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Abstract: Optimal control problems are applied to a variety of dynamical systems with a random
law of motion. In this paper we show that the random degradation processes defined on a discrete
set of intermediate degradation states are also suitable for formulating and solving optimization
problems and finding an appropriate optimal control policy. Two degradation models are considered
in this paper: with random time to an instantaneous failure and with random time to a preventive
maintenance. In both cases, a threshold-based control policy with two thresholds levels defining
the signal state, after which an instantaneous failure or preventive maintenance can occur after a
random time, and a maximum number of intermediate degradation states is applied. The optimal
control problem is mainly solved in a steady-state regime. The main loss functional is formulated
as the average cost per unit of time for a given cost structure. The Markov degradation models are
used for numerical calculations of the optimal threshold policy and reliability function of the studied
degrading units.

Keywords: degradation process; optimal control problem; threshold-based policy; average cost;
Markov death process; reliability function
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1. Introduction

In recent decades, due to the rapid development of sensor technologies, data trans-
mission technologies, and monitoring systems, the tasks of controlling the aging and
degradation of technical and biological objects have received additional impetus for re-
search. Some wearing and aging models were in the focus of many investigators in the
framework of shock and damage models. An excellent review and contribution of the
earlier papers devoted to the topic can be found in the studies by Esary et al. [1], Kopnov
and Timashev [2], and the references therein. Murphy and Iskandar [3] have studied the
application of a control policy with two parameters to the degradation process associated
with shocks. In Singpurwalla [4], the hazard potential notion as a random life resource has
been introduced and considered. Then, this notion was investigated in different directions
in Singpurwalla [5]. The aging and degradation models suppose the study of systems
with gradual failures for which multi-state reliability models were elaborated (for the
history and bibliography see, e.g., Lisniansky and Levitin [6]). Rykov and Dimitrov [7]
proposed the model for complex hierarchical reliability system. Rykov and Efrosinin [8]
studied the controllable degradation unit as the fault tolerance unit. Generalized birth and
death processes as degradation models were considered in Rykov [9]. A degrading unit
with random life resources, which operates until complete failure occurs, was analyzed
by Rykov and Efrosinin [10]. Giorgio et al. [11] proposed a Markov model for the grad-
ual deterioration process, which progressively degrades until a complete failure occurs.
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The regenerative variant of the splitting method to estimate the failure probability in a
controllable degradation process was provided in Borodina et al. [12].

Let the mechanical or biological system contain a degrading unit. Degradation pro-
cesses under study are assumed to have observable states or there is some observable
measure parameter that can be associated with a process, e.g., signal of acoustic emission,
ultrasonic method for the detection of hidden defects, measures of the gravimetric analysis,
and electromagnetic flaw detection. The degradation process is broken down into discrete
stages, the dwell times of which are random. Two types of systems are of special interest.
In first case the degrading unit has a random time to an instantaneous failure while in the
second case the degrading unit has a random time to a preventive repair. In both cases
the unit is of multiple uses, i.e., after a complete failure it can be repaired. After the repair,
the degradation process starts again in an absolutely new state. The unit is supplied by
a monitoring system and by a controller. The monitoring system gives the information
about the current degradation state and, based on this information, the controller makes a
decision about a necessity to perform the preventive repair until the last degradation state
is achieved. The control problem is studied in a stationary regime. The control principles
of such degradation systems may be easily explained by virtue of the following examples.
Some of them were introduced in Kopnov [13].

Corrosion process of a unit with protective covering. Let a unit subjected to corrosion have
a protective covering, which decreases during operation, and make it possible to trace its
thickness, see Figure 1. The problem is to find the optimal value of the initial thickness and
the thickness when the covering should be renewed.

Figure 1. Corrosion process.

