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Abstract: First-order linear Integro-Differential Equations (IDEs) has a major importance in modeling
of some phenomena in sciences and engineering. The numerical solution for the first-order linear
IDEs is usually obtained by the finite-differences methods. However, the convergence rate of the
finite-differences method is limited by the order of the differences in L1 space. Therefore, how to
design a computational scheme for the first-order linear IDEs with computational efficiency becomes
an urgent problem to be solved. To this end, a polynomial approximation scheme based on the
shifted Legendre spectral collocation method is proposed in this paper. First, we transform the
first-order linear IDEs into an Cauchy problem for consideration. Second, by decomposing the system
operator, we rewrite the Cauchy problem into a more general form for approximating. Then, by
using the shifted Legendre spectral collocation method, we construct a computational scheme and
write it into an abstract version. The convergence of the scheme is proven in the sense of L1-norm by
employing Trotter-Kato theorem. At the end of this paper, we summarize the usage of the scheme
into an algorithm and present some numerical examples to show the applications of the algorithm.
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1. Introduction

Integro-Differential Equations (IDEs) play an important role in applications of engi-
neering, mechanics, physics and economics [1–3]. Particularly, First-order linear IDEs has
a major importance in modeling of some phenomena in sciences and engineering, such as
age-structured population dynamics, queuing theory, repairable systems reliability models
and etc. [4–7].

A system whose state at time t is usually described by a vector-valued random variable
X(t) = (X1(t), X2(t), · · · , Xn(t)). For example, in the repairable system, X(t) may be a one-
dimensional variable taking the value 1 or 0 from the functional state or the failed state,
respectively. Alternately, in queueing system, X(t) may be a vector of the number of people
in servers. If the sojourn time of the system in states i, Yi(t), i = 1, 2, · · · , n follows an expo-
nential distribution, the probability distribution of the random variable X(t) can be investi-
gated in the framework of Markov processes. By denoting P(t) = (P1(t), P2(t), · · · , Pn(t))
the corresponding probability of the system state at time t, the mathematical models of the
system can be obtained according to the Chapman–Kolmogorov forward equations and
described as a couple of ordinary differential equations. However, by using the exponential
distribution to describe the sojourn time Y(t) is not suitable for the general cases. Thus,
from the practical point of view, some non-exponential distributions, such as Weibull
distribution, Erlang distribution and normal distribution, should be taken account into
random process {X(t)}t≥0, which yields that {X(t)}t≥0 is non-Markovian. To overcome
this challenge, D.R. Cox [8] first put forward the supplementary variable technique and
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established the M/G/1 queueing model. After that, the supplementary variable technique
was used and widely applied in other fields. Based on this technique, a non-Markovian
process {X(t)}t≥0 in continuous time is made Markovian {X(t), Y(t)}t≥0 by inclusion of
one supplementary variable, and thus, the corresponding mathematical models are de-
scribed by first-order linear IDEs. For example, Li [9] proposed a warm standby repairable
system with priority in use and make a reliability analysis. Huo and Xu [10] studied the
software rejuvenation system with periodic impulse. Zheng [11] studied the steady-state
probability and reliability of a repairable system with three unites. The interested reader
may for instance consult [9–12] and the references within.

As a result, the dynamic behavior of the queuing system, repairable system, the re-
liability system etc., can be studied by considering the solution of the corresponding
first-order linear IDEs. By denoting λj,i and bj,i(·),j 6= i, respectively, the transtion rate and
the transtion rate function from state j to state i, the general form of the corresponding
first-order linear IDEs can be expressed as

dPi(t)
dt

= −λi,iPi(t) +
n

∑
j=1,j 6=i

λj,iPj(t) +
n+m

∑
j=n+1

∫ ∞

0
bj,i(x)pj(t, x)dx, i = 1, 2, · · · , n

:

∂pi(t, x)
∂x

+
∂pi(t, x)

∂t
= −(λi,i + bi,i(x))pi(t, x) +

n+m

∑
j=n+1,j 6=i

λj,i pj(t, x), i = n + 1, · · · , n + m

(1)

with boundary conditions

pi(t, 0) =
n

∑
j=1

λj,iPj(t) +
n+m

∑
j=n+1,j 6=i

∫ ∞

0
bj,i(x)pj(t, x)dx, i = n + 1, · · · , n + m. (2)

where 
λi,i =

n

∑
j=1,j 6=i

λj,i, i = 1, 2, · · · , n

λi,i =
n+m

∑
j=n+1,j 6=i

λj,i, bi,i(x) =
n+m

∑
j=n+1,j 6=i

bj,i(x), i = n + 1, · · · , n + m.

Pi(t), i = 1, 2, · · · , n denotes the probability of system in state i at time t, pi(t, x),
i = n + 1, · · · , n + m denotes the probability of system in state i with elapsed time x at
time t. x may be the age in population dynamics, the elapsed time for serving of server
in queueing system or the elapsed time for repairing of component in repairable system,
which are assumed to follow a general distribution with transition rate bi,j(x) satisfying

bi,j(x) ≥ 0, x ∈ [0, ∞), sup
x∈[0,∞)

bi,j(x) < ∞,

∫ M

0
bi,j(x)dx < ∞, M ∈ [0, ∞),

∫ ∞

0
bi,j(x)dx = ∞.

i, j = n + 1, · · · , n + m, i 6= j.

However, from the view point of practical, the repair time of component, the life span
of population or the service time of server can not be extended to infinity. For example,
Yuan et al. [13] studied an optimal repair-replacement policy for a cold standby system.
Zong et al. [14] considered a deteriorating system with increasing repair times and derived
an optimal replacement policy. Therefore, it is reasonable to assume the elapsed time
x for repairing belong to a finite interval [0, T), where T denotes the maximum elapsed
time for repairing of the component. That is, if the component cannot be repaired within
time T, the component will be regarded as non-repairable and it will be replaced at time
T immediately.
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Thus, if we assume that the elapsed repair time of the component x follows the
general distribution with transition rate bi,j(x), i, j = n + 1, · · · , n + m and assume that
the elapsed time x is in [0, T), then we should redefine the transition rate and denote it as
βi,j(x), i, j = n + 1, · · · , n + m, which satisfying

∫ x

0
βi,j(s)ds =


∫ x

0
bi,j(s)ds, x < T

∞, x = T.
(3)

Then, the corresponding first-order linear IDEs are transformed as

dPi(t)
dt

= −λi,iPi(t) +
n

∑
j=1,j 6=i

λj,iPj(t) +
n+m

∑
j=n+1

∫ T

0
β j,i(x)pj(t, x)dx, i = 1, 2, · · · , n

:

∂pi(t, x)
∂x

+
∂pi(t, x)

∂t
= −(λi,i + βi,i(x))pi(t, x) +

n+m

∑
j=n+1,j 6=i

λj,i pj(t, x), i = n + 1, · · · , n + m

(4)

with boundary conditions

pi(t, 0) =
n

∑
j=1

λj,iPj(t) +
n+m

∑
j=n+1,j 6=i

∫ T

0
β j,i(x)pj(t, x)dx, i = n + 1, · · · , n + m. (5)

To investigate the well-posedness and stability of the system, the first-order linear
IDEs is usually transformed into an abstract Cauchy problem by introducing a suitable state
space, system operators and their domains. Readers can refer to Gupur [15] for viewing
the functional analysis methods on studying the reliability models. Therefore, we define
the system space of (4) and (5) as X = Rn × (L1[0, T])m with norm ‖ · ‖X,

‖~P‖X =
n

∑
i=1
|Pi|+

m

∑
i=n+1

‖pi(x)‖L1[0,T], ~P = (P1, P2, · · · , Pn, pn+1(x), · · · , pn+m(x)) ∈ X.

