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Abstract: In this paper, we solve a system of mixed variational inclusions involving a generalized
Cayley operator and the generalized Yosida approximation operator. An iterative algorithm is
suggested to discuss the convergence analysis. We have shown that our system admits a unique
solution by using the properties of q-uniformly smooth Banach space, and we discuss the convergence
criteria for sequences generated by iterative algorithm. Two examples are constructed, and an
application is provided.

Keywords: system; inclusion; operator; solution; convergence

MSC: 40H09; 47J40

1. Introduction

By using the clever transformation, Baiocchi [1] investigated the fact that the free
boundary value problem associated with seepage through an earth dam is equivalent to a
class of variational inequality. Variational inequalities have a tremendous impact in this
field, and consequently variational inequalities are applied rather than other methods.

The study of variational inequality theory is twofold. On the one hand, it reveals
the basic facts regarding the qualitative behaviour of solutions related to many nonlinear
boundary value problems. On the other hand, it produces effective numerical methods to
solve free and moving boundary value problems (see for more details [2–5]).

It is well known that projection methods are not applicable to solve variational inclu-
sion problems and such an issue was solved by Hassouni and Moudafi [6] by using the
resolvent operator technique. Generalized resolvent operators were introduced by several
authors by using accretive operators, H-accretive operators, m-accretive operators, etc.
(see [7–9]). The system of variational inclusions can be regarded as a natural extension of
the system of variational inequalities. Many problems related to mathematical and convex
analysis, biological sciences, image recovery processes, biomedical sciences, elasticity, data
compression, mechanics, computer programming, and mathematical physics, etc., can
be worked out by using the framework of system of variational inclusions. Due to their
applications, system of variational inclusions (inequalities) were considered and studied
by many authors, that is, by Pang [10], Cohen and Chaplais [11], Bianchi [12], Ansari and
Yao [13], Yan et al. [14], etc. For more details on variational inclusions and their systems,
we refer to [15–27] and references therein.

It is well-known that monotone operators can be structured into single-valued Lips-
chitzian monotone operators through a process known as the Yosida approximation process.
The applications of the Yosida approximation operator can be found while dealing with
wave equations, heat equations, linearized equations of coupled sound, and heat flow, etc.
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(see [28–30]). The Cayley transform is a mapping between skew symmetric matrices and
special orthogonal matrices. In real, complex, and quaternionic analysis, many applications
of the Cayley transform can be found (see [31–34]).

Compared with other normed spaces, Banach spaces have the advantage that it is easy
to obtain the convergence of a sequence of vectors. That is why we choose a q-uniformly
smooth Banach space in order to achieve better results.

Conjoining the above facts, in this paper, we study a system of mixed variational inclu-
sions which involve a generalized Cayley operator and a generalized Yosida approximation
operator in a q-uniformly smooth Banach space. To obtain convergence result, we define
an algorithm with error terms to take into account inexact computation. We prove that
our system admits a unique solution, and we discuss convergence criteria for sequences
generated by algorithm.

In support of our system, we provide an example. Moreover, another example is
constructed to show that the generalized Cayley operator is Lipschitz-continuous and the
generalized Yosida approximation operator is Lipschitz-continuous, as well as strongly
accretive. Lipschitz continuity of both the operators is shown in Figures in Section 5,
respectively. An application is also given.

2. Fundamental Concepts

Let Ẽ be real Banach space with its topological dual Ẽ∗. The norm on Ẽ is denoted by
‖ · ‖, duality pairing between Ẽ and Ẽ∗ by 〈·, ·〉 and the class of subsets of Ẽ by 2Ẽ.

It is well known that generalized duality mapping Jq : Ẽ→ 2Ẽ∗ , is defined by

Jq(x) =
{

f ∈ Ẽ : 〈x, f 〉 = ‖x‖q and ‖ f ‖ = ‖x‖q−1
}

, for all x ∈ Ẽ.

For q = 2, generalized duality mapping reduces to normalized duality mapping. Note
that if Ẽ is uniformly smooth then Jq is single-valued.

A Banach space Ẽ is called q-uniformly smooth if

ρẼ(t) ≤ ktq,

where q > 1, k > 0 are constants and ρẼ(t) is the modulus of smoothness.
The following result of Xu [35] is important to prove the main result.

Lemma 1. Let Ẽ be a real, uniformly smooth Banach space. Then Ẽ is q-uniformly smooth if and
only if there exists a constant Cq such that for all x, y ∈ Ẽ,

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ Cq‖y‖q.

Definition 1 ([36]). Let P : Ẽ→ Ẽ be a mapping. Then, P is called

(i) accretive, if
〈P(x)− P(y), Jq(x− y)〉 ≥ 0, for all x, y ∈ Ẽ,

(ii) strictly accretive, if

〈P(x)− P(y), Jq(x− y)〉 > 0, for all x, y ∈ Ẽ,

and the equality holds if and only if x = y,
(iii) strongly accretive, if there exists a constant r > 0 such that

〈P(x)− P(y), Jq(x− y)〉 ≥ r‖x− y‖q, for all x, y ∈ Ẽ,

(iv) Lipschitz-continuous, if there exists a constant λP > 0, such that

‖P(x)− P(y)‖ ≤ λP‖x− y‖, for all x, y ∈ Ẽ,
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(v) ξP-expansive, if there exists a constant ξP > 0 such that

‖P(x)− P(y)‖ ≥ ξP‖x− y‖, for all x, y ∈ Ẽ.