Damage process due to the fatigue crack growth. Let a unit fail due to the fatigue crack
growth, as illustrated in Figure 2. The unit can be supplied by a fatigue gauge that can be
e.g., as a plane notched pattern. This gauge works with the unit and reflects its damage
accumulation process. The problem is to find the optimal value of the gauge’s crack when
stopping and replacement are implemented. The recovery of of such a unit can be also
performed by means of the welding.

Figure 2. Fatigue crack growth.

Wear of the tool of machine-tools. The wear of the machine tools is correlated with
thermo-emf of the pair “cutter-blank”. A monitoring system can be installed, and the
optimal value of the measured voltage can be determined to prevent failures and outputs
of poor quality.

Wear of a plane bearing. The bearing is a critical unit of a piece of metallurgical equip-
ment, hence the optimal maintenance problem of a plain bearing must be discussed.
The restoration cost of the failed system is higher than the inspection and preventive re-
placement cost. In Ref. [14], the authors investigate the bearing shell wear process as a
degradation one.

Discharge of an external load. If the degradation process is associated with external
loads, and a unit fails when the load exceeds a failure level, then partial or full discharge of
loads is another example of the controllable damage process.
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In this paper we consider degradation systems operating under a threshold-based
policy with threshold levels (m, n). Here, the first threshold level m specifies a state, where a
controller receives a signal that after a random time for one type of degenerating process an
instantaneous failure may occur or for another type a preventive repair may take place. The
second threshold n stands for the maximal number of gradual failure states before hitting
a complete failure state. In corrosion processes the pair (m, n) defines the appropriate
thickness of the protective covering and the thickness where a signal should be generated.
In a damage process the pair defines the maximal size of the crack and the corresponding
signal size. The proposed approach for optimization of the degradation process has a
number of advantages. The optimal control policy depends on only two parameters, which
can be calculated relatively easily. The performance and reliability characteristics of the
degraded units are obtained explicitly. Assuming that the input random variables belong
to parametric families of distributions, then, in practice, for a degradation process with
discrete phases, the unknown parameters of the distributions can be easily estimated from
statistical data.

The paper is organized as follows. In Section 2, we describe the mathematical model
of the degrading unit with a random time to an instantaneous failure and derive the
performance and reliability characteristics. In Section 3, we develop the analysis for the
mean losses and reliability function for the model of the degrading unit with random time
to a preventive repair. Some illustrative numerical examples are discussed in Section 4.

In order to make it easier to understand the description of the mathematical models
and the corresponding results, we have summarized the main notations together with their
descriptions in Table 1.

Table 1. List of the main notations used in the paper.

Variable Description

{X(t)}t≥0 controllable degradation process
(m, n) two-threshold policy with a signal state m and a number of degradation states n

E set of states of the degradation process
EY set of states of an auxiliary Markov death process
Ti random sojourn time in state i
Sij time to reach state j from state i
Ui random repair time in state i
V random time to instantaneous failure (in Model 1) or to a preventive repair (in Model 2)

Ym,n random length of the regenerative cycle given that the control policy is (m, n)
Zm,n random cost in a regenerative cycle for the policy (m, n)
Hi random time from Ym,n when X(t) = i
ci repair cost per unit of time is state i
cei operational cost per unit of time in state i
cr fixed cost due to a complete failure
cR fixed cost due to an instantaneous failure (in Model 1) or due to a maintenance repair (in Model 2)

2. Degrading Unit with an Instantaneous Failure
2.1. Mathematical Model

Consider a degradation process {X(t)}t≥0 with a discrete set of states E = {0, 1, . . . ,
m, . . . , n, F ≡ n + 1}, where n stands for the maximal possible number of intermediate
degradation states up to a complete failure state F. Until a degradation state m with
0 ≤ m < n, which is referred to as a signal state, is reached, only a gradual deterioration
of the unit can take place. After reaching state m both another gradual failure and an
instantaneous failure can occur, leading the deteriorating unit to a complete failure state F.
The diagram of possible realization of the process {X(t)}t≥0 is illustrated in Figure 3.
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Figure 3. Realization of a degrading process under threshold policy (m, n).

