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Abstract: A questionnaire is a basic tool for collecting information in survey research. Often, these
questions are measured using a Likert scale. With multiple items on the same broad object, these
codes could be summed or averaged to give an indication of each respondent’s overall positive or
negative orientation towards that object. This is the basis for Likert scales. Aggregation methods have
been widely used in different research areas. Most of them are mathematical methods, such as the
arithmetic mean, the weighted arithmetic mean, or the OWA (Ordered Weighted Averaging) operator.
The usual presentation of Likert scale derived data are Mean. This paper presents a new approach to
compute an aggregate value that represents Likert scale responses as a histogram adequate to treat
better than Mean with asymmetric distributions. This method generates a set of partitions using
an approach based on successive division. After every division, each partition is evaluated using a
consensus measure and the one with the best value is then selected. Once the process of division has
finished, the aggregate value is computed using the resulting partitions. Promising results have been
obtained. Experiments show that our method is appropriate for distributions with large asymmetry
and is not far from the behavior of the arithmetic mean for symmetric distributions. Overall, the
article sheds light on the need to consider other presentations of Likert scale derived data beyond
Mean more suitable for asymmetric distributions.

Keywords: questionnaires; Likert scale; aggregation of information; consensus; OWA

MSC: 68U99

1. Introduction

The process of obtaining information from an investigation in some areas is usually
achieved by designing and creating a survey. A survey is a quantitative technique used
to obtain primary information and the basic tool for collecting information is provided by
the questionnaire. It is used in research to obtain the information that is used to reach the
conclusions about the treated problem. Questionnaires have been used in different areas,
such as the social sciences [1–3], education [4,5], market studies [6], sports [7,8], accident
prevention [9,10], augmented reality [11], clinical data [12,13], etc.

The information gathered from a questionnaire is represented using two types of
variables: observable variables and latent variables. An observable variable can be defined
as “a concept that can be directly observed and measured”, i.e., observable variables are “the
directly measured proxy variables that contain the raw data” [14]. These variables are also
called indicators (and also called items or manifest variables). In contrast, a latent variable is
a theoretical concept that cannot be directly observed or measured, but can be inferred from
observable variables or from other latent variables that are measured in the first instance
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from observable variables. A variable of this type is also called a construct, composite, or
factor and can be understood as something “meaningful”. A construct, then, is inferred
from one or more indicators, that is, a latent variable is calculable from some observable
variable or variables. Thus, a multidimensional construct is a construct where “their
indicators are themselves latent constructs” [15]. A multidimensional construct establishes
a relationship among various latent constructs and allow researchers to match broad
predictors with broad outcomes, increasing the explained variance [16]. An indicator of a
multidimensional construct is called dimension and represents one aspect, clearly defined,
of the content domain of the overarching construct. Indicator or item, factor, composite,
construct and multidimensional construct are the names usually used in statistical analysis
applied to social, political, and behavioral sciences.

In most cases, the data gathered from a questionnaire allows for obtaining valuable
information from it. Statistical analysis or other analytic techniques such as fsQCA [17–19]
are used for this purpose. Those methods usually need a process where the information is
aggregated. This aggregation is especially useful in two main situations: (1) to conflate the
responses to the different items composing a question (construct) [20] or (2) to combine the
answers offered by the different respondents to a concrete question item.

The use of measures of central tendency such as the arithmetic mean is common. A
measure of central location tries to represent with a single value the center or location
of the distribution. A subject’s score on a factor is the sum of his or her responses to the
items selected to define that factor (direct scores). This practice is equivalent to assigning
weights of 1 to the items if they define the factor, or 0 if they do not [21,22]. When the
factors are not defined by the same number of items (as is usual), it is recommended to
calculate for each subject his/her mean on each factor (sum of his/her responses to the
items of the factor divided by the number of items of the factor); in this way, the scores of
each subject (or group means) on the different factors can be compared with each other [23].
These measurements have the problem that they are very sensitive to extreme values,
which makes them not useful in asymmetric distributions. Furthermore, the opinions
collected in a survey can generate an asymmetric distribution that will not be correctly
reflected with a central tendency measure. Therefore, measures of central tendency are
not the most appropriate for obtaining a value that represents the information collected
in a survey. Taking into account these considerations studied in previous works of the
authors in the field of Social Sciences [1–3], it is interesting to design a method to generate
groups of opinions from the surveys. Thus, instead of representing the distribution by
means of a measure of central tendency, we propose to represent it with a value closer to
the most representative group. To do this, the groups of opinions are detected from the
survey respondents, and each of these groups are represented by a single value when the
aggregated value is computed. To obtain the appropriate groups of opinion, consensus
measures are used, and, to detect such groups, domain partition techniques are applied.

This paper proposes a new aggregation method for questionnaires with closed-ended
questions [24] in order to measure a given phenomenon under investigation. The proposed
method can treat ordered bounded domains, such as an ordinal-polytomous scale [25]. It
is based on a continuous division of the input space [26,27] that groups closer answers
into partitions. To establish such clusters, the concept of entropy [28,29] and a distance
measure are used. In order to test the validity of our proposal, the results obtained
from experimentation are compared with the arithmetic mean using two synthetic and
real databases.

1.1. Contributions of the Present Paper

Multiple-item scales are widely used in making hiring decisions, assessing student,
customer, and employee satisfaction, conducting needs assessments and program evalua-
tions, and in scientific research projects. Unfortunately, those who construct these scales
often have little knowledge of how to effectively develop and evaluate them. When
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scales are not properly developed, they typically yield data that are unsuitable for their
intended purpose.

The Likert scale aims primarily at solving a technical problem that has arisen in
relation to the quantitative aspects of the study of social attitudes. Likert [30], in his original
research work on the development of the scales that bear his name, assumes that, for
experimental purposes, attitudes are distributed fairly normally. However, he recognizes
that this assumption may not be correct, so he calls for future research to determine
its correctness or incorrectness by further experiment. This paper responds to that call,
proposing a solution in the calculation of Likert scales when the assumption of normality is
not met, that is, when the distribution is asymmetric.

We present a new approach to compute an aggregate value that represents Likert scale
responses as a histogram adequate to treat with asymmetric distributions. In addition,
the operation of the our method is not far from the behavior of the arithmetic mean
for symmetric distributions. There are different possibilities in the literature to aggregate
information into a single value, and most of them are based on measures of central tendency
that are not appropriate for asymmetric distributions.