Definition 2 ([36]). A multi-valued mapping M : Ẽ→ 2Ẽ is said to be accretive if for all x, y ∈ Ẽ,

〈u− v, Jq(x− y)〉 ≥ 0, for all u ∈ M(x), v ∈ M(y).

Definition 3 ([7]). Let P : Ẽ→ Ẽ be a mapping. A multi-valued mapping M : Ẽ→ 2Ẽ is said to
be P-accretive if M is accretive and [P + λM](Ẽ) = Ẽ, for all λ > 0.

Definition 4 ([7]). Let P : Ẽ → Ẽ be single-valued mapping and M : Ẽ → 2Ẽ be P-accretive
multi-valued mapping. The generalized resolvent operator RM

P,λ : Ẽ→ Ẽ is defined as

RM
P,λ(x) = [P + λM]−1(x), for all x ∈ Ẽ.

Theorem 1 ([36]). Let P : Ẽ→ Ẽ be strongly accretive operator with constant r and M : Ẽ→ 2Ẽ

be P-accretive multi-valued mapping. Then,∥∥∥RM
P,λ(x)− RM

P,λ(y)
∥∥∥ ≤ 1

r
‖x− y‖, for all x, y ∈ Ẽ.

That is, the generalized resolvent operator RM
P,λ is Lipschitz-continuous.

Definition 5 ([36]). The generalized Cayley operator CM
P,λ : Ẽ→ Ẽ is defined as

CM
P,λ =

[
2RM

P,λ − P
]
(x), for all x ∈ Ẽ and λ > 0.

Definition 6 ([36]). The generalized Yosida approximation operator YM
P,λ : Ẽ→ Ẽ is defined as

YM
P,λ =

1
λ

[
P− RM

P,λ

]
(x), for all x ∈ Ẽ and λ > 0.

Now, we prove that the generalized Cayley operator is Lipschitz-continuous and
the generalized Yosida approximation operator is strongly accretive as well as Lipschitz-
continuous.

Proposition 1. The generalized Cayley operator is λC-Lipschitz-continuous, where

λC =

(
2 + λPr

r

)
, λP, r > 0 are constants and P : Ẽ → Ẽ is λP-Lipschitz-continuous map-

ping.

Proof. For any x, y ∈ Ẽ and using the Lipschitz continuity of RM
P,λ and P, we evaluate∥∥∥CM

P,λ(x)− CM
P,λ(y)

∥∥∥ =
∥∥∥[2RM

P,λ(x)− P(x)
]
−
[
2RM

P,λ(y)− P(y)
]∥∥∥

=
∥∥∥2
[

RM
P,λ(x)− RM

P,λ(y)
]
− [P(x)− P(y)]

∥∥∥
≤ 2

∥∥∥RM
P,λ(x)− RM

P,λ(y)
∥∥∥+ ‖P(x)− P(y)‖

≤ 2
r
‖x− y‖+ λP‖x− y‖

=
2 + λPr

r
‖x− y‖.
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Thus, ∥∥∥CM
P,λ(x)− CM

P,λ(y)
∥∥∥ ≤ λC‖x− y‖.

That is, the generalized Cayley operator is λC-Lipschitz-continuous.

Proposition 2. The generalized Yosida approximation operator YM
P,λ : Ẽ→ Ẽ is

(i) λY-Lipschitz-continuous, where λY =

(
λPr + 1

λr

)
, λP, r, λ > 0 are constants and P is

λP-Lipschitz-continuous,

(ii) δY-strongly accretive, where δY =

(
r2 − 1

λr

)
, r, λ > 0 are constants, r2 > 1 and P is

r-strongly accretive.

Proof. (i) For any x, y ∈ Ẽ, λ > 0 and using the Lipschitz continuity of P and RM
P,λ,

we have∥∥∥YM
P,λ(x)−YM

P,λ(y)
∥∥∥ =

1
λ

∥∥∥[P(x)− RM
P,λ(x)

]
−
[

P(y)− RM
P,λ(y)

]∥∥∥
=

1
λ
‖P(x)− P(y)‖+ 1

λ

∥∥∥RM
P,λ(x)− RM

P,λ(y)
∥∥∥

≤ λP
λ
‖x− y‖+ 1

λ r
‖x− y‖

=

(
λPr + 1

λr

)
‖x− y‖,

that is, ∥∥∥YM
P,λ(x)−YM

P,λ(y)
∥∥∥ ≤ λY‖x− y‖.

Thus, the generalized Yosida approximation operator YM
P,λ is λY-Lipschitz-continuous.

(ii) For any x, y ∈ Ẽ and using the Lipschitz continuity of RM
P,λ, we have

〈
YM

P,λ(x)−YM
P,λ(y), Jq(x− y)

〉
=

1
λ

〈[
P(x)− RM

P,λ(x)
]
−
[

P(y)− RM
P,λ(y)

]
, Jq(x− y)

〉
=

1
λ

[〈
P(x)− P(y), Jq(x− y)

〉
−
〈

RM
P,λ(x)− RM

P,λ(y), Jq(x− y)
〉]

≥ 1
λ

[
r‖x− y‖q −

∥∥∥RM
P,λ(x)− RM

P,λ(y)
∥∥∥q]

≥ 1
λ

[
r‖x− y‖q − 1

r
‖x− y‖q

]
=

(
r2 − 1

λr

)
‖x− y‖q,

that is, 〈
YM

P,λ(x)−YM
P,λ(y), Jq(x− y)

〉
≥ δY‖x− y‖q.

Thus, the generalized Yosida approximation operator YM
P,λ is δY-strongly accretive.