Then, the system (4) and (5) can be translated into an abstract Cauchy problem and
written as 

d
dt

~P(t, ·) = A~P(t, ·),

~P(0, ·) = ~P0,
(6)

where operator A is a differential operator with domain

D(A) =


(

p1, p2, · · · , pn, pn+1(x),
pn+2(x), · · · , pn+m(x)

)τ ∈ X

∣∣∣∣∣
pi(x) are absolutely continuous functions,
dpi(x)

dx ∈ L1[0, T], and (pn+1(0), pn+2(0), · · · ,
pn+m(0)) = B~P, i = n + 1, n + 2, · · · , n + m.

.

and B is a boundary operator from X to Rm. By using C0-semigroup theory [16], it can be
verified that system (6) is well posed, which ensures the existence of the time-dependent
solution. The interested reader may for instance consult [17,18].

The system (6) usually are difficult to be solved analytically, which yields that much
work focus on investigating the steady state solution [19–21] based on the qualitative
analysis. Therefore, establishing an numerical computational framework for system (6)
becomes an important issue. More and more methods were arosed to study the numerical
solution of the IDEs, such as the successive approximations, spectral Galerkin method and
collocation methods, which can be found in [22–24] and the references therein. Recently,
Dzhumabaev [25–27] devoted to the linear boundary value problem for the Fredholm IDE.
These paper not only established the necessary and sufficient conditions for solvability of
the IDEs, but also provided algorithms with good computational accuracy in application.
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To solve Fredholm integral equations on the half-line, Rahmoune [28] proposed a spectral
collocation method based on the scaled Laguerre functions. The proposed method provided
a good efficiency for smooth solutions decaying at infinity. To study the Volterra IDEs, Al-
Ahmad et al. [29], based on the differential transform method (DTM), proposed a modified
differential transform method, which can greatly improve the convergence rate of DTM’s
truncated series solution with true analytic solution. Xu et al. [30] proposed a Half-Sweep
Successive Over-Relaxation method to investigate the first-order linear Fredholm IDEs.
Moreover, they verified that the proposed method is superior to the Full-Sweep GaussSeidel
methods and Full-Sweep Successive Over-Relaxation methods. For the nonlinear problems,
Dawood et al. [31] proposed a Laplace Discrete Adomian Decomposition Method to solve
nonlinear Volterra-Fredholm IDEs. The proposed method was simple to execute and can
be effectively used to overcome the analytical approaches in solving nonlinear Fredholm
IDEs. Combining with the method of cutting functions, squaring method, the Cauchy-
Bunyakovsky inequality, and the integral inequality method, Iskandarov [32] studied
a weakly first order nonlinear implicit Volterra IDE on the semiaxis. All in all, the methods
proposed in reference [29–32] are synthetical and possess good computational accuracy for
the solution of IDEs.

However the convergence of these algorithms based on polynomials or collocation
methods is always worked in the framework of L2 space, which yields that some ap-
proximation methods are not suitable in L1 space, since it is non-reflexivity. Therefore,
the finite-differences methods became the main tool for deriving the numerical solutions of
system (6). Xu [33] presented a simple finite-differences scheme and established the conver-
gence of the scheme by employing Trotter-Kato Theorem for a reliability model consisting
of two machines separated by a finite storage buffer. Applications for the finite-differences
methods cover researches including software rejuvenation system [10], repairable systems
with preventive maintenance [34], optimal maintenance design for a Simple Reparable
System [35] and so on. However, the numerical results obtained by the finite-differences
methods are in general very poor, since that finite-differences is a local method, which is to
compute the derivative at a given point by using information only pertaining to a small
neighborhood of the point [22]. The convergence rate of the finite-differences method is
also limited by the order of the method. Therefore, how to design a computational scheme
for the first-order linear IDEs with computational efficiency becomes an urgent problem to
be solved.

To this end, a computational scheme based on the shifted Legendre spectral collocation
method as well as the corresponding approximation algorithm is proposed. The remainder
of this paper is organized as follows. Section 2 designs an approximation scheme based
on the basic theoretical framework for the Legendre collocation method. Section 3 demon-
strates the convergence of the scheme in the sense of L1-norm by applying Trotter-Kato
Theorem. Section 4 proposes an computational algorithm for the scheme and performs
some numerical examples. Section 5 concludes the paper.

2. Approximation Scheme Design

In this section, an approximation scheme to the abstract version (6) is designed. Firstly,
by decomposing the system operator of (6), we rewrite the system into an more general form
for approximation scheme construction. Secondly, some important results in approximation
theory are reviewed as the basic theoretical framework for scheme construction. Finally,
a polynomial approximation scheme for (6) is proposed.

2.1. System Formulating

In this subsection, we rewrite the system (6) into an more general form. We decompose
the system operator A according to the system space. For any ~P(t, ·) = (~P1(t), ~P2(t, ·)) ∈
X, where ~P1(t) ∈ Rn and ~P2(t, ·) ∈ (L1[0, T])m, we define operators Ai, i = 1, 2, 3, 4,
and LXi , i = 1, 2, and rewrite the abstract version (6) as
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d
dt

~P(t, ·) = A~P(t, ·) =
(
A1 A2L

(L1)
1

0m×n A3 + L
(L1)
2

)
·
(

~P1(t)
~P2(t, ·)

)
,

~P(0, ·) = ~P0.

(7)

with the boundary conditions ~P2(t, 0) = A4~P1(t), where 0m×n denotes the (m × n)-
dimensional zero matrix, A1 : Rn → Rn and A4 : Rn → Rm are linear continuous op-
erators. Operator A2 : (L1[0, T])n → Rn and operator A3 : (L1[0, T])m → (L1[0, T])m are
denoted as the integral operator and the differential operator, respectively, which is that for

any Y =
(

y1(x), y2(x), · · · , yn(x)
)τ
∈ (L1[0, T])n,

A2Y =
( ∫ T

0
|y1(x)|dx,

∫ T

0
|y2(x)|dx, · · · ,

∫ T

0
|yn(x)|dx

)τ
,

A3Y =
(
− d

dx
y1(x),− d

dx
y2(x), · · · ,− d

dx
yn(x)

)τ
.

Moreover, operator LX1 : Xm → Xn, and LX2 : Xm → Xm are linear operators.

Without loss of generality, we denote L(L1)
1 := (ukj(x))k=1,2,··· ,m;j=1,2,··· ,n and L(L1)

2 :=
(vkj(x))k,j=1,2,··· ,m, where ukj(x) and vkj(x) are corresponding to the transient rate functions
of the system and defined according to the coupling relationship among the states.

We should note that system (7) is equivalent to system (6) for the situation that without
integral boundary conditions. Therefore, linear continuous operatorA4 is a constant matrix.
The situation for system (6) with integral boundary conditions also can be investigated by
the same way. Thus, we omit it. On the other hand, we claim that the rewriting form (7) for
the abstract version (6) is unique. The boundary operators A4 is straightforward. Then,
once the integral operatorA2 and the differential operatorA3 of the system are determined,

it is natural to obtain the operator Ai and L(L1)
i , i = 1, 2. A specific example will be shown

in Section 4.

2.2. Approximation Theory

In this subsection, we review the theory of polynomial approximations to continuous
functions. We begin with the collocation method, which is a widely applied and powerful
technique in the construction of numerical methods for differential or integral equations.
A collocation method is based on the idea of approximating the exact solution of a given
equation with a suitable approximant belonging to a finite dimensional space, usually
a piecewise algebraic polynomial, which exactly satisfies the equation on a certain finite
subset of the integration interval.