The following notations are used in the figure: Sij = Ti + Ti+1 + · · · + Tj−1—time
to reach state j ∈ E from state i ∈ E, where Ti is a random variable of a sojourn time
in state i ∈ E, V is a random time to an instantaneous failure after entering the state m,
Ui is a random repair time after a failure in state i ∈ E. After the degradation process
has reached the signal state m, two events are possible, according to a specified model.
Either instantaneous failure occurs after a random time V, or there is a transition to the
last degradation phase and a subsequent failure in time Smn+1. After an instantaneous
failure, the unit is restored in a random period of time Ux(V), where x(V) ∈ E is a current
gradual degradation state at the moment of the instantaneous failure. After restoration, the
unit becomes as good as new, i.e., the degradation process starts again from state 0. For
distribution functions of introduced random variables, we use the following notations:

Fi(t) = P[Ti ≤ t], F∗ij(t) = P[Sij ≤ t], j > i, i, j ∈ E, G(t) = P[V ≤ t], Bi(t) = P[Ui ≤ t], i ∈ E,

F∗i i+1(t) = Fi(t), F∗ij(t) = F∗i j−1 ∗ Fj(t) =
∫ t

0
F∗ij−1(t− v)dFj(v).

As a recovery control we consider a two-level control policy (m, n) to repair the system
given that the signal state is m with a total number of degradation states n. We further
introduce an additional cost structure associated with the functioning of the deteriorating
unit: ci—a repair cost per unit of time after a complete failure in state i ∈ E \ {F}, cr—a
fixed cost due to a complete failure after passing all degradation states, cR—a fixed cost
due to an instantaneous failure, cei—operational cost per unit of time in state i ∈ E.

2.2. Regenerative Process with Costs

The degradation process {X(t)}t≥0 can be represented in the form of a regenerative
process whose regenerative moments are the moments of visiting the signal state m, as
shown in Figure 3. Denote by E[Ym,n] the average duration of a regenerative cycle, and by
E[Zm,n] the average cost in this cycle for the policy (m, n). We distinguish between two
types of regenerative cycles, where the random variables Ym,n and Zm,n can be represented
in the following way,
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Ym,n =

{
V + Ux(V) + S0m, if Sm j−1 ≤ V < Smj,
Sm n+1 + Un + S0m, if Sm n+1 < V,

(1)

Zm,n =


cx(V)Ux(V) + cR +

x(V)

∑
i=0

cei Hi + ce n+1Hn+1, if Sm j−1 ≤ V < Smj,

cnUn + cr +
n+1
∑

i=0
cei Hi, if Sm n+1 < V,

(2)

where Hi is a random holding time in state i in a regenerative cycle.

Proposition 1. The average duration of a regenerative cycle for the threshold policy (m, n) is
derived from a relation

E[Ym,n] = E[min{V, Sm n+1}] +E[S0m] +E[Un](1− pF) +E[Ux(V)]pF, (3)

where pF = P[Sm n+1 > V] is the probability of an instantaneous failure in one regenerative cycle.

Proof. From the definition of the regenerative cycle (1) and the law of the total probability
we get

E[Ym,n] =
n

∑
j=m+1

E[Ym,n|Sm j−1 ≤ V ≤ Smj]P[Sm j−1 ≤ V ≤ Smj] +E[Ym,n|Sm n+1 < V]P[Sm n+1 < V]

= E[V + Ux(V) + S0m]
n

∑
j=m+1

P[Sm j−1 ≤ V ≤ Smj] +E[Sm n+1 + Un + S0m]P[Sm n+1 < V]

= E[V]P[Sm n+1 > V] +E[Sm n+1]P[Sm n+1 < V] +E[S0m] +E[Un]P[Sm n+1 > V]

+E[Ux(V)]P[Sm n+1 < V],

which obviously implies the relation (3).