Lemma 2 ([37]). Let {an}∞
n=1 be a non-negative real sequence satisfying

an+1 ≤ (1− αn)an + σn,
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where αn ∈ [0, 1], ∑∞
n=1 αn = ∞ and σn = O(αn). Then lim

n→∞
an = 0.

3. Framework of the Problem and Fixed-Point Formulation

Let Ẽ be real Banach space. Let A, B, g, P1, P2 : Ẽ→ Ẽ be single-valued mappings and
M, N : Ẽ→ 2Ẽ be multi-valued mappings. Let for λ, ρ > 0, CM

P1,λ : Ẽ→ Ẽ be a generalized
Cayley operator associated with the generalized resolvent operator RM

P1,λ = [P1 + λM]−1

and YN
P2,ρ : Ẽ → Ẽ be a generalized Yosida approximation operator associated with the

generalized resolvent operator RN
P2,ρ = [P2 + ρN]−1. We consider following system of

mixed variational inclusions involving generalized Cayley operator and generalized Yosida
approximation operator.

Find (x, y) ∈ Ẽ× Ẽ, such that

0 ∈ CM
P1,λ(A(x)) + M(g(y)),

0 ∈ YN
P2,ρ(B(y)) + N(g(x)).

(1)

For suitable choices of operators involved in system (1), one can obtain many previ-
ously studied systems of variational inclusions and variational inequalities.

The following Lemma ensures the equivalence between system of mixed variational
inclusions involving generalized Cayley operator and generalized Yosida approximation
operator (1) and a system of equations.

Lemma 3. The system of mixed variational inclusions involving generalized Cayley operator and
the generalized Yosida approximation operator (1) admits a solution (x, y) ∈ Ẽ× Ẽ if and only if
the following equations are satisfied:

g(y) = RM
P1,λ

[
P1(g(y))− λCM

P1,λ(A(x))
]
, (2)

g(x) = RN
P2,ρ

[
P2(g(x))− ρYN

P2,ρ(B(y))
]
. (3)

Proof. From Equation (2), we have

g(y) = RM
P1,λ

[
P1(g(y))− λCM

P1,λ(A(x))
]
.

By using the definition of generalized resolvent operator RM
P1,λ, we obtain

g(y) = [P1 + λM]−1
[

P1(g(y))− λCM
P1,λ(A(x))

]
,

P1(g(y)) + λM(g(y)) = P1(g(y))− λCM
P1,λ(A(x)),

λM(g(y)) = −λCM
P1,λ(A(x)),

which impies that
0 ∈ CM

P1,λ(A(x)) + M(g(y)).

In a similar way, by using Equation (3) and definition of generalized resolvent operator
RN

P2,ρ , we obtain

0 ∈ YM
P2,ρ(B(y)) + N(g(x)).

Theorem 2. Let Ẽ be a q-uniformly smooth Banach space. Let A, B, g, P1, P2 : Ẽ → Ẽ be single-
valued mappings such that A is λA-Lipschitz-continuous, B is λB-Lipschitz-continuous and
ξB-expansive, g is λg-Lipschitz-continuous, P1 is λP1-Lipschitz-continuous and r1-strongly ac-
cretive, P2 is λP2-Lipschitz-continuous and r2-strongly accretive. Suppose that M, N : Ẽ → 2Ẽ
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be multi-valued mappings and generalized resolvent operators RM
P1,λ and RN

P2,ρ are
1
r1

and
1
r2

-

Lipschitz-continuous, respectively. Suppose that generalized Cayley operator CM
P1,λ is λC-Lipschitz-

continuous, generalized Yosida approximation operator YN
P2,ρ is λY-Lipschitz-continuous and δY-

strongly accretive with respect to B. Suppose that the following conditions are satisfied:

0 <

(
λgr1 + λP1 λg

r1

)
+

(
1
r2

q
√
[λ

q
B − qρδYξ

q
B + ρqCqλ

q
Yλ

q
B]

)
< 1,

0 <
λλCλA

r1
+

(
λgr2 + λP2 λg

r2

)
< 1,

, (4)

where λC =
2+λP1 r

r , δY = r2−1
λr and λY =

λP2 r+1
λr . Then, the system of mixed variational

inclusions involving generalized Cayley operator and the generalized Yosida approximation operator
(1) admits a unique solution.

Proof. For each (x, y) ∈ Ẽ× Ẽ, we define the mappings

Pλ(x, y) = g(y)− RM
P1,λ

[
P1(g(y))− λCM

P1,λ(A(x))
]
,

and Pρ(x, y) = g(x)− RN
P2,ρ

[
P2(g(x))− ρYN

P2,ρ(B(y))
]
.

By using the Lipschitz continuity of g, RM
P1,λ, P1, A, CM

P1,λ and strong accretiveness of
P1, for (x1, y1), (x2, y2) ∈ Ẽ× Ẽ, we obtain

‖Pλ(x1, y1)− Pλ(x2, y2)‖ =
∥∥∥(g(y1)− RM

P1,λ

[
P1(g(y1))− λCM

P1,λ(A(x1))
])

−
(

g(y2)− RM
P1,λ

[
P1(g(y2))− λCM

P1,λ(A(x2))
])∥∥∥

=
∥∥∥g(y1)− g(y2)−

(
RM

P1,λ

[
P1(g(y1))− λCM

P1,λ(A(x1))
]

−RM
P1,λ

[
P1(g(y2))− λCM

P1,λ(A(x2))
])∥∥∥

≤ ‖g(y1)− g(y2)‖+
∥∥∥RM

P1,λ

[
P1(g(y1))− λCM

P1,λ(A(x1))
]