The presented method is based on the use of successive divisions to generate partitions
of the input space. Furthermore, the use of consensus has been proven to be an appropriate
way to demonstrate the validity of a set of opinions. For this reason, consensus has been
used to measure the goodness of the candidate partitions. More concretely, the approach of
Tastle [29] used to measure a Likert scale is used in this paper. Our approach proposes a
measure based on consensus and suggests the distances between the candidate partitions
to select one of them. In addition, the way the candidate partitions are generated is another
innovative contribution.

Finally, this paper proposes the use of a parameter α to control the partitioning rate.
It takes values in the interval [0, 1]; if α = 1, the parameter has no effect. In this way, the
behavior of the algorithm can be controlled by the final user, something that is not possible
in other existing aggregation functions.

1.2. Structure

This paper is organized as follows: Section 2 exposits the background of the treated
issue. Then, Section 3 provides details on our proposal to compute the aggregate value.
Section 4 tests the proposed method and presents a discussion about the results achieved.
Lastly, Section 5 summarizes the final conclusions and future research.

2. Background

Aggregation methods have been widely used in different research areas. Most of them
are mathematical methods, such as the arithmetic mean [31] or the weighted arithmetic
mean, that allows indicating a weight for each component. The Ordered Weighted Aver-
aging) operator is another method, introduced by Yager [32]. It is widely used in applied
mathematics and fuzzy logic, and it can also be used to aggregate the information obtained
from a questionnaire. For instance, He et al. [33] provide new aggregation operators for
Extended Comparative Linguistic Expressions with Symbolic Translation (ELICIT) infor-
mation by developing novel OWA based operators, such as the Induced OWA (IOWA)
operator in order to avoid the OWA operator needs of reordering its arguments because
ELICIT information does not have an inherent order due to its fuzzy representation. Pons-
Vives et al. [34] provide an application of OWA operators to customer classification in
hotels. These authors argue that the use of the OWA operator improves the performance of
the classical K-means and reduces the number of convergence iterations. An associated
collection of weights W = (w1, w2, . . . , wn) lying in the unit interval are needed in order to
compute an OWA operator of dimension n (Equation (1)).

F(a1, . . . , an) =
n

∑
j=1

wj · bj (1)
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where bj is the jth largest in (a1, a2, . . . an) and ∑n
i=1 wi = 1.

Another category of methods, such as the one we present in this paper, are based on
consensus [20,35,36]. A recent study of the aggregation methods based on consensus is
presented in [20] and, now, some relevant papers about consensus will be described in
order to introduce the reader to the treated issue.

Fedrizzi and Pasi [37] present a review of fuzzy logic-based approaches to model
consensus. It is applied in the context of fuzzy Group Decision Making (GDM) and two
different models are synthesized so as to model a consensus under individual fuzzy prefer-
ences. In that paper, OWA operators are used to come to a consensus. Parreiras et al. [38]
presented a flexible consensus scheme that allows for capturing a consistent collective
opinion from a group of experts. It is based on a linguistic hierarchical model, which
is advantageous both from the human viewpoint and from the operational viewpoint.
A moderator can intervene in the discussion process and the authors test the approach
on a hypothetical enterprise strategy planning problem. Alcantud et al. [39] presented
the concept of approval consensus measure (ACM) to measure the cohesiveness that the
expression of dichotomous opinions conveys. The 2012 presidential elections in the USA
were selected as a real scenario to test their approach. In [40], from a set of objects, a
consensus partition containing a maximum number of joined or separated pairs in such set
is established. Cultural Consensus Theory (CCT) is an approach to information pooling
(aggregation and data fusion) and is used for measurement and inference in the social and
behavioral sciences [41]. France and Batchelder [42] described research related to CCT
where a clusterwise version of continuous cultural consensus analysis called CONSCLUS
was designed based on k-means. Their CCT-Means algorithm is used to fit CONSCLUS
and an algorithm similar to k-means is used to compute the clusters. The centroids of
the clusters are calculated using the continuous CCT procedure and the algorithm gives
a good performance on relatively large datasets. They also implemented an extension
of CONSCLUS for fuzzy clustering using an alternating least squares extension to the C-
means algorithm. In their experimentation, they showed how CONSCLUS could be used to
analyze a set of online review data. To compute the topology of a public transport network,
Fiori et al. [43] used a consensus clustering density-based approach, referred to as DeCoClu
(Density Consensus Clustering). They infer the geographical locations of stops with GPS
data and use a consensus clustering strategy based on a new distance function to compute
the relative distances between points. Experiments were conducted on real-data collections
provided by a public transport company, and showed the utility of their proposal. Plaia
et al. define a consensus ranking in order to assign a class label or class ranking to each
node in a decision tree [44]. Zhang and Li [45] develop two consensus-based TOPSIS-Sort-B
(variation of the Technique for Order of Preference by Similarity to Ideal Solution, known
as TOPSIS-Sort method) algorithms to deal with multi-criteria sorting in the context of
group decision-making (MCS-GDM) problems. Then, the authors define the consensus
measures and devise different feedback adjustment mechanisms and consensus reaching
algorithms to help experts reach consensus by considering different needs for MCS-GDM
problems. Thus, TOPSIS-Sort-B is presented as an improved version of TOPSIS-Sort for
sorting problems in which boundary profiles should be determined. Other variations
of the TOPSIS-Sort method have been developed such as TOPSIS-Sort-C, which should
be used to address problems in which it is more appropriate to determine characteristic
profiles [46]. For their part, Gai et al. [47] propose a consensus-trust driven framework of
bidirectional interaction for social network large-group decision-making. The proposed
consensus framework is applied to a blockchain platform selection problem in the supply
chain to demonstrate the effectiveness and applicability of the model.

3. Materials and Methods

A questionnaire is composed of a group of m questions, represented as Q = {Q1, Q2 . . .
Qm}, where each question Qi can be seen as a group of mi items Qi = {Ii

1, Ii
2 . . . Ii

mi
}, where

each Ii
j takes values in a concrete domain. The Likert scale [30] is frequently used as the
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domain to measure the responses in a questionnaire. For this reason, the proposed method
is designed to be used with this scale.