Legendre spectral collocation method (pseudospectral method) [24], which is to seek
an approximate solution f (N)(x) to f (x) in the form

f (N)(x) =
N

∑
k=1

f (xk) · h
(N)
k (x). (8)

where {xj}N
j=1 are the Legendre collocation points, which corresponding to the zeros of

the Legendre polynomials LN(x), x ∈ (−1, 1). The Legendre polynomials are important
special cases of the Jacobi polynomials and they are mutually orthogonal with respect to
the uniform weight function w(x) = 1. Moreover, {h(N)

k (x)}N
k=1 in (8) are the Lagrange

basis polynomials associated with the collocation points {xj}N
j=1 and

h(N)
k (x) =

N

∏
i=1,i 6=k

x− xi
xk − xi

, 1 ≤ k ≤ N, (9)
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with the alternate expression

h(N)
k (x) =

LN(x)
∂xLN(xk)(x− xk)

, 1 ≤ k ≤ N. (10)

Furthermore, we introduce the shifted Legendre polynomial LN,T(x) to generalize the
Legendra spectral collocation method to any bounded interval for application. That is

LN,T(x) = LN(
2x
T
− 1), x ∈ (0, T),

Readers can review the other properties and applications of Legendre polynomials
as well as its shifted form in reference [24,36]. As a result, the polynomials approximation
based on the shifted Legendra collocation method to function f (x) in bounded interval
(0, T) can be defined as

f (N)(x) =
N

∑
k=1

f (x̄k) · h̄
(N)
k (x), x ∈ (0, T). (11)

where x̄j = T
2 (xj + 1), j = 1, 2, · · · , N call the shifted Legendre collocation points and

{h̄(N)
k (x)}N

k=1 are the Lagrange basis polynomials associated with {x̄j}N
j=1.

However, in many practical applications, we also should consider the integral of the
approximate solution, which leads to the consideration between orthogonal polynomials
and Gauss-type quadrature, which is to seek the best numerical approximation of an in-
tegral by selecting optimal nodes at which the integrand is evaluated. However, it can
be verified that all the nodes of the shifted Legendre polynomials lie in the interior of
the interval (0, T). This makes it difficult to impose boundary conditions when dealing
with the problems as in system (6). To this end, we consider the shifted Gauss-Radau
quadratures which includes the endpoints 0 as node. We introduce the following important
Gauss-Radau quadrature Theorem, which established in [24].

Theorem 1 ([24]). Let x0 = a and {xj}N
j=1 be the zero of qN defined as

qN(x) =
pN+1 + αN pN(x)

x− a
with αN = − pN+1(a)

pN(a)

where pN is the N order orthogonal polynomial. {qN : N ≥ 0} defines a sequence of polynomials
orthogonal with respect to the weight function ω̄(x) := ω(x)(x− a), and the leading coefficient of
qN is kN+1. Then there exists a unique set of quadrature weights {ωj}N

j=0, which defined as

ωj =
∫ b

a
hj(x)ω(x)dx, 0 ≤ j ≤ N,

where {hj(x)}N
j=0 are the Lagrange basis polynomials associated with {xj}N

j=1, such that

∫ b

a
p(x)ω(x)dx =

N

∑
j=0

p(xj)ωj, p ∈ P2N .

Moreover, the quadrature weights are all positive and can be expressed as

ω0 =
1

qN(a)

∫ b

a
qN(x)ω(x)dx,

ωj =
1

xj − a
kN+1

kN

‖qN−1(x)‖2
ω̄

qN−1(xj)q′N(xj)
, 1 ≤ j ≤ N.
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By using Theorem 1, we propose the following important theorm.

Theorem 2. Let {xj, ωj}N
j=0 be the set of Legendre-Gauss Radau quadrature nodes and weights.

Then, we have {xj}N
j=0 are the zeros of LN(x) +LN+1(x) and

ωj =
1

(N + 1)2

1− xj

[LN(xj)]2
, 0 ≤ j ≤ N.

Moreover, let {x̂j, ω̂j}N
j=0 be the set of shifted Legendre-Gauss Radau quadrature nodes and

weights. Then, we have

x̂j =
T
2
(xj + 1), ω̂j =

T
2

ωj, 0 ≤ j ≤ N. (12)

with the above nodes and weights, we have

∫ T

0
p(x)dx =

N

∑
j=0

p(x̂j) · ω̂j, p(x) ∈ P2N−1. (13)

where P2N−1 denotes the space of polynomial with degree at most 2N − 1.

Proof. According to Theorem 1, the Legendre-Gauss Radau quadrature nodes and weights
{xj, ωj}N

j=0 can be derived with the properties of Legendre polynomials. Moreover, the cor-

responding shifted nodes and weights {x̂j, ω̂j}N
j=0 in Equation (12) has been proved in [36].

Therefore, Theorem 2 is straightforward.

However, Theorem 2 is strictly true only for p(x) ∈ P2N−1, which leads to the consid-
eration of the convergence analysis for the case of general continuous functions. We define
the interpolation operators IN : C0[0, T]→ PN as

IN f (x) = f̂ (N)(x) :=
N

∑
k=0

f (x̂k) · ĥ
(N)
k (x). (14)

where ĥ(N)
k (x) denotes the Lagrange basis polynomials associated with the shifted Legendre-

Gauss Radau quadrature nodes {x̂j}N
j=0. Then, we consider the Legendre-Gauss Radau

quadrature formulas for the continuous functions with increasing number of nodes. We
proposed the following theorem which as a corollary of a convergence result from [22].

Theorem 3. Let f (x) is Riemann integrable in [0, T]. Then, we have

lim
N→∞

N

∑
j=0

f (x̂j) · ω̂j = lim
N→∞

∫ T

0
IN f (x)dx =

∫ T

0
f (x)dx.

where operator IN is defined in (14), {x̂j}N
j=0 and {ω̂j}N

j=0 are the shifted Legendre-Gauss Radau
quadrature nodes and weights respectively.

Proof. According to [22], we can obtain the convergence theorem of the Jacobi Gaussian
formulas to the function f (x) which satisfies that f (x) · wjb(x) is Riemann integrable in
(−1, 1), where wjb(x) is the Jacobi weights function. Since Legendre polynomials are the
spacial cases of Jacobi polynomials with wjb(x) = 1, the convergence theorem for the
Legendre Gaussian formulas can be derived, which yields the establishment for the shifted
Legendre-Gauss case.
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Hereafter, we consider the differentiation of Equation (14). Differentiating Equation (14)
m times leads to

dm

dxm f̂ (N)(x̂k) =
N

∑
j=0

d̂(m)
kj f̂ (N)(x̂j), (15)

The matrix D̂(m) = (d̂(m)
kj )k,j=1,2,··· ,N is called the differentiation matrix of order m

relative to {x̂j}N
j=1 with the entries

d̂(m)
kj =

dm

dxm h(N)
j (x̂k) =



− N(N + 2)
2T

, k = j = 0,

2
T
·
[ x̂k

1− x̂2
k
+

(N + 1)LN(x̂k)

(1− x̂2
k)Q

′
N(x̂k)

]
, 1 ≤ k = j ≤ N,

Q′N(x̂k)

Q′N(x̂j)
· 1

x̂k − x̂j
, k 6= j,

(16)

where QN(x) = LN+1(x) +LN . Moreover, if we denote by f(m) the vector whose compo-
nents are the values of dm

dxm f̂ (N)(x̂j), j = 1, 2, · · · , N, it follows from (15) and (16) that

f(m) = D̂(m)f(0). (17)

Equation (17) implies that, once the differentiation matrices D̂(m) are precomputed,
the derivative values can be evaluated. Therefore, it is very convenient for solving prob-
lems with variable coefficients and nonlinear problems in the physical space with such
collocation method.