−RM
P1,λ

[
P1(g(y2))− λCM

P1,λ(A(x2))
]∥∥∥

≤ ‖g(y1)− g(y2)‖+
1
r1

∥∥∥P1(g(y1))− P1(g(y2))

−λ
[
CM

P1,λ(A(x1))− CM
P1,λ(A(x2))

]∥∥∥
≤ ‖g(y1)− g(y2)‖+

1
r1
‖P1(g(y1))− P1(g(y2))‖

+
λ

r1

∥∥∥CM
P1,λ(A(x1))− CM

P1,λ(A(x2))
∥∥∥

≤ λg‖y1 − y2‖+
λP1

r1
‖g(y1)− g(y2)‖

+
λλC
r1
‖A(x1)− A(x2)‖

≤ λg‖y1 − y2‖+
λP1 λg

r1
‖y1 − y2‖+

λλCλA
r1

‖x1 − x2‖

≤
(

λgr1 + λP1 λg

r1

)
‖y1 − y2‖+

λλCλA
r1

‖x1 − x2‖.

(5)

By using the same arguments as for (5), we obtain
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∥∥Pρ(x1, y1)− Pρ(x2, y2)
∥∥ =

∥∥∥(g(x1)− RN
P2,ρ

[
P2(g(x1))− ρYN

P2,ρ(B(y1))
])

−
(

g(x2)− RN
P2,ρ

[
P2(g(x2))− ρYN

P2,ρ(B(y2))
])∥∥∥

=
∥∥∥g(x1)− g(x2)−

(
RN

P2,ρ

[
P2(g(x1))− ρYN

P2,ρ(B(y1))
]

−RN
P2,ρ

[
P2(g(x2))− ρYN

P2,ρ(B(y2))
])∥∥∥

≤ ‖g(x1)− g(x2)‖+
∥∥∥RN

P2,ρ

[
P2(g(x1))− ρYN

P2,ρ(B(y1))
]

−RN
P2,ρ

[
P2(g(x2))− ρYN

P2,ρ(B(y2))
]∥∥∥

≤ ‖g(x1)− g(x2)‖+
1
r2

∥∥∥P2(g(x1))− P2(g(x2))

−ρ
[
YN

P2,ρ(B(y1))−YN
P2,ρ(B(y2))

]∥∥∥
= ‖g(x1)− g(x2)‖+

1
r2

∥∥∥P2(g(x1))− P2(g(x2))

+[B(y1)− B(y2)]− [B(y1)− B(y2)]

−ρ
[
YN

P2,ρ(B(y1))−YN
P2,ρ(B(y2))

]∥∥∥
≤ ‖g(x1)− g(x2)‖+

1
r2
‖P2(g(x1))− P2(g(x2))‖

+
1
r2
‖B(y1)− B(y2)‖

+
1
r2

∥∥∥[B(y1)− B(y2)]− ρ
[
YN

P2,ρ(B(y1))−YN
P2,ρ(B(y2))

]∥∥∥
≤ λg‖x1 − x2‖+

λP2

r2
‖g(x1)− g(x2)‖+

λB
r2
‖y1 − y2‖

+
1
r2

∥∥∥[B(y1)− B(y2)]− ρ
[
YN

P2,ρ(B(y1))−YN
P2,ρ(B(y2))

]∥∥∥
≤ λg‖x1 − x2‖+

λP2 λg

r2
‖x1 − x2‖+

λB
r2
‖y1 − y2‖

+
1
r2

∥∥∥[B(y1)− B(y2)]− ρ
[
YN

P2,ρ(B(y1))−YN
P2,ρ(B(y2))

]∥∥∥.

(6)

Applying the Lipschitz continuity and expansiveness of B, Lipschitz continuity and
strongly accretiveness of YN

P2,ρ with respect to B, we evaluate∥∥∥B(y1)− B(y2)− ρ
[
YN

P2,ρ(B(y1))−YN
P2,ρ(B(y2))

]∥∥∥q

≤ ‖B(y1)− B(y2)‖q − qρ
〈

YN
P2,ρ(B(y1))−YN

P2,ρ(B(y2)), Jq(B(y1)− B(y2))
〉

+ρCq

∥∥∥YN
P2,ρ(B(y1))−YN

P2,ρ(B(y2))
∥∥∥q

≤ λ
q
B‖y1 − y2‖q − qρδY‖B(y1)− B(y2)‖q + ρCqλ

q
Y‖B(y1)− B(y2)‖q

≤ λ
q
B‖y1 − y2‖q − qρδYξ

q
B‖y1 − y2‖q + ρCqλ

q
Yλ

q
B‖y1 − y2‖q

= [λ
q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B]‖y1 − y2‖q.

It follows that∥∥∥B(y1)− B(y2)− ρ
[
YN

P2,ρ(B(y1))−YN
P2,ρ(B(y2))

]∥∥∥ = q
√

λ
q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B‖y1 − y2‖. (7)

Combining (6) and (7), we obtain
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∥∥Pρ(x1, y1)− Pρ(x2, y2)
∥∥ ≤ λg‖x1 − x2‖+

λP2 λg

r2
‖x1 − x2‖+

λB
r2
‖y1 − y2‖

+
1
r2

[
q
√

λ
q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B‖y1 − y2‖

]
=

(
λgr2 + λP2 λg

r2

)
‖x1 − x2‖

+
1
r2

(
λB + q

√
λ

q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B

)
‖y1 − y2‖.