In order to contextualize our proposal, now we study a concrete example based on the
first question of the questionnaire using a 5-point Likert scale such as this: “1 = strongly
disagree, 2 = disagree, 3 = have no idea, 4 = agree, 5 = strongly agree” taken from [48]
(Table 1). Suppose that nine surveyed completed this question with the values shown in
Table 2 and that the arithmetic mean is used in this example to aggregate the responses. In
Table 2, there are two levels of aggregation for each question: the first one is shown in the
column “1st level” and represents the response of each surveyed to an item; the second one,
column “2nd level”, is the result of the aggregation process applied to the values of the first
level. In addition, the arithmetic mean of each answer is shown in the last row (col. mean).

Table 1. Example of questionnaire with two questions.

Part I—The Planning Phase 1 2 3 4 5

Was the project score clear to the team members?

Did the team members actively participate in the estimation process?

Did you feel that your opinion was heard in the planning phase?

Did you state your opinion regarding the construction of the WBS?

Part II—The Execution Phase 1 2 3 4 5

Were the project meetings held at adequate intervals?

Were progress indicator models used?

Were changes in the project adequately controlled?
1 = strongly disagree, 2 = disagree, 3 = have no idea, 4 = agree, 5 = strongly agree.

Table 2. Responses and aggregate values for the two questions of the questionnaire.

Surveyed I1
1 I1

2 I1
3 I1

4 1st Level 2nd
Level

1 4 3 5 4 4.00

3.19

2 4 2 4 3 3.25
3 5 4 4 4 4.25
4 1 4 4 3 3.25
5 2 1 2 1 1.50
6 1 2 4 3 2.50
7 5 4 4 3 4.00
8 5 4 3 3 3.75
9 5 1 1 2 2.25

col. mean 3.67 2.78 3.44 2.89 3.19

Section 3.1 shows the algorithm in detail. The proposed approach is now detailed
where a successive partition of the frequency histogram of the occurrences of the responses
is built. Then, the initial histogram is split into two partitions, and then these two partitions
are divided again and again until they cannot be divided any more (Section 3.2). The
partition condition is a measure concretely designed with this aim (Section 3.3). Once the
split has finished, the final aggregate value is computed (Section 3.4). Finally, an example is
given in Section 3.5.

3.1. Detailed Algorithm of the Proposed Method

Algorithm 1 details the operation of our method. It computes the histogram without
taking into account the items with a frequency equal to 0 (Lines 1–2). These elements are
stored in Lproc (list of processing). The output set containing the partitions is named Lout
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(Line 3). A new element is taken from Lproc (Line 5). After that, all possible partitions
composed of two sets of responses are generated (Line 9 and Section 3.2) if this is possible
(Line 6). Each partition is now evaluated using an evaluation function that allows for
selecting the best partition (Line 10 and Section 3.3). A parameter α is used to control the
way the partitions are made (Line 11). This is the only parameter used, and it allows for
selecting the rate of partitioning, and its behavior will be observed in the experiments.
The smaller α is, the greater the rate of partitioning becomes. If two new partitions are
obtained, they are added to Lproc, and they will be processed in the next iteration of the loop
(Lines 12–13); in other cases, the original partition is generated as output (Line 15). This
process is repeated until no new partition can be obtained (Line 4). Lastly, the aggregate
value is computed using the partition of the input space (Line 20 and Section 3.4). Another
aggregation function must be selected if the input histogram has not been divided (Line 22).

Algorithm 1 Partitioning and consensus based method

1: hist = CalculatingTheHistogram(X1 . . . Xn)
2: Lproc = DeletingElementsWithFrequencyZero(hist)
3: Lout = ∅ {Output list with the selected partitions}
4: while Lproc 6= ∅ do
5: e = Lproc.pop() {e is removed from Lproc and is processed}
6: if length(e)==1 then
7: Lout.add(e) {e cannot be divided and is added to Lout}
8: else
9: Lparts = GeneratingPartitions(e) {Section 3.2}

10: part = ObtainingBestPartition(Lparts) {Section 3.3}
11: if eval(part) > α·cons(e) then
12: Lproc.add(part1) {Adding first partition of part}
13: Lproc.add(part2) {Adding second partition of part}
14: else
15: Lout.add(e) {e is not divided and is added to Lout}
16: end if
17: end if
18: end while
19: if length(Lout)>1 then
20: r = ComputingOutputValue(Lout) (Section 3.4)
21: else
22: r = using another aggregation function, such as the arithmetic mean, OWA, etc.
23: end if

3.2. Generation of the Partitions

The selected partition is divided into two parts: Each part contains consecutive val-
ues of the original partition and all possible combinations are computed. If the input
histogram has n values, then there exist n− 1 possible partitions using this cutting strategy.
For example, let e be the histogram of the column I1

1 (Table 2) taking the values {{1, 2
9},

{2, 1
9}, {4, 2

9}, {5, 4
9}} representing nine responses using a 5-point Likert scale where item

1 has been chosen two times, item 2 only in one response, etc. There are three possible
partitions since e contains four values. Table 3 shows the partition part divided into two
partitions, referred to as part1 and part2.

Table 3. Partitions obtained for the histogram e.

Part Part1 Part2

1 {{1, 2
9}} {{2, 1

9}, {4, 2
9}, {5, 4

9}}
2 {{1, 2

9}, {2, 1
9}} {{4, 2

9}, {5, 4
9}}

3 {{1, 2
9}, {2, 1

9}, {4, 2
9}} {5, 4

9}
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3.3. Evaluating the Partitions

Now, the equations that define our proposal will be presented. Equation (2) is used to
evaluate the partition part, taking values in the interval [0, 1]. A larger evaluation value
indicates a better partition:

eval(part) = cons(part) · distance(part) (2)

The consensus of each component of a partition part (Equation (3)) and the distance
between the partitions part1 and part2 (Equation (5)) are considered. Equation (3) takes a
value in the interval [0, 1] since the function Cns offers an output value in this interval:

cons(part) =
(
|part1|
|part| · Cns(part1) +

|part2|
|part| · Cns(part2)

)
(3)

where part is the partition composed of part1 and part2, and |parti| is the width of parti.
Different measures of consensus have been proposed previously in the literature. The

approach of Tastle and Wierman [29] has been selected since it is a measure designed
specifically to measure the consensus of a standard Likert scale. Furthermore, this method
is valid for measuring other scales of closed-ended questions. Tastle and Wierman proposed
the use of the mean and standard deviation as measures of the dispersion along with the
Shannon entropy (Equation (4)). In their proposal, the consensus of a partition with a
single element is 1.0, and several examples showing its behavior can be found in the
original paper:

Cns(X) = 1 +
n

∑
i=1

pi · log
(

1− |Xi − X|
Xmax − Xmin

)
(4)

where pi is the probability associated with the distribution under consideration, X is the
mean of X, Xmax − Xmin is the width of X, and | | is the absolute value.

