heat flux
qj Wall mass flux
qm Wall motile micro-organisms flux
R Radius of curvature
Re Reynolds number
(r, s) Curvilinear coordinates
Sb Bio-convective Schmidt number
Sc Schmidt number
Shs Local Sherwood number
{T, Tw, T∞} Temperature characteristics
Uw Stretching sheet velocity
(u, v) s− and r− velocity components
Wc Maximum cell speed
Greek Letters
β Slip length
β1 Slip parameter
σ Nanofluid’s electrical conductivity
ρ Nanofluid’s density
υ Nanofluid’s kinematic viscosity
µ Nanofluid’s dynamic viscosity
τw Surface shear stress
θ Non-dimensional nanofluid temperature
φ Non-dimensional nanofluid concentration
χ Non-dimensional motile micro-organisms’ concentration
η Similarity variable
Subscripts
X′ Ordinary differentiation of X w.r.t η
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