(8)

Adding (5) and (8), we have

‖Pλ(x1, y1)− Pλ(x2, y2)‖+
∥∥Pρ(x1, y1)− Pρ(x2, y2)

∥∥
≤

(
λgr1 + λP1 λg

r1

)
‖y1 − y2‖+

λλCλA
r1

‖x1 − x2‖

+

(
λgr2 + λP2 λg

r2

)
‖x1 − x2‖

+
1
r2

(
λB + q

√
λ

q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B

)
‖y1 − y2‖

=

[(
λgr1 + λP1 λg

r1

)
+

1
r2

(
λB + q

√
λ

q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B

)]
‖y1 − y2‖

+

[
λλCλA

r1
+

(
λgr2 + λP2 λg

r2

)]
‖x1 − x2‖.

It follows that

‖Pλ(x1, y1)− Pλ(x2, y2)‖+
∥∥Pρ(x1, y1)− Pρ(x2, y2)

∥∥ ≤ V(θ)[‖x1 − x2‖+ ‖y1 − y2‖
]
,

where

V(θ) = max

{[(
λgr1 + λP1 λg

r1

)
+

1
r2

(
λB + q

√
λ

q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B

)]
,

[
λλCλA

r1
+

(
λgr2 + λP2 λg

r2

)]}
.

Because Ẽ× Ẽ is a Banach space, we define P̃λ,ρ : Ẽ× Ẽ→ Ẽ× Ẽ, such that

P̃λ,ρ(x, y) =
(

Pλ(x, y), Pρ(x, y)
)
, for all (x, y) ∈ Ẽ× Ẽ.

Condition (4) implies that 0 < V(θ) < 1. Thus,∥∥P̃λ,ρ(x1, y1)− P̃λ,ρ(x2, y2)
∥∥ ≤ V(θ)‖(x1, y1)− (x2, y2)‖. (9)

From (9) it is clear that P̃λ,ρ is a contraction mapping. By using the Banach contraction
principle, it follows that there exists a unique (x, y) ∈ Ẽ× Ẽ, such that

P̃λ,ρ(x, y) = (x, y).

That is,

g(y) = RM
P1,λ

[
P1(g(y))− λCM

P1,λ(A(x))
]
,

g(x) = RN
P2,ρ

[
P2(g(x))− ρYN

P2,ρ(B(y))
]
.
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By Lemma 3, we conclude that (x, y) is the unique solution of system of mixed
variational inclusions involving the generalized Cayley operator and the generalized
Yosida approximation operator (1).

4. Algorithm and Convergence Result

An algorithm is designed to establish convergence result for system of mixed varia-
tional inclusions involving the generalized Cayley operator and the generalized Yosida
approximation operator (1).

By using Lemma 3, we suggest the following iterative algorithm for solving system (1).
Now, we prove convergence of sequences {xn} and {yn} generated by Algorithm 1.

Algorithm 1 Iterative algorithm for solving system (1).

For initial points x0, y0 ∈ Ẽ, let

g(y1) = (1− αn)g(y0) + αnRM
P1,λ[P1(g(y0))− λCM

P1,λ(A(x0))], (10)

g(x1) = (1− αn)g(x0) + αnRN
P2,ρ[P2(g(x0))− ρYN

P2,ρ(B(y0))]. (11)

For next iterative points x1, y1 ∈ Ẽ, let

g(y2) = (1− αn)g(y1) + αnRM
P1,λ[P1(g(y1))− λCM

P1,λ(A(x1))], (12)

g(x2) = (1− αn)g(x1) + αnRN
P2,ρ[P2(g(x1))− ρYN

P2,ρ(B(y1))]. (13)

Continuing in the same manner, compute sequences {xn} and {yn} by the scheme:

g(yn+1) = (1− αn)g(yn) + αnRM
P1,λ[P1(g(yn))− λCM

P1,λ(A(xn))] + αnen, (14)

g(xn+1) = (1− αn)g(xn) + αnRN
P2,ρ[P2(g(xn))− ρYN

P2,ρ(B(yn))] + αnrn, (15)

where λ, ρ > 0 are constants, {en} ∈ Ẽ and {rn} ∈ Ẽ are sequences introduced as error terms
for inexact computation such that lim

n→∞
‖en‖ = 0 = lim

n→∞
‖rn‖ and {αn} is a sequence such that

0 < αn ≤ 1, ∀n ≥ 0 and ∑∞
n=1 αn = ∞.

Theorem 3. Let all the conditions of Theorem 2 be satisfied and additionally if the following
conditions are satisfied:

(i) lim
n→∞

‖en‖ = 0 = lim
n→∞

‖rn‖,
(ii) 0 < αn ≤ 1 and ∑∞

n=0 αn = +∞, for all n,
(iii) λg ≤ δg and δg ≥ 1,
(iv) g is δg-strongly accretive,

then sequences {xn} and {yn} defined by Algorithm 1 converge strongly to x and y, respectively,
where (x, y) is the unique solution of system of mixed variational inclusions involving the general-
ized Cayley operator and the generalized Yosida approximation operator (1).