As it is indicated above, a distance measure is defined between two partitions. In addi-
tion, Equation (5) takes a value in the interval [0, 1], and it fulfills that rv(part2) > rv(part1)
since each element in part2 is greater than each element in part1:

distance(part) =
(

rv(part2)− rv(part1)

|Likert|

)
(5)

where |Likert| is the width of the input Likert scale, and rv(parti) returns the representative
value for parti.

To compute the representative value of a partition function, rv is used (Equation (6)).

rv(part) = ∑ f act( fi) · norm( fi)

|part| (6)

where part = ({j, f j}, {j + 1, f j+1}, . . . , {j + |part|, f j+|part|}, {j, f j}) is a tuple where j is a
Liker scale value, f j its frequency, and norm( fi) normalizes the value fi ∈ part.

The idea is to detect the areas of maximum frequency concentration within the parti-
tion. For this reason, a method has been designed that reduces the small frequencies and
maintains the highest ones (Equation (7)) by applying a factor to each of the frequencies in
the sample. The frequencies that fall in the lower third of the highest frequency (max(part))
are multiplied by a factor of 1

3 , those that fall in the second third are multiplied by a factor
of 2

3 , and finally those that fall in the upper third are not modified, so the factor is equal
to 1:

f act( fi) =


1
3 , fi < max(part) · 1

3
2
3 , fi ≥ max(part) · 1

3 and fi < max(part) · 2
3

1, fi ≥ max(part) · 2
3

(7)
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where part = ({1, f1}, {2, f2}, . . . , {|Likert|, f|Likert|}) and f req = { f1, . . . f|Likert|}.
The distribution obtained is then normalized and the mean, which is the representative

value of the sample, is calculated. By reducing the lowest frequencies and keeping the
highest ones, the new average approaches the areas of maximum frequency concentration.

The main idea of the approach is to split only when a new partition part reaches a good
consensus (Equation (3)) and when the two partitions in part are far enough from each
other (Equation (5)). In this case, we consider the best way of obtaining a more consistent
partitioning. For instance, let part be the partition selected in Section 3.2 (row 2 of Table 3):
part1 = {{1, 2

9}, {2, 1
9}} and part2 = {{4, 2

9}, {5, 4
9}}. First of all, Equation (4) is applied to

calculate the consensus values, obtaining 0.9025 and 0.6325, respectively. Next, Equation (3)
is computed: |part1|

|part| · Cns(part1) +
|part2|
|part| · Cns(part2) = 1

4 · 0.9025 + 1
4 · 0.6325 = 0.7675

where |part1|
|part| = |2−1|

|5−1| =
1
4 and |part2|

|part| = |5−4|
|5−1| =

1
4 . Equation (5) computes the distance

between part1 and part2, and the result is 0.7. Lastly, the evaluation value is calculated
using Equation (2): it is equal to 0.7675 · 0.7 = 0.5373.

3.4. Calculating the Aggregate Value

The aggregate value is computed using Equation (8) once the best partition has been
selected. This operation obtains the sum of the frequencies of each partition multiplied
(sumFreq(parti)) by a representative value from the own partition (rv(parti)). Then, each
partition is represented by a single value (Equation (6)):

v =
m

∑
i=1

sumFreq(parti) · rv(parti) (8)

with Lout = {part1, part2, . . . , partm}, parti is a partition, and rv(parti) is calculated using
Equation (6).

Although, in Equation (8), rv is used, it can be substituted by other measures such
as the mode or the median. The justification of why using the rv is related with our aim
of representing the partition with a value that considers the zone that concentrates the
maximum frequencies. As example, the partition given in Section 3.3 (row 2 of Table 3) is
now used in order to illustrate the operation of Equation (8). part1 and part2 are represented
by the values 1.25 and 4.75, respectively. Then, the aggregate value is computed in the
following way:

(sumFreq(part1) · rv(part1)) + (sumFreq(part2) · rv(part2)) = (( 2
9 + 1

9 ) · 1.25) +
(( 2

9 + 4
9 ) · 4.75) = 3

9 · 1.25 + 6
9 · 4.75 = 3.583.

3.5. Example of the Operation of Algorithm 1

The operation of this algorithm, step by step, will now be shown using an example.
The question used has nine items, and each one of them uses a 5-point Likert scale taking,
for example, the following values {4, 5, 5, 4, 1, 1, 2, 5, 5} have been taken from the column I1

1
of Table 2. The value for α is 0.55. Then,

• Line 1: The histogram hist = {{1, 2
9}, {2, 1

9}, {3, 0
9}, {4, 2

9}, {5, 4
9}} is obtained using

the answers.
• Line 2: Lproc is initialized with a set containing every single element, {{1, 2

9}, {2, 1
9},

{4, 2
9}, {5, 4

9}}, where the value 3 is not added because its frequency of occurrence is
equal to 0.

• Line 3: The list that contains the output partitions (Lout) is initialized to ∅.
• Line 4: The main loop finishes when there are no partitions to process, i.e., Lproc is

empty.
• Line 5: An element is taken and removed from Lproc; in this case, as there is only one,

then e = {{1, 2
9}, {2, 1

9}, {4, 2
9}, {5, 4

9}}.
• Lines 6–7: If e only contains one element, it is added to the output list Lout (Line 7)

since it can not be divided. This situation does not occur in this example.
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• Lines 8–9: Otherwise, all the possible partitions of e are generated and stored in
Lparts, which is the list that contains all the possible partitions as shown in Table 4
(Section 3.2).

Table 4. Partitions when e = {{1, 2
9}, {2, 1

9}, {4, 2
9}, {5, 4

9}}.