2.3. Approximation Scheme Design

In this subsection, we construct an approximation scheme for system (7) with the
shifted Legendre collocation method which shown in Section 2.2.

Let {x̂j, ω̂j}N
j=0 be the set of shifted Legendre-Gauss Radau quadrature nodes and

weights defined in Equation (12). Let Rn =
{

P1 = (p1, p2, · · · , pn)τ ∈ Rn : ‖P1‖1 =

∑n
i=1 |pi|

}
and RN =

{
P2 = (p1, p2, · · · , pN)

τ ∈ RN : ‖P2‖RN = ∑N
k=1 ω̂k · pk

}
. Then, we

define the approximating space as

X(N) =
{
~P(N) = (~P1, ~P(N)

2 ) ∈ Rn × (RN)m : ‖~P(N)‖N = ‖~P1‖1 + ‖~P
(N)
2 ‖+ ω̂0 · ‖A4~P1‖

}
where operator A4 is the boundary operator in system (7). Consequently, based on the
shifted Legendre collocation method, the approximation system for system (7) can be
constructed as

d
dt

~P(N)(t) = A(N)~P(N)(t) =

(
A1 + ω̂0 · L

(R)
1 A4 Ψ

(N)
1 L(RN)

1

−D̂0 ⊗A4 −D̂1 ⊗ IN + L(RN)
2

)
·
(

~P1(t)
~P(N)

2 (t)

)
~P(N)(0) = ~P(N)

0 .

(18)

where ⊗ is the Kronecker product. The Kronecker product of matrices A = (aij) ∈ Rm×n

and B = (bij) ∈ Rp×q is an mp × nq matrix defined as A ⊗ B = ((aij · B)). IN is a n-
dimensional identity matrix.

OperatorA(N) is a linear continuous operator form X(N) to X(N). It can be verified that
A(N) is the infinitesimal generator of a C0 semigroup of contraction TN(t) on X(N). Operator
Ai, i = 1, 4 are defined as in (7). Operator D̂0 = (d̂kj)j=0,k=1,2,··· ,N and D̂1 = (d̂kj)k,j=1,2,··· ,N

are defined according to the differentiation matrix in (17). Moreover, operator L(R)
1 =
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(ukj(0))k=1,2,··· ,n,j=1,2,··· ,m. Operator Ψ
(N)
1 : (RN)n → Rn and L(RN)

1 : (RN)m → (RN)n are
defined to approximate the intergal items and

Ψ
(N)
1 = diag(~ω, ~ω, · · · , ~ω), ~ω = (ω1, ω2, · · · , ωN),

L(RN)
1 = (ukj)k=1,2,··· ,m;j=1,2,··· ,n, ukj = diag(ukj(x1), ukj(x2), · · · , ukj(xN))

Operator L(RN)
2 : (RN)m → (RN)m is defined as

L(RN)
2 = (vkj)k,j=1,2,··· ,m, vkj = diag(vkj(x1), vkj(x2), · · · , vkj(xN))

3. Approximation Scheme Convergence

In this section, the convergence for the scheme is investigated. Firstly, we review the
Trotter-Kato theorem, which is useful for studying convergence of numerical approxima-
tions of solutions to partial differential equations. Secondly, by employing Trotter-Kato
theorem, we demonstrate the convergence for the abstract version (18) to (7).

3.1. The Trotter-Kato Theorem

Let X and XN be Banach space with norm ‖ · ‖, ‖ · ‖N , N = 1, 2, · · · , respectively,
and assume that T (t) is a C0-semigroup on X. A ∈ G(M, δ,X), M ≥ 1, δ ∈ R, means that A
is the infinitesimal generator of a C0-semigroup T (t), t ≥ 0, satisfying ‖T ‖ ≤ Meδt. Also
assume that, for each n = 1, 2, · · · , there exists bounded linear operators PN : X→ XN and
EN : XN → X satisfying.

(A1) ‖PN‖ ≤ M1, ‖EN‖ ≤ M2, where M1 and M2 are independent of N;

(A2) ‖ENPN x− x‖ → 0 as N → ∞, for all x ∈ X;

(A3) PNEN = IN , where IN is the identity operator on XN .

Theorem 4 (Trotter-Kato). Assume that (A1) and (A3) are satisfied. Let A resp. AN be in
G(M, δ,X) resp. in G(M, δ,XN) and let T (t) and TN(t) be the semigroup generated by A and
AN on X and XN respectively. Then the following statements are equivalent:

(a) There exists a λ0 ∈ ρ(A) ∩⋂∞
n=1 ρ(AN) such that, for all x ∈ X,∥∥∥EN(λ0 IN − AN)
−1PN x− (λ0 I − A)−1x

∥∥∥→ 0 as N → ∞,

(b) for every x ∈ X and t ≥ 0,∥∥∥ENTN(t)PN x− T (t)x
∥∥∥→ 0 as N → ∞,

uniformly on bounded t-intervals.

Theorem 4 is the functional analysis form of the Lax equivalent theorem [37]. In order
to apply the Theorem 4 to a special problem, it is usually difficult to verify the resolvent
convergence. To overcome this difficulty, reference [38] pointed out that condition (a) can
be verified by the following theorem.

Theorem 5. Let the assumptions of Theorem be satisfied. Then statement (a) of the Theroem 4 is
equivalent to (A2) and the following two statements:

(C1) There exists a subset D ⊂ domA such that D̄ = X and (λ0 I − A)D = X for a λ0 > δ;

(C2) For all x ∈ D there exists a sequence (x̄N)N∈N with (x̄N)N∈N ∈ domAN such that
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lim
N→∞

EN x̄N = x, and lim
N→∞

EN AN x̄N = Ax

Condition (C1) is the statement that subset D is the core of the operator A. Thus,
condition (C2) is the statement that AN converge pointwise on a core of A, see [16].

3.2. Convergence for the Scheme

In this subsection, we employ the Trotter-Kato theorem to obtain the convergence. Let
X(N) be defined as in Section 2.3. Then, for any

y =

((
p1, p2, · · · , pn

)
,
(
(pn+1(x̂1), · · · , pn+1(x̂N)

)
, · · · ,

(
pn+m(x̂1), · · · , pn+m(x̂N)

))τ

∈ X(N),

φ =

(
(p1, p2, · · · , pn), (pn+1(x), · · · , pn+m(x))

)τ

∈ X,

let PN and EN be defined as

EN(y) =
((

p1, p2, · · · , pn
)
,
(
Pn+1(x),Pn+2(x), · · · Pn+m(x)

))τ

, (19)

PN(φ) =

((
p1, p2, · · · , pn

)
,
(

pn+1(x̂1), · · · , pn+1(x̂N)
)
, · · · ,

(
pn+m(x̂1), · · · , pn+m(x̂N)

))τ

, (20)

where

Pn+j(x) = ĥ(N)
0 (x) · p̄j +

N

∑
k=1

ĥ(N)
k (x) · pn+j(x̂k) j = 1, 2, · · · , m

p̄j is the jth items ofA4(p1, p2, · · · , pn)τ , and ĥ(N)
k (x), k = 1, 2, · · · , N are the Lagrange basis

polynomials associated with the shifted Legendre-Gauss Radau quadrature nodes {x̂j}N
j=0.

To derived the convergence for the scheme by using the Trotter-Kato theorem, we only
need to verify that EN and PN satisfy assumption (A1)–(A3), and prove that both conditions
(C1) and (C2) in Theorem 5 hold. To this end, we prove the following two propositions.