Proof. It follows from Theorem 2 that the system of mixed variational inclusions involving
the generalized Cayley operator and the generalized Yosida approximation operator (1)
has a unique solution (x, y) ∈ Ẽ× Ẽ. By Lemma 3, we have

g(y∗) = (1− αn)g(y∗) + αnRM
P1,λ[P1(g(y∗))− λCM

P1,λ(A(x∗))], (16)

and g(x∗) = (1− αn)g(x∗) + αnRN
P2,ρ[P2(g(x∗))− ρYN

P2,ρ(B(y∗))]. (17)

By using (14) of Algorithm 1, (16) and Lipschitz continuity of g, RM
P1,λ, P1, A, CM

P1,λ,
we evaluate
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‖g(yn+1)− g(y∗)‖ =
∥∥∥(1− αn)g(yn) + αnRM

P1,λ

[
P1(g(yn))− λCM

P1,λ(A(xn))
]
+ αnen

−
[
(1− αn)g(y∗) + αnRM

P1,λ

[
P1(g(y∗))− λCM

P1,λ(A(x∗))
]]∥∥∥

≤ (1− αn)‖g(yn)− g(y∗)‖+ αn

∥∥∥RM
P1,λ

[
P1(g(yn))− λCM

P1,λ(A(xn))
]

−RM
P1,λ

[
P1(g(y∗))− λCM

P1,λ(A(x∗))
]∥∥∥+ αn‖en‖

≤ (1− αn)λg‖yn − y∗‖+ αn

r1

∥∥∥[P1(g(yn))− P1(g(y∗))]

−λ
[
CM

P1,λ(A(xn))− CM
P1,λ(A(x∗))

]∥∥∥+ αn‖en‖

≤ (1− αn)λg‖yn − y∗‖+ αn

r1
‖P1(g(yn))− P1(g(y∗))‖

+
αn

r1
λ
∥∥∥CM

P1,λ(A(xn))− CM
P1,λ(A(x∗))

∥∥∥+ αn‖en‖

≤ (1− αn)λg‖yn − y∗‖+ αn

r1
λP1‖g(yn)− g(y∗)‖

+
αn

r1
λλC‖A(xn)− A(x∗)‖+ αn‖en‖

≤ (1− αn)λg‖yn − y∗‖+ αn

r1
λP1 λg‖yn − y∗‖

+
αn

r1
λλCλA‖xn − x∗‖+ αn‖en‖

=

[
(1− αn)λg +

αn

r1
λP1 λg

]
‖yn − y∗‖

+
αn

r1
λλCλA‖xn − x∗‖+ αn‖en‖.

(18)

By using (15) of Algorithm 1, (17) and Lipschitz continuity of g, RN
P2,ρ, P2, B, we evaluate

‖g(xn+1)− g(x∗)‖ =
∥∥∥(1− αn)g(xn) + αnRN

P2,ρ

[
P2(g(xn))− ρYN

P2,ρ(B(yn))
]
+ αnrn

−
[
(1− αn)g(x∗) + αnRN

P2,ρ

[
P2(g(x∗))− ρYN

P2,ρ(B(y∗))
]]∥∥∥

≤ (1− αn)‖g(xn)− g(x∗)‖+ αn

∥∥∥RN
P2,ρ

[
P2(g(xn))− ρYN

P2,ρ(B(yn))
]

−RN
P2,ρ

[
P2(g(x∗))− ρYN

P2,ρ(B(y∗))
]∥∥∥+ αn‖rn‖

≤ (1− αn)λg‖xn − x∗‖+ αn

r2

∥∥∥[P2(g(xn))− P2(g(x∗))]

−ρ
[
YN

P2,ρ(B(yn))−YN
P2,ρ(B(y∗))

]∥∥∥+ αn‖rn‖

≤ (1− αn)λg‖xn − x∗‖+ αn

r2
λP2‖g(xn)− g(x∗)‖

+
αn

r2

∥∥∥B(yn)− B(y∗)− [B(yn)− B(y∗)]

−ρ
[
YN

P2,ρ(B(yn))−YN
P2,ρ(B(y∗))

]∥∥∥+ αn‖rn‖

≤ (1− αn)λg‖xn − x∗‖+ αn

r2
λP2‖g(xn)− g(x∗)‖

+
αn

r2
‖B(yn)− B(y∗)‖+ αn

r2

∥∥∥[B(yn)− B(y∗)]

−ρ
[
YN

P2,ρ(B(yn))−YN
P2,ρ(B(y∗))

]∥∥∥+ αn‖rn‖

≤ (1− αn)λg‖xn − x∗‖+ αn

r2
λP2 λg‖xn − x∗‖+ αn

r2
λB‖yn − y∗‖

+
αn

r2

∥∥∥B(yn)− B(y∗)− ρ
[
YN

P2,ρ(B(yn))−YN
P2,ρ(B(y∗))

]∥∥∥+ αn‖rn‖.

(19)

By using the same arguments as for (7), we have∥∥∥B(yn)− B(y∗)− ρ
[
YN

P2,ρ(B(yn))−YN
P2,ρ(B(y∗))

]∥∥∥ = q
√

λ
q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B‖yn − y∗‖. (20)

By combining (19) and (20), we have
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‖g(xn+1)− g(x∗)‖ ≤
[
(1− αn)λg +

αn

r2
λP2 λg

]
‖xn − x∗‖

+

[
αn

r2
λB +

αn

r2

q
√

λ
q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B

]
‖yn − y∗‖+ αn‖rn‖.

(21)

By accretiveness of g with constant δg, we have

‖g(yn+1)− g(y∗)‖‖yn+1 − y∗‖q−1 = ‖g(yn+1)− g(y∗)‖‖Jq(yn+1 − y∗)‖
≥ 〈g(yn+1)− g(y∗), Jq(yn+1 − y∗)〉
≥ δg‖yn+1 − y∗‖q,

which implies that

‖yn+1 − y∗‖ ≤ 1
δg
‖g(yn+1)− g(y∗)‖. (22)

Similarly,

‖xn+1 − x∗‖ ≤ 1
δg
‖g(xn+1)− g(x∗)‖. (23)

From (18) and (22), we have

‖yn+1 − y∗‖ ≤ 1
δg
‖g(yn+1)− g(y∗)‖ ≤ 1

δg

[
(1− αn)λg +

αn

r1
λP1 λg

]
‖yn − y∗‖

+
1
δg

αn

r1
λλCλA‖xn − x∗‖+ 1

δg
αn‖en‖. (24)

From (21) and (23), we have

‖xn+1 − x∗‖ ≤ 1
δg
‖g(xn+1)− g(x∗)‖ ≤ 1

δg

[
(1− αn)λg +

αn

r2
λP2 λg

]
‖xn − x∗‖

+
1
δg

[
αn

r2
λB +

αn

r2

q
√

λ
q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B

]
‖yn − y∗‖ (25)

+
1
δg

αn‖rn‖.