Proposition 2. The average cost per unit of time in a regenerative cycle is derived from a relation

E[Zm,n] =
(

cnE[Un] + cr +
n

∑
i=m

ceiE[Hi]
)
(1− pF) +

(
E[cx(V)Ux(V)] + cR +E[

x(V)

∑
i=m

cei Hi]
)

pF

+
m−1

∑
i=0

ceiE[Hi] + ce n+1E[Hn+1]. (4)

Proof. The relation (4) follows directly from the definition (2) and the law of the total
probability.

From the theory of regenerative process it is known that the average cost per unit of
time gm,n under the control policy (m, n) can be expressed as

g(m, n) =
E[Zm,n]

E[Ym,n]
, (5)

where the failure probability pF and expectations can be calculated by
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pF =
∫ ∞

0
(1− F∗m n+1(t))dG(t),

E[min{V, Sm n+1}] =
∫ ∞

0
(1− G(t))(1− F∗mn+1(t))dt,

E[min{V, Sm n+1}] =
∫ ∞

0
(1− G(t))(1− F∗m n+1(t))dt,

E[S0m] =
m−1

∑
i=0

E[Ti] =
m−1

∑
i=0

∫ ∞

0
(1− Fi(t))dt,

E[Ui] =
∫ ∞

0
(1− Bi(t))dt,

E[Ux(V)] =
n

∑
j=m

E[Uj]
∫ ∞

0
P[X(t) = j|X(0) = m]dG(t),

E[cx(V)Ux(V)] =
n

∑
j=m

cjE[Uj]
∫ ∞

0
P[X(t) = j|X(0) = m]dG(t),

E[Hi] =
∫ ∞

0
P[X(t) = i, t < Ym,n]dt,

E[
x(V)

∑
i=m

cei Hi] =
n

∑
j=m

j

∑
i=m

ceiE[Hi]
∫ ∞

0
P[X(t) = j|X(0) = m]dG(t). (6)

In addition to the average cost per unit of time, an analysis of the degradation process
can include a calculation of the average time r(m, n) = E[T] to the first failure of the unit
given that the initial state is X(0) = 0,

r(m, n) = E[min{V, Sm,n+1}] +E[S0,m], (7)

the steady-state probability πF(m, n) = lim
t→∞

P[X(t) = F] of the failure state F,

πF(m, n) =
E[Un](1− pF) +E[Ux(V)]pF

E[Y] , (8)

and the availability of the unit a(m, n) = lim
t→∞

P[X(t) 6= F],

a(m, n) = 1− πF(m, n). (9)

The optimization of functions (5)–(9) with respect to the policy (m, n) allow us to find
the corresponding optimal values,

g(m, n)⇒ min
m,n

,

g(m, n)⇒ min
m,n

with a constraint r(m, n) > b ≥ 0,

r(m, n)⇒ max
m,n

a(m, n)⇒ max
m,n
≡ πF(m, n)⇒ min

m,n
. (10)

2.3. Markov Degradation Model

In a special case of random variables with exponential distributions, Ti ∼ E(λi), i ∈
E \ {F}, Ui ∼ E(µi), i ∈ {m, . . . , n} and V ∼ E(ν), we explicitly get the expectations

E[S0m] =
m−1

∑
i=0

1
λi

, E[Sm n+1] =
n

∑
i=m

1
λi

, E[Ui] =
1
µi

, i = m, . . . , n, E[Hi] =
1
λi

, i = 0, 1, . . . , m− 1.



Mathematics 2022, 10, 4098 7 of 16

To derive the expressions for pF and other expectations in (6), consider an auxiliary
death process describing a continuous-time Markov chain {Y(t)}t≥0 with a set of states
EY = {m, . . . , n, F} and an absorption in state F. Denote by pj(t) = P[Y(t) = j|Y(0) = m]
the transition probability of the death process at time t given that the initial condition is
pm(0) = P[Y(0) = m] and pj(0) = P[Y(0) = j] = 0 for j 6= m, j ∈ EY. The probability
pj(t) can be derived from the system of Kolmogorov’s differential equations. Applying the
Laplace transform to this system and following [15], we obtain the following statement.