Part. Part1 Part2 Eval

P1 {{1, 2
9}} {{2, 1

9}, {4, 2
9}, {5, 4

9}} 0.526
P2 {{1, 2

9}, {2, 1
9}} {{4, 2

9}, {5, 4
9}} 0.537

P3 {{1, 2
9}, {2, 1

9}, {4, 2
9}} {{5, 4

9}} 0.403

• Line 10: The best partition part is now selected using Equation (2). The column “eval”
in Table 4 shows the values obtained in this case. The best partition is P2 since it
reaches the greatest value (0.537).

• Lines 11–13: If the evaluation value of part (Equation (2)) is greater than the consensus
value of e, then the two components of P2 (part1 and part2) are added to Lproc (Lines 12
and 13); otherwise, part is not split any more and is added to Lout (Lines 14–15). In our
example, the division is achieved because part obtains a greater value (distance(part) ·
cons(part) = 0.7 · 0.7675 = 0.5373 = 0.537) than the value obtained by e (α · Cns(e)
= 0.55 · 0.4627 = 0.2544), i.e., Lproc = {{{1, 2

9}, {2, 1
9}}, {{4, 2

9}, {5, 4
9}}}. By means of

the parameter α, the user can indicate the desired rate of split. In the next iteration of
the main loop, the partitions in Lproc are processed in the same way.

• Line 19: When the loop finishes, the selected partition takes the value Lout =

{{{1, 2
9}, {2, 1

9}}, {{4, 2
9}, {5, 4

9}}} and the final aggregate value is equal to 3.583 (Line 20).

4. Results

Two tests will be performed, one using two randomly generated synthetic samples,
and the other using a real database. The synthetic datasets are used to test how the
presented method creates the partitions and how the parameter α influences the creation
of the partitions (Section 4.1). In order to test our proposal in a real dataset, a 2014 survey
carried out by some of the authors of this work and used in different research publications
of the field of Social Sciences [1,49] is taken as input of the experiments (Section 4.2).

4.1. Study of the Obtained Partitions and the Influence of the Parameter α in the Creation of
the Partitions

To perform the tests, two datasets formed by 300 surveys have each been randomly
generated using a 7-point Likert scale and a 9-point Likert scale, respectively. Each survey
of the dataset is represented by a histogram generated randomly with the same probability
for each of the items. The histogram is represented in the same way as in Section 3.2.

The obtained results are studied according to the symmetry of the sample. As a
measure of symmetry, the Fisher’s coefficient [50] has been used being one of the most
widely used measures of symmetry. In addition, for the study of symmetry, four inter-
vals have been defined to categorize the symmetry of a sample, these are: “symmetric”
(Q1 = [|0| . . . |0.25|)), “little symmetric” (Q2 = [|0.25| . . . |0.50|)), “very little symmetric”
(Q3 = [|0.50| . . . |0.75|)), and “not at all symmetric” (Q4 = [|0.75| . . . |∞|)). As can be seen,
the negative symmetry value is converted to its same value as a positive for the calculation
of the interval to which it belongs. Each dataset generated consists of 75 surveys with a
symmetry value belonging to each one of the four intervals (75 · 4 = 300); in this way, it
will be possible to study the results obtained using the same number of surveys for each
one of the defined intervals. In order to evaluate the results, a representative value vrep has



Mathematics 2022, 10, 4115 10 of 17

been defined to be used for comparison with the value calculated by our method and with
the arithmetic mean (Equation (9)).

vrep =
∑ norm( fi)

ni
∀ fi ∈ part | fi ≥ 0.5 · fmax (9)

where fmax is the maximum frequency value in part, ni is the number of elements of part
that fulfils fi ≥ 0.5 · fmax, and norm( fi) normalizes the value fi considering the values
fmax ∈ part that fulfills fmax ≥ 0.5.

Thus, only the highest frequencies are considered in order to find the greatest group
of opinion.

For the study of the behavior of the parameter α, the experiment has been repeated
taking α the values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The obtained results are shown
in Tables 5 and 6, respectively. In these tables, the two first columns show the α value and
the used method (Me): our approach, the arithmetic mean, and a third field indicating
when both methods obtain the same results. The third column named adequateness (Adq)
indicates the percentage of times a method obtains the nearest value to the representative
one, the average of the symmetry measures for which each method is the best (Asm), and
the detailed percentages for each one of the symmetry values, columns Q1, Q2, Q3, and Q4.
For instance, in Table 5, if α = 0.6, our proposal is the best for 197 samples, 65.67%, and
the arithmetic mean is the best for 78 samples (26.0%). In addition, the same aggregated
value for both methods is obtained in 25 samples (8.33%). The average of the symmetry
measures where our method is the best is 0.58 and, for the arithmetic mean, it is 0.19. The
last four columns show the number of surveys where the proposed method is the best for
each of the defined intervals. For example, taking Q2, our proposal is the most adequate
35 times (46.67%); on 30 occasions (40.0%), the arithmetic mean has been more suitable,
and 10 times (13.33%) the same result has been obtained.

Discussion

Next, the results obtained with the variation of α, the values of asymmetry obtained,
and the results for each interval of asymmetry are provided in detail.

On the basis of the results obtained, it can be concluded that the higher values of
α obtain the worst results, Col Adq. of Tables 5 and 6, and, as α drops in value, results
improve. For α < 0.5, the results start to get worse and, with α = 0.1, the output value is
the same as the one obtained with the arithmetic mean for every sample. The best results
are obtained for α = 0.6, a 65.67% with a 7-point Likert scale and a 76.67% with a 9-point
Likert scale. Results are better when using a 9-point Likert scale because there are more
items and more combinations to perform the partitioning (Section 3.2).