Adding (24) and (25), we have



Mathematics 2022, 10, 4131 12 of 17

‖yn+1 − y∗‖+ ‖xn+1 − x∗‖ ≤
[

1
δg

[
(1− αn)λg +

αn

r1
λP1 λg

]
‖yn − y∗‖

+
1
δg

αn

r1
λλCλA‖xn − x∗‖+ 1

δg
αn‖en‖

]

+

[
1
δg

[
(1− αn)λg +

αn

r2
λP2 λg

]
‖xn − x∗‖

+
1
δg

[
αn

r2
λB +

αn

r2

q
√

λ
q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B

]
‖yn − y∗‖

+
1
δg

αn‖rn‖
]

=

[
1
δg

[
(1− αn)λg +

αn

r1
λP1 λg

]
+

1
δg

[
αn

r2
λB +

αn

r2

q
√

λ
q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B

]]
‖yn − y∗‖

+

[
1
δg

αn

r1
λλCλA +

1
δg

[
(1− αn)λg +

αn

r2
λP2 λg

]]
‖xn − x∗‖

+
αn

δg

[
‖en‖+ ‖rn‖

]
=

λg

δg

[
(1− αn(1− θ))

]
‖yn − y∗‖

+
λg

δg

[
(1− αn(1− θ′))

]
‖xn − x∗‖

+
αn

δg

[
‖en‖+ ‖rn‖

]
,

(26)

where θ =
λP1
r1

+ 1
λgr2

(
λB + q

√
λ

q
B − qρδYξ

q
B + ρCqλ

q
Yλ

q
B

)
and θ′ =

λP2
r2

+ λλCλA
λgr1

.

Because λg ≤ δg and δg ≥ 1, (26) becomes

‖yn+1 − y∗‖+ ‖xn+1 − x∗‖ ≤ [(1− αn(1− θ))]‖yn − y∗‖+ [(1− αn(1− θ′))]‖xn − x∗‖
+αn(‖en‖+ ‖rn‖)

≤ ξ(θ)
[
‖yn − y∗‖+ ‖xn − x∗‖

]
+ αn(‖en‖+ ‖rn‖)

= ξ(θ)
[
‖yn − y∗‖+ ‖xn − x∗‖

]
+ (1− θ)αn

(‖en‖+ ‖rn‖)
(1− θ)

= ξ(θ)
[
‖yn − y∗‖+ ‖xn − x∗‖

]
+ σn,

(27)

where ξ(θ) = max{(1− αn(1− θ)), (1− αn(1− θ′))} and σn = (1− θ)αn
(‖en‖+ ‖rn‖)

(1− θ)
.

Applying condition (i), we have
‖en‖+ ‖rn‖

1− θ
→ 0, as n → ∞. Hence σn = O[(1−

θ)αn]. Thus, all the conditions of Lemma 2 are satisfied.

We conclude that (xn, yn)→ (x, y) ∈ Ẽ× Ẽ, as n→ ∞. This completes the proof.

5. Numerical Example

We construct following example in support of system (1). It is shown that (0, 0) is the
unique solution of system (1).

Example 1. Let Ẽ = R, A, B, P1, P2, g : R→ R be single-valued mappings and M, N : R→ 2R

be multi-valued mappings such that A(x) = 13x, B(y) = 7y, P1(x) = 6
5 x, P2(x) = 9

4 x, M(z) ={
1

10 z
}

, N(z) =
{ 2

3 z
}

, g(x) = 2x and g(y) = 2y, for all x, y, z ∈ R.
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For λ = 1 and ρ = 1, we evaluate the generalized resolvent operators

RM
P1,λ(x) = [P1 + λM]−1(x) =

10
13

x, RN
P2,ρ(x) = [P2 + ρN]−1(x) =

12
35

x, for all x ∈ R.

Consequently, the generalized Cayley operators and the generalized Yosida approximation
operators are calculated.

CM
P1,λ(x) =

[
2RM

P1,λ − P1

]
(x) =

22
65

x,

and YN
P2,ρ(x) =

1
ρ

[
P2 − RN

P2,ρ

]
(x) =

267
140

x, for all x ∈ R.

Further, we calculate

CM
P1,λ

(
A(x) + M

(
g(y)

))
= CM

P1,λ(13x) + M(2y)

= 22
65 (13x) + 1

10 (2y)
= 22

5 x + 1
5 y

= 1
5 (22x + y),

(28)

and YN
P2,ρ

(
B(y) + N

(
g(x)

))
= YN

P2,ρ(7y) + N(2x)

= 267
140 (7y) + 2

3 (2x)
= 267

20 y + 4
3 x.

(29)

For (28) and (29), we have the following matrix representation.[ 22
5

1
5

267
20

4
3

][
x
y

]
=

[
x
y

]
, for all x, y ∈ R.

It is clear from above matrix representation that (0, 0) is the solution of system of mixed varia-
tional inclusion involving the generalized Cayley operator and the generalized Yosida approximation
operator (1).