Proposition 1. Let EN and PN be defined as (19) and (20), then,

(A1) ‖PN‖ ≤ M1, ‖EN‖ ≤ M2, where M1 and M2 are independent of N;

(A2) ‖ENPN x− x‖ → 0 as N → ∞, for all x ∈ X;

(A3) PNEN = IN , where IN is the n-dimensional identity operator on X(N).

Proof. For any y =
((

p1, p2, · · · , pn
)
,
(

pn+1(x̂1), · · · , pn+1(x̂N)
)
, · · · ,

(
pn+m(x̂1), · · · ,

pn+m(x̂N)
))τ ∈ X(N),

‖ENy‖X =
n

∑
i=1
|pi|+

m

∑
j=1

∫ T

0

∣∣∣∣ĥ(N)
0 (x) · p̄j +

N

∑
k=1

ĥ(N)
k (x) · pn+j(x̂k)

∣∣∣∣dx

≤
n

∑
i=1
|pi|+

m

∑
j=1

[ ∫ T

0

∣∣ĥ(N)
0 (x)

∣∣dx · p̄j +
N

∑
k=1

∫ T

0

∣∣ĥ(N)
k (x)

∣∣dx · pn+j(x̂k)

]

≤
n

∑
i=1
|pi|+

m

∑
j=1

[
ω̂0 · p̄j +

N

∑
k=1

ω̂k · pn+j(x̂k)

]
= ‖y‖N .
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which yields ‖EN‖ ≤ 1. Then, for any φ =
(
(p1, p2, · · · , pn), (pn+1(x), · · · , pn+m(x))

)τ ∈
X, since D(A) is densed in X, there exists a φ′ =

(
(p′1, p′2, · · · , p′n), (p′n+1(x), · · · ,

p′n+m(x))
)τ ∈ D(A) such that ‖φ− φ′‖X < ε. Moreover

‖PN(φ)‖N ≤‖PN(φ− φ′)‖N + ‖PN(φ
′)‖N

=
[ n

∑
i=1
|pi − p′i|+

m

∑
j=1

[ N

∑
k=1

ω̂k · |pn+j(x̂k)− p′n+j(x̂k)|
]
+

m

∑
j=1

ω̂0 · | p̄− p′n+j(0)|
]

+
[ n

∑
i=1
|p′i|+

m

∑
j=1

[ N

∑
k=0

ω̂k · p′n+j(x̂k)
]]
≤ Mε +

n

∑
i=1
|p′i|+

N

∑
k=1

∫ T

0
IN p′n+j(x)dx ≤ ‖φ‖X

where x0 = 0, p̄j is the jth items of p̄ = A4(p1, p2, · · · , pn)τ and M = max{ω̂k, k =
0, 1, · · · , N}. This implies ‖PN‖ ≤ 1. Therefore, (A1) is satisfied. After that, for any
φ =

(
(p1, p2, · · · , pn), (pn+1(x), · · · , pn+m(x))

)τ ∈ X, if φ ∈ D(A), then

‖ENPNφ− φ‖X =
m

∑
j=1

[ ∫ T

0

∣∣∣ N

∑
k=0

ĥ(N)
k (x) · pn+j(x̂k)− pn+j(x)

∣∣∣dx
]

=
m

∑
j=1

∫ T

0

∣∣IN pn+j(x)− pn+j(x)
∣∣dx → 0 as N → ∞.

Otherwise, there is a φ′ =
(
(p′1, p′2, · · · ,′ pn), (p′n+1(x), · · · , p′n+m(x))

)τ ∈ D(A) such
that ‖φ− φ′‖X < ε, and

‖ENPNφ− φ‖X ≤
∥∥ENPNφ−ENPNφ′

∥∥
X +

∥∥ENPNφ′ − φ′
∥∥
X +

∥∥φ′ − φ
∥∥
X

≤ (
∥∥ENPN

∥∥+ 1) ·
∥∥φ′ − φ

∥∥
X +

∥∥ENPNφ′ − φ′
∥∥
X → 0 as N → ∞,

Thus, (A2) is satisfied. PNEN = IN is obvious. Therefore, (A3) follows.

Secondly, we will prove that both (C1) and (C2) hold. To this end, we choose
D = D(A), which establishes condition (C1) in Theorem 5 with δ = 0, the proof is rather
straightforward and will therefore be omitted. On the other hand, we prove that condition
(C2) also holds.

Proposition 2. For all φ = (φ1, φ2) = ((p1, · · · , pn), (pn+1(x), · · · , pn+m(x)))τ ∈ D(A) ⊂
X, there exists a sequence φ(N) ∈ X(N), which defined as φ(N) = (φ1, φ

(N)
2 ) = ((p1, · · · , pn),

(pn+1(x̂1), · · · , pn+1(x̂N)), · · · , (pn+m(x̂1), · · · , pn+m(x̂N)))
τ , such that

lim
N→∞

ENφ(N) = φ, and lim
N→∞

ENA(N)φ(N) = Aφ

Proof. First, we consider ‖ENφ(N) − φ‖X that is

‖ENφ(N) − φ‖X =
m

∑
j=1

∫ T

0

∣∣∣∣ĥ(N)
0 (x) · p̄j +

N

∑
k=1

ĥ(N)
k (x) · pn+j(x̂k)− pn+j(x)

∣∣∣∣dx

=
m

∑
j=1

∫ T

0

∣∣∣∣IN pn+j(x)− pn+j(x)
∣∣∣∣dx → 0 as N → ∞,

Then, we investigate ‖ENA(N)φ(N) −Aφ‖X, according to (7) and (18),

Aφ =

(
A1 · φ1 +A2L

(L1)
1 φ2

(A3 + L
(L1)
2 )φ2

)
:=
(

Φ1
Φ2

)
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A(N)φ(N) =

(
(A1 + ω̂0 · L

(R)
1 A4) · φ1 + Ψ

(N)
1 L(RN)

1 · φ(N)
2

−D̄0 ⊗A4 · φ1 + (−D̄⊗ IN + L(RN)
2 ) · φ(N)

2

)
:=
(

Φ̄1
Φ̄2

)
Moreover,

Φ̄1 = A1 · φ1 + ω̂0 · L
(R)
1 A4 · φ1 + Ψ

(N)
1 L(RN)

1 · φ(N)
2

= A1 · φ1 + ω̂0 · L
(R)
1 · φ(N)

2 (0) + Ψ
(N)
1 L(RN)

1 · φ(N)
2 = A1 · φ1 +A2I(n)N L

(L1)
1 φ2.

Φ̄2 = −D̄0 ⊗A4 · φ1 − D̄⊗ IN · φ
(N)
2 + L(RN)

2 · φ(N)
2

= −D̄0 ⊗ φ2(0)− D̄⊗ IN · φ
(N)
2 + L(RN)

2 · φ(N)
2 = Π(N)A3I(m)

N φ2 + L
(RN)
2 · φ(N)

2 .

where φ2(0) =
(

pn+1(0), pn+2(0), · · · , pn+m(0)
)τ

, operator I(n)N : (L1[0, T])n → (PN)
n and

operator Π(N) : (PN)
n → (RN+1)n, which satisfy that

I(n)N f = (IN f1(x), IN f2(x), · · · , IN fn(x))τ , f =
(

f1(x), · · · , fn(x)
)τ
∈ (L1[0, T])n.

Π(N)g =
(
(g1(x̂1), · · · , g1(x̂N)), · · · , (gn(x̂1), · · · , gn(x̂N))

)τ
, g =

(
g1(x), · · · , gn(x)

)τ
∈ (PN)

n.