The proposed method is the best with a high average asymmetry value (Tables 5 and 6,
col. Asm); more concretely, it reaches values between 0.56 and 0.65 for the 7-Likert scale
test and values from 0.48 to 0.56 for the 9-Likert scale test, labeled as very little symmetry
in both cases. The measures of asymmetry obtained by the arithmetic mean are much
lower than this: the intervals [0.18, 0.26] and [0.17, 0.31] for 7-Likert and 9-Likert scale
tests, respectively. In addition, the study of the intervals Q1 . . . Q4 corroborates these
results since the adequateness of our proposal occurs when 0.2 ≤ α ≤ 0.7 in the intervals
with more asymmetry Q3 and Q4. In particular, when α = 0.5 and α = 0.6, in both
tests, results greater than 95% are obtained. For the Q2 interval, our proposal is the best
except for a 7-point Likert scale being α = 0.3. This shows that our method is suitable for
asymmetric distributions (labeled as “little symmetric”, “very little symmetric”, and “not
at all symmetric”), and it presents a similar behavior with respect to the arithmetic mean
for symmetric distributions.
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Tables 7 and 8 show the obtained results with respect to the partitioning rate. The rows
indicate the α values and the cols the number of partitions, i.e., 0 indicates no division in
the histogram, 1 indicates one division of the histogram, etc. With respect to the parameter
α, as it was expected (Line 11 in Algorithm 1), a greater value of α implies less partitioning.
More concretely, when α = 1, there is no high rate of partitioning, but as α goes down, the
rate of partitioning goes up (Tables 7 and 8). When α ≤ 0.5, partitions are made for all
samples for both of the Likert scales tested. For very low α, the partitioning ratio is very
large, performing almost the maximum number of possible partitions.

In brief, on the basis of the experimentation carried out, an α value in the interval
[0.5 . . . 0.6] could be a good value for the α parameter based on the test results. The tests
show that this parameter can be used to choose the rate of partitioning. In addition, it is
shown that our method is appropriate for distributions with “little symmetric”, “very little
symmetric”, and “not at all symmetric”. Once the experimentation with synthetic data has
been carried out, the next step is to use real data.

Table 5. Study of the parameter α with a 7-Likert scale.

α Me. Adq. Asm. Q1 Q2 Q3 Q4

0.9
Our 4 (1.33%) 0.63 1 (1.33%) 0 (0.0%) 0 (0.0%) 3 (4.0%)
A.M. 0 (0.0%) 0.0 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Equal 296 (98.67%) 0.44 74 (98.67%) 75 (100.0%) 75 (100.0%) 72 (96.0%)

0.8
Our 42 (14.0%) 0.56 7 (9.33%) 6 (8.0%) 11 (14.67%) 18 (24.0%)
A.M. 8 (2.67%) 0.24 3 (4.0%) 5 (6.67%) 0 (0.0%) 0 (0.0%)
Equal 250 (83.33%) 0.43 65 (86.67%) 64 (85.33%) 64 (85.33%) 57 (76.0%)

0.7
Our 143 (47.67%) 0.62 8 (10.67%) 19 (25.33%) 47 (62.67%) 69 (92.0%)
A.M. 50 (16.67%) 0.18 31 (41.33%) 19 (25.33%) 0 (0.0%) 0 (0.0%)
Equal 107 (35.67%) 0.34 36 (48.0%) 37 (49.33%) 28 (37.33%) 6 (8.0%)

0.6
Our 197 (65.67%) 0.58 14 (18.67%) 35 (46.67%) 73 (97.33%) 75 (100.0%)
A.M. 78 (26.0%) 0.19 47 (62.67%) 30 (40.0%) 1 (1.33%) 0 (0.0%)
Equal 25 (8.33%) 0.19 14 (18.67%) 10 (13.33%) 1 (1.33%) 0 (0.0%)

0.5
Our 195 (65.0%) 0.57 17 (22.67%) 34 (45.33%) 70 (93.33%) 74 (98.67%)
A.M. 82 (27.33%) 0.2 51 (68.0%) 29 (38.67%) 1 (1.33%) 1 (1.33%)
Equal 23 (7.67%) 0.28 7 (9.33%) 12 (16.0%) 4 (5.33%) 0 (0.0%)

0.4
Our 186 (62.0%) 0.57 19 (25.33%) 29 (38.67%) 65 (86.67%) 73 (97.33%)
A.M. 76 (25.33%) 0.21 44 (58.67%) 27 (36.0%) 3 (4.0%) 2 (2.67%)
Equal 38 (12.67%) 0.28 12 (16.0%) 19 (25.33%) 7 (9.33%) 0 (0.0%)

0.3
Our 149 (49.67%) 0.62 9 (12.0%) 18 (24.0%) 52 (69.33%) 70 (93.33%)
A.M. 65 (21.67%) 0.26 32 (42.67%) 23 (30.67%) 6 (8.0%) 4 (5.33%)
Equal 86 (28.67%) 0.28 34 (45.33%) 34 (45.33%) 17 (22.67%) 1 (1.33%)

0.2
Our 75 (25.0%) 0.65 3 (4.0%) 10 (13.33%) 23 (30.67%) 39 (52.0%)
A.M. 29 (9.67%) 0.24 15 (20.0%) 9 (12.0%) 4 (5.33%) 1 (1.33%)
Equal 196 (65.33%) 0.4 57 (76.0%) 56 (74.67%) 48 (64.0%) 35 (46.67%)

0.1
Our 0 (0.0%) 0.0 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
A.M. 0 (0.0%) 0.0 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Equal 300 (100.0%) 0.45 75 (100.0%) 75 (100.0%) 75 (100.0%) 75 (100.0%)
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Table 6. Study of the parameter α with a 9-Likert scale.

α Me. Adq. Asm. Q1 Q2 Q3 Q4

0.9
Our 8 (2.67%) 0.48 2 (2.67%) 2 (2.67%) 1 (1.33%) 3 (4.0%)
A.M. 1 (0.33%) 0.17 1 (1.33%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Equal 291 (97.0%) 0.45 72 (96.0%) 73 (97.33%) 74 (98.67%) 72 (96.0%)

0.8
Our 47 (15.67%) 0.53 6 (8.0%) 14 (18.67%) 10 (13.33%) 17 (22.67%)
A.M. 6 (2.0%) 0.17 5 (6.67%) 1 (1.33%) 0 (0.0%) 0 (0.0%)
Equal 247 (82.33%) 0.44 64 (85.33%) 60 (80.0%) 65 (86.67%) 58 (77.33%)

0.7
Our 150 (50.0%) 0.56 13 (17.33%) 33 (44.0%) 51 (68.0%) 53 (70.67%)
A.M. 34 (11.33%) 0.19 23 (30.67%) 10 (13.33%) 0 (0.0%) 1 (1.33%)
Equal 116 (38.67%) 0.39 39 (52.0%) 32 (42.67%) 24 (32.0%) 21 (28.0%)