Proposition 3. The probabilities pj(t) satisfy the system of differential equations

p′m(t) = −λm pm(t),

p′i(t) = −λi pi(t) + λi−1 pi−1(t), i = m + 1, . . . , n,

p′n+1(t) = λn pn(t),

which has the unique solution

pj(t) =
j−1

∏
i=m

λi

j−1

∑
i=m

e−λit

λi ϕ
′
j(−λi)

,

where ϕ(x) = (x + λm) . . . (x + λj), in particular

F∗mn+1(t) = P[Smn+1 ≤ t] = 1− pn+1(t) = 1−
n

∏
i=m

λi

n

∑
i=m

e−λit

λi ϕ′n(−λi)
.

Corollary 1. From Proposition 3 it follows that

pF =
n

∏
i=m

λi

n

∑
i=m

ν

(ν + λi)λiφ′n(−λi)
,

E[min{V, Smn+1}] =
n

∏
i=m

λi

n

∑
i=m

1
(ν + λi)λiφ′n(−λi)

,

E[Ux(V)] =
n

∑
j=m

1
µj

j−1

∏
i=m

λi

j−1

∑
i=m

ν

(ν + λi)λiφ
′
j(−λi)

,

E[cx(V)Ux(V)] =
n

∑
j=m

cj

µj

j−1

∏
i=m

λi

j−1

∑
i=m

ν

(ν + λi)λiφ
′
j(−λi)

,

E[Hi] =
1

ν + λi

[
1−

i−1

∏
j=m

λj

i−1

∑
j=m

ν

(ν + λj)λjφ
′
i(−λj)

]
, m ≤ i ≤ n,

E[Hn+1] = (1− pF)
1

µn
+ pFE[Ux(V)]. (11)

Proof. These expressions follow directly from (6) and the convolution property in the case
of independent random variables.

Denote by R(t) = P[T > t] the reliability function of the degradation process.

Proposition 4. The reliability function R(t) is of the form

R(t) =
n

∏
i=0

λi

n

∑
i=m

m−1

∑
j=0

e−(λi+ν)t − e−λjt

λi(λj − λi − ν)φ′n(−λi)ψ
′
m−1(−λj)

, (12)
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where

ψm−1(x) = (x + λ0) . . . (x + λm−1), ϕn(x) = (x + λm) . . . (x + λn).

Proof. The life time T of the degradation unit is defined as T = S0m + min{V, Smn+1} and
then, due to Proposition 3, we get

P[T > t] = P[S0m + min{V, Sm n+1} > t] =
∫ t

0
P[min{V, Sm n+1} > y− t] f ∗m n+1(y)dy

=
∫ t

0
(1− G(t− y))(1− F∗m n+1(t− y)) f ∗0m(y)dy.

After substituting the distribution functions G(t), F∗m n+1(t) and the probability density

function f ∗0m(t) = ∏m−1
j=0 λj ∑m−1

j=0
e−λj t

ψ′m−1(−λj)
into the last expression after some algebra,

we get

P[T > t] =
n

∏
i=0

λi

n

∑
i=m

m−1

∑
j=0

1
λiφ′n(−λi)ψ

′
m−1(−λj)

∫ t

0
e−(λi+ν)(t−y)−λiydy.

Then, the subsequent integration leads to the expression (12).