Therefore,

ENA(N)φ̄(N) = EN(Φ̄1, Φ̄(N)
2 )τ

= EN

(
A1 · φ1 +A2I(n)N L

(L1)
1 φ2

Π(N)A3I(m)
N φ2 + L

(RN)
2 · φ(N)

2

)
=

(
A1 · φ1 +A2I(n)N L

(L1)
1 φ2

A3I(m)
N φ2 + I(m)

N L(L1)
2 · φ2 + Rm

)

where Rm is a m-dimensional column vector, and

Rm = ĥ(N)
0 (x) ·

(
A4Φ̄1 −A3I(m)

N φ2

∣∣∣
x=0
−L(R)

2 · φ2(0)
)

,

with L(R)
2 = (vkj(0))k,j=1,2,··· ,n. It can be verified that

Rm = ĥ(N)
0 (x) ·

(
A4

[
A1 · φ1 +A2I(n)N L

(L1)
1 φ2

]
−A3I(m)

N φ2

∣∣∣
x=0
−L(R)

2 · φ2(0)
)

= ĥ(N)
0 (x) ·

(
A4

[
A1 · φ1 +A2L

(L1)
1 φ2 +A2I(n)N L

(L1)
1 φ2 −A2L

(L1)
1 φ2

]
−A3I(m)

N φ2

∣∣∣
x=0
−L(R)

2 · φ2(0)
)

= ĥ(N)
0 (x) ·

(
A4

[
A2I(n)N L

(L1)
1 φ2 −A2L

(L1)
1 φ2

]
+A4Φ1 −A3I(m)

N φ2

∣∣∣
x=0
−L(R)

2 · φ2(0)
)

= ĥ(N)
0 (x) ·

(
A4

[
A2I(n)N L

(L1)
1 φ2 −A2L

(L1)
1 φ2

]
+A3φ2

∣∣∣
x=0
−A3I(m)

N φ2

∣∣∣
x=0

+ L(L1)
2 φ2 −L

(R)
2 · φ2(0)

)
.

Thus, it is obvious that
∥∥Rm

∥∥→ 0 as N → ∞. Consequently, we have

‖ENA(N)φ̄(N) −Aφ‖X =
∥∥∥A2I(n)N L

(L1)
1 φ2 −A2L

(L1)
1 φ2

∥∥∥
1

+
∥∥∥A3I(m)

N φ2 + I(m)
N L(L1)

2 · φ2 −A3φ2 −L
(L1)
2 φ2 + Rm

∥∥∥
≤

n

∑
i=1

∫ T

0

∣∣∣IN(L
(L1)
1 φ2)i − (L(L1)

1 φ2)i

∣∣∣dx +
m

∑
i=1

∫ T

0

∣∣∣A3
(

IN pn+i(x)− pn+i(x)
)∣∣∣dx

+
m

∑
i=1

∫ T

0

∣∣IN(L
(L1)
2 φ2)i − (L(L1)

2 φ2)i
∣∣dx +

∥∥Rm
∥∥→ 0 as N → ∞.

where (L(L1)
1 φ2)i and (L(L1)

2 φ2)j denote the ith items of the n-dimensional column vector

L(L1)
1 φ2 and the jth items of the m-dimensional column vector L(L1)

2 φ2, respectively.
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Since the operator A generates a C0-semigroup T (t) of contraction in X, and opera-
tor A(N) generates a C0-semigroup TN(t) of contraction in X(N), we can summarize the
convergence theorem according to Propositions 1 and 2 and Theorem 5 that

Theorem 6. LetEN andPN be defined as (19) and (20),A andA(N) be the system operators defined
in system (7) and system (18). Let T (t) and TN(t) be the semigroup generated by A and A(N) on
X and X(N), respectively, then for any x ∈ X and t ∈ [0, T],

∥∥ENTN(t)PN x− T (t)x
∥∥
X → 0 as

N → ∞ uniformly on bounded t-intervals.

As a result, we have the following corollary.

Corollary 1. Since the dynamical solution of (7) can be expressed as p∗(t) = T(t)P0, here P0 is
the initial value of the system. Then, we have following relationship,∥∥ENTN(t)PN P0 − T (t)P0

∥∥
X → 0 as N → ∞,

where TN(t) is the semigroup with generator A(N), and TN(t) = eA
(N)t.

Proof. Since A can generate C0-semigroup TN(t), the dynamical solution could be ex-
pressed as p∗(t) = T (t)P0, where P0 is the initial value of the (7). Moreover, A(N) is
bounded operator, which generates a uniformly continuous semigroup. Therefore, the con-
ditions of Theorem 6 are satisfied, and∥∥ENTN(t)PN P0 − T (t)P0

∥∥
X → 0 as N → ∞,

holds. Corollary 1 provides us with a useful tool to calculate the dynamical solution and
instantaneous indexed of the model.

4. Scheme Application

In this section, we summarize the usage for the approximation scheme in Section 2.3
into an algorithm and present some numerical experiments as applications to the algorithm.

4.1. Approximation Algorithm

In this subsection, we propose an approximation algorithm, which can be an useful
tool in calculation for the dynamical solution or instantaneous indexes to the system.
According to aforementioned analysis, an algorithm for the system which can be described
as an Cauchy problem as (6) is proposed as follows.

• Step 1: Inputting system parameters. Input the system parameters for the system
operator A and boundary operator B. Input T as the upper boundary value of the
transient rate function. Input N as the number of discrete nodes to approximation.

• Step 2: Calculating polynomial parameters. Calculating the shifted Legendre-Gauss
Radau quadrature nodes {x̂j}N

j=0 weights {ω̂j}N
j=0 according to Theorem 2 and

Equation (12). Calculating the differention matrix D(1) with Equation (16).

• Step 3: Decompositing the system operator. By definded the integral operator A2, dif-
ferential operator A3 and boundary operator A4, we decompose the system operator

A into Ai, i = 1, 2, 3, and L(L1)
i , i = 1, 2, which are defined as in Section 2.3, and

A =

(
A1 A2L

(L1)
1

0m×n A3 + L
(L1)
2

)

• Step 4: Constructing an approximating operator. Based on Step 1, Step 2 and Step 3,
we construct an approximating operator A(N) as
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A(N) =

(
A1 + ω̂0 · L

(R)
1 A4 Ψ

(N)
1 L(RN)

1

D̂0 ⊗A4 D̂1 ⊗ IN + L(RN)
2

)

where LR
1 , LRN

i , i = 1, 2 and Ψ
(N)
1 are defined in Section 2.3, ⊗ is the Kronecker

product and IN is the n-dimensional identity matrix.

• Step 5: Approximating the dynamic solution. Once the approximating operator A(N)

is obtained, by giving the initial conditions ~P0 of (6), then the dynamic solution of the
sytem can be approximated by calculated EN~P(N)(t) = ENeA

(N)tPN~P0, where EN and
PN are defined in (19) and (20).

By using the algorithm, we can obtain the approximating solution for the system in
bounded interval [0, T]. Moreover, the convergence Theorem 6 and Corollary 1 also indicate
that the approximating solution can approximate to the transient solution with arbitrary
precision as N → ∞.

4.2. Numerical Example

In this subsection, two numerical examples will be presented. Firstly, the software
rejuvenation system in [10] is taken as the first example to show the usage for the algorithm.
Then, we take a two-state system as the second example, in which the approximation
solutions derived by the algorithm and the finite-differences method are considered.