In continuation of Example 1, we construct another example showing that the gen-
eralized Cayley operator is Lipschitz continuous and generalized Yosida approximation
operator is Lipschitz-continuous as well as strongly accretive. Lipschitz continuity for both
operators is also shown by graphs.

Example 2. Let Ẽ = R and all the mappings remain same as in Example 1. That is,

RM
P1,λ(x) = [P1 + λM]−1(x) =

10
13

x,

RN
P2,ρ(x) = [P2 + ρN]−1(x) =

12
35

x,

CM
P1,λ(x) =

[
2RM

P1,λ − P1

]
(x) =

22
65

x,

YN
P2,ρ(x) =

1
ρ

[
P2 − RN

P2,ρ

]
(x) =

267
140

x.

Because P1(x) = 6
5 x, we have

‖P1(x)− P1(y)‖ =
∥∥∥∥6

5
x− 6

5
y
∥∥∥∥

=
6
5
‖x− y‖

≤ 7
5
‖x− y‖,
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that is, P1 is λP1 = 7
5 -Lipschitz continuous. Moreover,

〈P1(x)− P1(y), x− y〉 = 〈6
5

x− 6
5

y, x− y〉

=
6
5
‖x− y‖2

≥ ‖x− y‖2,

that is, P1 is r1 = 1-strongly accretive.
Similarly, for P2(x) = 9

4 x, one can easily prove that P2 is λP2 = 9
4 -Lipschitz continuous and

r2 = 2-strongly accretive. Furthermore,

‖CM
P1,λ(x)− CM

P1,λ(y)‖ =
∥∥∥∥22

65
x− 22

65
y
∥∥∥∥

=
22
65
‖x− y‖

≤ 17
7
‖x− y‖,

that is, generalized Cayley operator is λC = 17
7 -Lipschitz-continuous, where λC =

2+λP1 r1
r1

=

2+1. 7
5

7
5

= 17
7 . Furthermore,

‖YN
P2,ρ(x)−YN

P2,ρ(y)‖ =
∥∥∥∥267

140
x− 267

140
y
∥∥∥∥

=
267
140
‖x− y‖

≤ 22
9
‖x− y‖,

that is, the generalized Yosida approximation operator is λY = 22
9 -Lipschitz-continuous, where

λY =
λP2 r2+1

λr2
=

2· 94+1
1· 94

= 22
9 . Moreover,

〈YM
P2,ρ(x)−YM

P2,ρ(y), x− y〉 = 〈267
140

x− 267
140

y, x− y〉

=
267
140
〈x− y, x− y〉

=
267
140
‖x− y‖2

≥ 65
36
‖x− y‖2,

that is, generalized Yosida approximation operator is δY = 65
36 -strongly accretive, where

δY =
r2

2−1
λr2

=
( 9

4 )
2−1

1· 94
= 65

36 .

It is a well-known fact that for a Lipschitz-continuous function, there exists a double cone
whose origin can be moved along the graph so that the whole graph always stays outside the double
cone. The following figures (Figures 1 and 2) demonstrate the Lipschitz continuity of generalized
Cayley operator and generalized Yosida approximation operator calculated above, respectively.
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Figure 1. Graph of Lipschitz-continuous of generalized Cayley operator.

Figure 2. Graph of Lipschitz-continuous of generalized Yosida approximation operator.

6. Application

A dynamical system is a system that changes over time according to a set of fixed
rules and determine how one state of the system moves to another state. On the other hand,
a dynamical system describes the disequilibrium adjustment processes which may produce
important transient phenomenon prior to the achievement of steady state.
Dynamical system is a generalization of classical mechanics where the equation of motion
postulated directly and are not constrained to be Euler–Lagrange equations of a least
action principle.

Dynamical system theory has been applied in the field of neuroscience, cognitive de-
velopment, equation of motion, electronic circuits, chaotic system (double pendulum), etc.

As an application of system of mixed variational inclusions involving the generalized
Cayley operator and the generalized Yosida approximation operator (1), we mention a
system of resolvent dynamical systems.
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By using Lemma 3, we suggest the following system of resolvent dynamical systems:

d(A(x))
dt = ξ1

[
RM

P1,λ

{
g(y)− λCM

P1,λ(A(x))
}
− g(y)

]
, x(t0) = t0 ∈ Ẽ over [t0, ∞),

d(B(y))
dt = ξ2

[
RN

P2,ρ

{
g(x)− ρYN

P2,ρ(B(y))
}
− g(x)

]
, y(t0) = t0 ∈ Ẽ over [t0, ∞),

(30)

where ξ1 and ξ2 are parameters.
It can be shown easily that by using the techniques of Noor [38], the Gronwall lemma

and Lyapunov function, which are the trajectory of the solution of the system of resolvent
dynamical systems (30), converge globally exponentially to the unique solution of system of
mixed variational inclusions involving the generalized Cayley operator and the generalized
Yosida approximation operator (1).

7. Conclusions

It is well known that the Cayley operator, the Yosida approximation operator, and
a system of variational inclusions are application oriented. This paper is focused on the
study of a system of mixed variational inclusions involving the generalized Cayley operator
and the generalized Yosida approximation operator in q-uniformly smooth Banach space.
We obtain the unique solution of our system, and we discuss the convergence criteria by
suggesting an iterative algorithm. Two examples are provided with an application.

The novelty of work lies in the fact that our results are refinement of previously known
results (see for example [8,9,13,18,26,28,33,36]).

Our results can be extended further and may be useful for other scientists.
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