2.4. Numerical Examples

Let us consider a system with a maximal possible number of gradual degradation states
n ≤ 14, where a signal state 0 ≤ m < n. We assume the following monotonicity for the
ordering of the values of system parameters, namely, µi > µi+1, i = m, . . . , n, λi < λi+1, i =
0, . . . , n. Moreover let ν << λi, i = 0, . . . , n, in this case we assume that the instantaneous
failure is a quite rare event, comparing the transitions over the graduate degradation states.
We allow the parameters of the degradation process to take the following values by taking
the above-mentioned considerations into account: ν = 0.001,

{λ0, . . . , λ14} =
{0.009, 0.010, 0.012, 0.015, 0.026, 0.038, 0.058, 0.065, 0.093, 0.125, 0.163, 0.206, 0.253, 0.306, 0.364},
{µ0, . . . , µ14} =
{1.650, 1.642, 1.618, 1.578, 1.523, 1.450, 1.362, 1.258, 1.138, 1.002, 0.850, 0.682, 0.498, 0.298, 0.082}.

Further we fix the costs at the following values:

ci = 2, i ∈ E \ {F}, cei = 0.1, i ∈ E, cr = 5, cR = 10.

Example 1. This example presents the results of calculating the optimal threshold policy (m∗, n∗),
which minimizes the average cost per unit of time g(m, n) defined in (5) as a function of different
costs. One type of cost is set to be varied, while all other parameters take the fixed values as defined
above.

In Figure 4, we display the optimal policy (m∗, n∗) as the repair cost ci (the figure labeled
by “a”) and the operational cost cei (the figure labeled by “b”) per unit of time varies. The blue
cycles tag the values for the optimal signal state m∗, while the magenta cycles tag the optimal
values for the number of gradual failures n∗. For example, if ci = 3, the optimal policy is equal
to (m∗, n∗) = (7, 8), and if ci = 9, then (m∗, n∗) = (4, 6). If cei = 0.3, then (m∗, n∗) = (1, 5),
and if cei = 0.9, then (m∗, n∗) = (1, 3). As can be seen from the figure, both thresholds are quite
sensitive to an increase in the repair cost, and both thresholds are decreasing monotonously. At the
same time, an increase in the operating costs also leads to a decrease in the signal threshold, but
the total number of degradation phases has little sensitivity to an increase in this type of costs. The
influence of the fixed costs cr and cR is shown in Figure 5 (the figure labeled respectively by “a”
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and “b”). The figure illustrates, that, e.g., for cr = 2, the optimal policy (m∗, n∗) = (7, 8), and for
cr = 6, (m∗, n∗) = (8, 9).
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Figure 4. (m∗, n∗) versus ci (a) and cei (b) for the model with an instantaneous failure.

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●

●●

●●●●●●●●●

●

2 4 6 8 10

0

2

4

6

8

cr

(m
*
,n

*
)

● n
*

● m
*

●●●●●●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

5 10 15 20 25

0

2

4

6

8

10

cR

(m
*
,n

*
)

● n
*

● m
*

(a) (b)

Figure 5. (m∗, n∗) versus cr (a) and cR (b) for the model with an instantaneous failure.

We observe here non-monotonic changes in thresholds as the cost after a complete failure cr
increases. For example, for cr = 2, the optimal policy (m∗, n∗) = (7, 8), for cr = 6, (m∗, n∗) =
(8, 9), and for cr = 9, we get (m∗, n∗) = (3, 8). In the figure, where the fixed cost cR due to an
instantaneous failure increases, the optimal thresholds increases again monotonously. For example,
if cR = 6, the (m∗, n∗) = (1, 6), and, if cR = 18, the (m∗, n∗) = (8, 9).

Example 2. In this example we compare the different optimization problems specified in (10). In
Table 2, we evaluate the optimal thresholds n∗ for different optimization problems given that the
signal threshold takes a fixed value m = 4. The parameters of the deteriorating unit take on the
values given at the beginning of the section.

Table 2. Comparison of different optimization problems for the model with an instantaneous failure.