Example 1. According to [10], we take an software rejuvenation system as an example and
investigate the dynamic solution under the algorithm. The software rejuvenation system can be
formulated as the following coupled integro differential equations

dP0(t)
dt

= −(α0 + β)P0(t) +
∫ T

0
µ(x)p2(t, x)dx

dP1(t)
dt

= βP0(t)− α1P1(t)

∂p2(t, x)
∂x

+
∂p2(t, x)

∂t
= −µ(x)p2(t, x)

(21)

with the boundary condition
p2(t, 0) = α0P0(t) + α1P1(t), (22)

where α0, α1 and β are constants. µ(x) stands for the time-dependent repair rate with an elapsed
repair time x ∈ [0, T] and satisfies condition (3). P0(t), P1(t) and p2(t, x) denotes the probability
of the system in the normal operation state, failure probable state and the failure state with elapsed
repair time of x at time t, respectively.

By defining the state space X =
{
~P = (P0, P1, p2(x))τ ∈ R2 × L1[0, T] : ‖~P‖X =

|P0|+ |P1|+ ‖p2(x)‖L1[0,T] < ∞
}

, and the system operators as follows,

A =

 −(α0 + β) 0 0
0 −α1 0
0 0 − d

dx − µ(x)

, B

 P0
P1

p2(x)

 =

 ∫ T
0 µ(x)p2(x)dx

βP0
0

,

D(A + B) =

{
(P0, P1, p2(x))T ∈ X

∣∣∣∣∣ p2(x) is absolutely continuous function,
dp2(x)

dx ∈ L1[0, T], p2(0) = α0P0 + α1P1

}
,

The software rejuvenation system (21) and (22) can be described as an abstract Cauchy
problem in X:
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d~P(t)

dt
= (A + B)~P(t)

~P(0) = ~P0

(23)

It can be verified that system (23) is well-posed and has a time-dependent solution.
Then, we construct an approximation scheme for the abstract version (23). First, we de-
composite the system operator A + B and define the boundary operator A4 for system
abstraction. We have

A + B =

(
A1 A2L

(L1)
1

0m×n A3 + L
(L1)
2

)
, A4 =

(
α0 0
0 α1

)
,

where

A1 =

(
−(α0 + β) 0

β −α1

)
, L(L1)

1 =

(
µ(x)

0

)
, L(L1)

2 = µ(x),

and A2 and A3 denotes the integral operator and differential operator, respectively. Then,
the approximating equation can be constructed as

dP(N)
0 (t)
dt

= −(α0 + β)P(N)
0 (t) + µ(0) · (α0P(N)

0 (t) + α1P(N)
1 (t)) · ω̂0 +

N

∑
i=1

µ(xi)p(N)
2 (t, x̂i) · ω̂i

dP(N)
1 (t)
dt

= βP(N)
0 (t)− α1P(N)

1 (t)

dp(N)
2 (t, x̂1)

dt
= −d̂(1)10 · (α0P(N)

0 (t) + α1P(N)
1 (t))−

N

∑
i=1

d̂(1)1i p(N)
2 (t, x̂i)− µ(x̂1)p(N)

2 (t, x̂1)

:

dp(N)
2 (t, x̂N)

dt
= −d̂(1)N0 · (α0P(N)

0 (t) + α1P(N)
1 (t))−

N

∑
i=1

d̂(1)Ni p(N)
2 (t, x̂N)− µ(x1)p(N)

2 (t, xN)

where {x̂j, ω̂j}N
j=0 be the set of shifted Legendre-Gauss Radau quadrature nodes and weights,

(d(1)kj )k,j=1,2,··· ,N are defined in Equation (16). Moreover, we define the approximating space

X̄(N) = RN+2 with the norm, for any ~P(N) =
(

P(N)
0 , P(N)

1 , p(N)
21 , · · · , p(N)

2N

)
∈ RN+2

‖~P(N)‖N =
1

∑
i=0
|P(N)

i |+ ω̂0 · (α0P(N)
0 + α1P(N)

1 ) +
N

∑
i=1

ω̂i · p
(N)
2i ,

and the approximating operator as

A(N) =



A00 µ(x̂0)α1 · ω̂0 µ(x̂1) · ω̂1 µ(x̂2) · ω̂2 · · · µ(x̂N) · ω̂N
β −α1 0 0 · · · 0

−d̂(1)10 α0 −d̂(1)10 α1 −(d̂(1)11 + µ(x̂1)) −d̂(1)12 · · · −d̂(1)1N
−d̂(1)20 α0 −d̂(1)20 α1 −d̂(1)21 −(d̂(1)22 + µ(x̂2)) · · · −d̂(1)2N

: : : : :

−d̂(1)N0α0 −d̂(1)N0α1 −d̂(1)N1 −d̂(1)N2 · · · −(d̂(1)NN + µ(x̂N))

. (24)

where A00 = −
(
1− µ(x̂0)ω̂0

)
· α0 − β. Then, by denoting ~P(N)(t) =

(
P(N)

0 (t), P(N)
1 (t),

p(N)
2 (t, x̂1), · · · , p(N)

2 (t, x̂N)
)

, the approximating system for (23) can be described as the
following Cauchy problem 

d
dt

~P(N)(t) = A(N)~P(N)(t)

~P(N)(0) = ~P(N)
0 .

(25)
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Therefore, by denoting the approximation solution on bounded t-intervals as P̂(N)(t),
we can obtain that

P̂(N)(t) = EN~P(N)(t) = EN · eA
(N)t · ~P(N)

0 . (26)

Based on above analysis, we propose some numerical result as follows. According
to [10], let α0 = 1

120 , α1 = 1
3 , β = 1

7 . Let the maximum repair time be T = 20, then the
hazard rate of the repair time µ(x) are assumed to satisfies

∫ x

0
µ(s)ds =


∫ x

0
2s ds, x < T

∞, x = T.

By solving the Equation (26), we can derive the approximating solution of system (25)
directly. Figure 1 shows dynamical behaviour of the approximation solution P(N)

0 (t),

P(N)
1 (t) and P(N)

2 (t), which corresponding to the probability distributions of the software
system in [0, 20) with N = 15, where

P(N)
2 (t) = ω̂0 · (α0P(N)

0 (t) + α1P(N)
1 (t)) +

N

∑
i=1

ω̂i · p
(N)
2 (t, x̂i).

Figure 1 indicates that the probability of the system in each state will gradually tend
to stable as time increases, which corresponds to the fact that the solution of system (21)
and (22) gradually tends to a steady-state solution as t tends to infinity. On the other hand,
Figure 2 plots the dynamical behaviour of p(N)

2 (t, x) with N = 15. Figure 2 shows that

for any fixed t, p(N)
2 (t, x) → 0 as x grows. This situation agrees with p(N)

2 (t, x) ∈ L1[0, T]
for any given time t and also conforms to reality. As a result, Figures 1 and 2 show that,
by using a few nodes, the approximation solution for the software rejuvenation system (21)
and (22) on bounded t-intervals can be derived.

Figure 1. Probability distributions of the software system.
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Figure 2. Behavior of solution p(15)
2 (t, x).

Example 2. In this example, we consider the approximation scheme proposed in this paper as well
as the finite-differences method in numerical solution computation to the following first-order linear
IDEs with two system state.

dP0(t)
dt

= −λP0(t) +
∫ ∞

0
h(x) · p1(t, x)dx

∂p1(t, x)
∂x

+
∂p1(t, x)

∂t
= −h(x) · p1(t, x)

(27)

with the boundary condition
p1(t, 0) = λP0(t). (28)

System (27) and (28) can be regarded as a classical two-state repairable system, see [6].
The failure time of a component follows an exponential distribution with rate λ and the repair time
follows a general distribution with repair rate h(x), where x stands for the elapsed repair time. Also,
System (27) and (28) can be regarded as an single server queuing system with general service rate
h(x), where x stands for the elapsed service time, see [5].