0.6
Our 230 (76.67%) 0.54 25 (33.33%) 57 (76.0%) 74 (98.67%) 74 (98.67%)
A.M. 61 (20.33%) 0.17 44 (58.67%) 16 (21.33%) 0 (0.0%) 1 (1.33%)
Equal 9 (3.0%) 0.19 6 (8.0%) 2 (2.67%) 1 (1.33%) 0 (0.0%)

0.5
Our 227 (75.67%) 0.54 24 (32.0%) 58 (77.33%) 72 (96.0%) 73 (97.33%)
A.M. 69 (23.0%) 0.19 48 (64.0%) 17 (22.67%) 2 (2.67%) 2 (2.67%)
Equal 4 (1.33%) 0.23 3 (4.0%) 0 (0.0%) 1 (1.33%) 0 (0.0%)

0.4
Our 222 (74.0%) 0.53 26 (34.67%) 55 (73.33%) 69 (92.0%) 72 (96.0%)
A.M. 71 (23.67%) 0.21 46 (61.33%) 18 (24.0%) 4 (5.33%) 3 (4.0%)
Equal 7 (2.33%) 0.32 3 (4.0%) 2 (2.67%) 2 (2.67%) 0 (0.0%)

0.3
Our 202 (67.33%) 0.54 24 (32.0%) 46 (61.33%) 62 (82.67%) 70 (93.33%)
A.M. 80 (26.67%) 0.25 44 (58.67%) 23 (30.67%) 9 (12.0%) 4 (5.33%)
Equal 18 (6.0%) 0.33 7 (9.33%) 6 (8.0%) 4 (5.33%) 1 (1.33%)

0.2
Our 143 (47.67%) 0.55 16 (21.33%) 31 (41.33%) 45 (60.0%) 51 (68.0%)
A.M. 77 (25.67%) 0.31 36 (48.0%) 19 (25.33%) 13 (17.33%) 9 (12.0%)
Equal 80 (26.67%) 0.42 23 (30.67%) 25 (33.33%) 17 (22.67%) 15 (20.0%)

0.1
Our 0 (0.0%) 0.0 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
A.M. 0 (0.0%) 0.0 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Equal 300 (100.0%) 0.45 75 (100.0%) 75 (100.0%) 75 (100.0%) 75 (100.0%)

Table 7. Number of partitions using a 7-Likert scale.

Number of Partitions (7-Points)

0 1 2 3 4 5 6

0.9 296 4 0 0 0 0 0
0.8 250 50 0 0 0 0 0
0.7 106 192 2 0 0 0 0
0.6 9 249 42 0 0 0 0
0.5 0 165 117 18 0 0 0
0.4 0 76 111 111 2 0 0
0.3 0 5 39 131 125 0 0
0.2 0 0 0 1 79 205 15
0.1 0 0 0 0 0 0 300
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Table 8. Number of partitions using a 9-Likert scale.

Number of Partitions (9-Points)

0 1 2 3 4 5 6 7 8

0.9 291 9 0 0 0 0 0 0 0

0.8 247 53 0 0 0 0 0 0 0

0.7 115 184 1 0 0 0 0 0 0

0.6 6 258 36 0 0 0 0 0 0

0.5 0 192 82 25 1 0 0 0 0

0.4 0 109 105 61 25 0 0 0 0

0.3 0 7 66 122 66 38 1 0 0

0.2 0 0 0 2 66 129 77 24 2

0.1 0 0 0 0 0 0 0 0 300

4.2. Real Dataset

In the field of Social Sciences, it is very typical to aggregate the value of several items.
For example, in [1,49], the study conducted used a primary database that was acquired
from a survey entitled “Spain Survey of Training and Dynamic Capabilities of the Firm”
(STraDyCaF). This survey was both administrated and distributed between the months
of May and December of 2014 using the web based tool, LimeSurvey Version 2.05+. This
Web application is open source, and its specialty is the creation, distribution of surveys,
and the population management too. This tool sent an e-mail to each one of the survey
respondents (Senior Executives) containing a personalized link. The representative sample
for the survey was Spanish companies all over the nation with a number of employees
greater than 50. Table 9 summarizes the technical details of the survey.

Table 9. Technical data sheet. (a) Source: DIRCE 2015 (Central Business Register, CBR or DIRCE in
Spanish, on 1 January 2014).

Population scope
(universe)

Spanish companies with 50 or more employees, in any sector
except public administration, agricultural sector and activities
of households and extraterritorial organizations and bodies

Geographical scope All the national territory/ Spanish national territory

Sampling unit/ Unit
of analysis Firm

Population census a 22013

Effect size/
Statistical power

0.2301 (small)/ 0.8001 (Post-Hoc analysis, t test correlation
point biserial model, one tail, α error probability of 0.05)

Sample size/
response rate 112 valid surveys/ 7.18

Sampling procedure Simple random sampling without replacement

Confidence level 95%; z=1.96; p = q = 0.50; α = 0.05

Sampling error 9.24%

Key respondents Senior Executives

Date of
fieldwork/data
collected

Between May and December 2014
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In [49], four variables were used to conduct the analysis with the method fsQCA:
Training (CONDF), Organizational performance (DORG), Absorptive capacity (ACAP) and
Innovation capacity (INN). Table 10 shows the characteristics of each one of the variables;
more concretely, it shows the Likert scale selected, the 7-point because it is the most used in
questionnaires [51–53], the number of underlying dimensions of the dependent variables,
and the number of items. A greater level of detail of these data can be found in [1,49].

Table 10. Information of the variables used in [49].

Variable Likert Scale Dimensions No. and Their Name Items No.

ACAP 7 4: acquisition, assimilation,
transformation & exploitation 14 : 3 + 4 + 4 + 3

CONDF 7 1: Training 5

DORG 7 2: Economic performance &
satisfaction performance. 9 : 5 + 4

INN 7 2: product innovation & process
innovation 9 : 5 + 4

As it can be observed, it is needed to compute the representative value for each variable
that is an aggregate value from a large number of items (Last col in Table 10). For instance,
for variables DORG and INN, it is needed to compute the average of nine items. This fact
drives us to consider a method to obtain the groups of opinion (consensus) in the items to
be aggregated. This value would be closer to the group with the greatest frequency than
measures of central tendency.