By assuming that the repair time (or service time) follows an Erlang distribution with
h(x) = λ2x

1+λx , the analytical solution for system (27) and (28) can be calculated as

P0(t) =
1
3
+

2
3

e−
3
2 λtcos

√
3

2
λt.

Moreover, we assume that the maximum repair time (or service time) is T. Then,
by performing the approximation algorithm according to Section 4.1, we can derive the
corresponding approximation operator Ā(N) as

Ā(N) =



−λ λ2 x̂1
1+λx̂1

· ω̂1
λ2 x̂2

1+λx̂2
· ω̂2 · · · λ2 x̂N

1+λx̂N
· ω̂N

−d̂(1)10 λ −(d̂(1)11 + λ2 x̂1
1+λx̂1

) −d̂(1)12 · · · −d̂(1)1N

−d̂(1)20 λ −d̂(1)21 −(d̂(1)22 + λ2 x̂2
1+λx̂2

) · · · −d̂(1)2N
: : : :

−d̂(1)N0λ −d̂(1)N1 −d̂(1)N2 · · · −(d̂(1)NN + λ2 x̂N
1+λx̂N

)


. (29)



Mathematics 2022, 10, 4117 18 of 21

Therefore, by denoting the initial condition as P0, the approximation solution P̂(N)(t) =
(P(N)

0 , P(N)
1 )τ for the liner IDEs system (27) and (28) on bounded t-intervals can be obtain as

P̂(N)(t) = EN · eĀ
(N)t · PN P0. (30)

Let λ = 0.8, T = 30. Figure 3 plots the behavior of solution P(N)
0 (t) with different N

in interval [0, 10]. Table 1 shows the corresponding error analysis of the approximation
solution derived by (30) in different order. Figure 3 and Table 1 show that P(N)

0 (t) will
gradually tends to the analytical solution P0(t) as N increases, in particular, the curves of
P(20)

0 (t) are almost coincident with P0(t), which agrees with the conclusion of Corollary 1.

Figure 3. Approximation solutions P(N)
0 (t) derived by (30) and the analytical solution P0(t).

Table 1. The error analysis of solutions derived by the proposed scheme in different order.

Analytical Solution Approximation Solutions P(N)
0 (t) Derived by (30)

P0(t) P(12)
0 (t) P(16)

0 (t) P(20)
0 (t)

Value Value Error Value Error Value Error

t = 1 0.487835 0.489046 0.002476 0.486001 0.003772 0.486002 0.003772
t = 2 0.344467 0.330438 0.042456 0.341238 0.009463 0.347338 0.008265
t = 3 0.324477 0.309189 0.049446 0.329176 0.014272 0.322785 0.005242
t = 4 0.328218 0.320813 0.023081 0.329160 0.002860 0.327253 0.002948
t = 5 0.331766 0.327079 0.014328 0.328372 0.010334 0.333693 0.005775
t = 6 0.333070 0.325695 0.022643 0.331923 0.003456 0.332196 0.002631
t = 7 0.333353 0.322681 0.033072 0.334367 0.003031 0.333290 0.000190
t = 8 0.333366 0.321002 0.038516 0.333456 0.000269 0.333566 0.000599
t = 9 0.333346 0.320441 0.040272 0.332444 0.002713 0.333125 0.000664
t = 10 0.333336 0.320042 0.041537 0.332729 0.001825 0.333548 0.000634

On the other hand, we consider the approximation solution obtained by the finite-
differences method. Let λ = 0.8, T = 30 and the difference notes are denoted as N. And let
P̄(N)

0 (t) stands for the approximation solution obtained by the finite-differences method
with N difference notes.

Figure 4 plots the behavior of solution P̄(N)
0 (t) which derived by the finite-difference

methods with different N in interval [0, 10]. Table 2 shows the corresponding error analysis
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of the approximation solution. Figure 4 and Table 2 shows that the approximation solution
P̄(N)

0 (t) will also gradually tends to the analytical solution P0(t) as N increases. When

N = 1000, the curves of P̄(20)
0 (t) are almost coincident with P0(t).

Figure 4. Approximation solution P̄(N)
0 (t) obtained by the finite-differences method and the analytical

solution P0(t).

Table 2. The error analysis of solutions derived by the finite-differences method in different order.

Analytical Solution Approximation Solutions P̄(N)
0 (t) by Finite-Differences Method

P0(t) P̄(100)
0 (t) P̄(500)

0 (t) P̄(1000)
0 (t)

Value Value Error Value Error Value Error

t = 1 0.487835 0.506053 0.036001 0.491842 0.008147 0.489861 0.004136
t = 2 0.344467 0.366708 0.060649 0.349087 0.013235 0.346785 0.006685
t = 3 0.324477 0.342710 0.053201 0.328144 0.011174 0.326310 0.005616
t = 4 0.328218 0.343983 0.045829 0.331388 0.009566 0.329803 0.004806
t = 5 0.331766 0.346979 0.043844 0.334856 0.009229 0.333313 0.004642
t = 6 0.333070 0.348381 0.043946 0.336197 0.009299 0.334637 0.004680
t = 7 0.333353 0.348799 0.044283 0.336510 0.009380 0.334935 0.004721
t = 8 0.333366 0.348873 0.044449 0.336534 0.009413 0.334953 0.004738
t = 9 0.333346 0.348869 0.044494 0.336516 0.009419 0.334934 0.004741
t = 10 0.333336 0.348860 0.044497 0.336506 0.009418 0.334924 0.004740

Although the finite-differences method can also provide a approximation solution
for the system, we can find that the approximation error of P(20)

0 (t) is obviously smaller

that P̄(1000)
0 (t), which shows that the convergence rate of the finite-difference method is

obviously lower than the convergence rate of the proposed method by comparing with
Tables 1 and 2. However, by comparing with Figures 3 and 4, the approximation scheme
proposed in this paper not only exhibits a faster convergence than the finite-differences
method, but also requires fewer nodes.

5. Conclusions

In this paper, a polynomials approximation scheme based on the shifted Legendre
spectral collocation method was proposed for the numerical computation of first-order
linear Integro-Differential Equations (IDEs) in L1 space. We transformed the first-order
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linear IDEs into an abstract Cauchy problem to establish the basic framework of theoretical
analysis. By decomposing the system operator, we rewrote the Cauchy problem into a more
general form for approximation. Then, we constructed an approximation scheme based
on the shifted Legendre spectral collocation method and demonstrated the convergence
of the approximation scheme in the sense of L1-norm by employing Trotter-Kato theo-
rem. The convergence theorem derived in this paper pointed out that for any bounded
t-intervals, the system solution can be approximated with arbitrary precision. Moreover,
we summarized the approximation scheme into an algorithm for application and presented
two numerical examples.

The computational scheme proposed in this paper inherits the advantages of the
spectral collocation method with computational efficiency and easily executive. As a result,
it provides us with a useful tool to calculate the numerical solution for the first-order linear
IDEs. In addition, it also can be applied in computation of uncertainty problems, such as
the fuzzy integro-differential equations shown in [39,40].

In this paper, we proved the convergence of the proposed scheme in the system space of
R+ × L1[0, T]. However, if the elapsed time x belongs to [0, ∞), then, the system space will
become R+ × L1[0, ∞) and the convergence of the proposed scheme will not be guaranteed
any more. Therefore, it is a significant job to design an innovative approximation scheme
in L1[0, ∞), which will become a new research direction in the future.
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