In this test, the aggregate value for each variable used in STraDyCaF has been com-
puted, and a similar test as the one detailed in Section 4.1 has been completed. The values
for α are 0.5 and 0.6 (the values that reach the best results in the tests detailed in Section 4.1).
Table 11 shows the interval symmetry distribution of the samples for each STraDyCaF
dataset variable. As it can be observed, many samples have a symmetry catalogued as
symmetric (90%). The results are shown in Table 12 for the variables ACAP, CONDF, DORG,
and INN, respectively. The last column shows the average of all the tests.

Table 11. Symmetry distribution of the STraDyCaF dataset.

Var. Q1 Q2 Q3 Q4

ACAP 96 15 1 0

CONDF 101 11 0 0

DORG 103 4 2 3

INN 104 8 0 0

Total 404 (90%) 38 (8%) 3 (1%) 3 (1%)

The first thing that is observed is that, in many cases (63%), our method obtains the
same aggregated value as the arithmetic mean because the samples are quite symmetrical
in 90% of the cases (Table 12). Our method surpasses the arithmetic mean in all samples
with an asymmetry belonging to the intervals Q3 and Q4 (very little symmetric and not at all
symmetric). For samples belonging to the Q2 interval, our method exceeds the arithmetic
mean in most of the samples (44.75% vs 36.84%). For the samples falling in the Q1 interval,
the value obtained is identical for both methods (68.19%). In summary, it is observed that
our method is appropriate for distributions with little asymmetry, very little asymmetry, or
without symmetry, and is not far from the behavior of the arithmetic mean for symmetric
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distributions. It can be said that the experiments using the actual survey show a great
similarity with respect to those detailed in Section 4.1.

Table 12. Obtained results to variable DORG of the STraDyCaF dataset.

Var. α Me. N.V. A.M. Q1 Q2 Q3 Q4

ACAP

0.5
Our 28 (25.0%) 0.21 18 (18.75%) 9 (60.0%) 1 (100.0%) 0 (0.0%)
A.M. 40 (35.71%) 0.12 34 (35.42%) 6 (40.0%) 0 (0.0%) 0 (0.0%)
Equal 44 (39.29%) 0.07 44 (45.83%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

0.6
Our 27 (24.11%) 0.21 17 (17.71%) 9 (60.0%) 1 (100.0%) 0 (0.0%)
A.M. 41 (36.61%) 0.12 35 (36.46%) 6 (40.0%) 0 (0.0%) 0 (0.0%)
Equal 44 (39.29%) 0.07 44 (45.83%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

CONDF

0.5
Our 5 (4.46%) 0.12 5 (4.95%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
A.M. 7 (6.25%) 0.15 6 (5.94%) 1 (9.09%) 0 (0.0%) 0 (0.0%)
Equal 100 (89.29%) 0.11 90 (89.11%) 10 (90.91%) 0 (0.0%) 0 (0.0%)

0.6
Our 7 (6.25%) 0.12 7 (6.93%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
A.M. 15 (13.39%) 0.2 8 (7.92%) 7 (63.64%) 0 (0.0%) 0 (0.0%)
Equal 90 (80.36%) 0.1 86 (85.15%) 4 (36.36%) 0 (0.0%) 0 (0.0%)

DORG

0.5
Our 14 (12.5%) 0.47 7 (6.8%) 2 (50.0%) 2 (100.0%) 3 (100.0%)
A.M. 28 (25.0%) 0.11 26 (25.24%) 2 (50.0%) 0 (0.0%) 0 (0.0%)
Equal 70 (62.5%) 0.06 70 (67.96%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

0.6
Our 14 (12.5%) 0.47 7 (6.8%) 2 (50.0%) 2 (100.0%) 3 (100.0%)
A.M. 28 (25.0%) 0.11 26 (25.24%) 2 (50.0%) 0 (0.0%) 0 (0.0%)
Equal 70 (62.5%) 0.06 70 (67.96%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

INN

0.5
Our 9 (8.04%) 0.27 3 (2.88%) 6 (75.0%) 0 (0.0%) 0 (0.0%)
A.M. 29 (25.89%) 0.14 27 (25.96%) 2 (25.0%) 0 (0.0%) 0 (0.0%)
Equal 74 (66.07%) 0.06 74 (71.15%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

0.6
Our 9 (8.04%) 0.27 3 (2.88%) 6 (75.0%) 0 (0.0%) 0 (0.0%)
A.M. 30 (26.79%) 0.14 28 (26.92%) 2 (25.0%) 0 (0.0%) 0 (0.0%)
Equal 73 (65.18%) 0.06 73 (70.19%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

TOTAL
Our 113 (12.61%) 0.27 67 (8.30%) 34 (44.75%) 6 (100.0%) 6 (100.0%)
A.M. 218 (24.33%) 0.14 190 (23.51%) 28 (36.84%) 0 (0.0%) 0 (0.0%)
Equal 565 (63.06%) 0.07 551 (68.19%) 14 (18.42%) 0 (0.0%) 0 (0.0%)

5. Conclusions

A new method of aggregating the collected information which is more suitable for
asymmetric distributions has been presented. This method generates a set of partitions
using an approach based on successive divisions. It forms groups of closer answers
represented as partitions using a measure based on consensus and a distance measure
between the possible partitions. The method allows for selecting the rate of partitioning by
means of a parameter α; several experiments have been completed to test the behavior of
such a parameter.

The structure of the algorithm allows for changing the evaluation function to consider
other criteria for making the division of the input partition. The evaluation function
calculates the distance between the possible partitions using a consensus measure and a
distance measure between a unique representing value of each partition.

Experimentation aims to test how the method generates the partitions and the influ-
ence of the parameter α on the creation of these partitions on synthetic and real datasets.
Promising results have been obtained, verifying that the aggregate value obtained by
our approach is appropriate for asymmetric distributions obtaining similar results to the
arithmetic mean for symmetric distributions.

As future work, we intend to investigate other evaluation functions of the partitions
in order to obtain an added value that improves that obtained by the current method. In
addition, the study of alternative consensus measures is another important research line to
be explored.
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