Case N Opt. Problem n∗ g(4, ·) pF(4, ·) πF(4, ·) r(4, ·)
1 g(4, n)⇒ max

n
8 0.1148 0.1484 0.0016 442.83

2 pF(4, n)⇒ min
n

5 0.1157 0.0972 0.0015 391.67

3 πF(4, n)⇒ min
n

6 0.1163 0.1204 0.0015 414.82

4 g(4, n)⇒ max
n 13 0.1191 0.1765 0.0040 470.94

r(4, n) > 470

5 r(4, n)⇒ max
n

14 0.1549 0.1814 0.0221 475.87
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As can be seen from these calculations, depending on the optimizing function, the solution
for the optimal threshold policy differs considerably. Thus, when formulating the optimization
problem, it is also necessary to pay close attention to the possible constraints on the values of other
quantitative characteristics of the degrading unit.

Example 3. In this example we analyze the effect of the optimal policy (4, n∗) evaluated with
respect to optimization problems; see Cases 1–5 enumerated in Table 2, and the intensity of the
instantaneous failure ν on the reliability function R(t) in (12).

In Figure 6, the intensity ν = 0.001 (the figure labeled by “a”) and ν = 0.005 (the figure
labeled by “b”). We report the numerical examples to show the reliability function R(t) for the
optimal threshold policies (m∗, n∗). We can point out that for ν = 0.001, Cases 5 and 2 correspond
respectively to the boundary cases of the most and less reliable degrading unit. The curves of
other cases are located between these boundaries, which coincides with the results from Table 2. If
ν = 0.005 increases, we observe that in all cases the unit becomes less reliable, moreover, the curves
for Cases 2, 3, and 5 coincide. In this figure, the most reliable model corresponds to Case 1. This
result does not contradict the fact that the model in Case 5 maximizes the mean time to failure, since
the signal threshold m is fixed in the calculation data and optimization is only based on the value of
the second threshold n.
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Figure 6. R(t) for ν = 0.001 (a) and ν = 0.005 (b).

3. Degrading Unit with a Partial Preventive Repair

In this section we consider a deteriorating unit that degrades according to a degrada-
tion process {X(t)}t≥0, whose trajectory is illustrated in Figure 7.

The notations associated with this model are the same as previously. According to this
model, the degradation process has the set of space EX as before. After reaching the signal
state m, two events are possible: either there is a partial preventive repair in a random time
V, which occurs in a degradation state x(V) with a state-dependent repair time Ux(V), or
in time Smn+1, where there is a transition to a complete failure state and where the unit can
be completely recovered in a random time Un. After a preventive repair in state x(V), we
assume that the unit may not be so good as a new one, and it returns to the gradual failure
state x(V)− l ≥ 0, where l = n−m.
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Figure 7. Realization of a degrading process under threshold policy (m, n) with l = n−m.

3.1. Regenerative Process with Costs

The proposed degradation process {X(t)}t≥0 can be treated again as a regenerative
one, where the hitting times of the signal state m are the regenerative moments. In a similar
was as before, we distinguish between two types of cycles with and without a complete
failure within it. The random variables Ym,n and Zm,n are then of the form,

Ym,n =

{
V + Ux(V) + Sx(V)−l m, if Sm j−1 ≤ V < Smj,
Smn+1 + Un + S0m, if Sm n+1 < V,

(13)

Zm,n =


cx(V)Ux(V) + cR +

x(V)

∑
i=x(V)−l

cei Hi, if Sm j−1 ≤ V < Smj,

cnUn + cr +
n+1
∑

i=0
cei Hi, if Sm n+1 < V.

(14)

Let us denote by pF = P[Sm n+1 ≤ V] the probability of a complete failure in a
regenerative cycle. Then, the following statement holds.

Proposition 5. The average duration E[Ym,n] and average cost E[Zm,n] in a regenerative cycle
satisfies the relations

E[Ym,n] = E[min{V, Sm n+1}] + (E[S0m] +E[Un])(1− pF) + (E[Ux(V)] +E[Sx(V)−l m])pF,

E[Zm,n] =
(

cnE[Un] + cr +
n+1

∑
i=0

ceiE[Hi]
)
(1− pF) +

(
E[cx(V)Ux(V)] + cR +E[

x(V)

∑
i=x(V)−l

cei Hi]
)

pF,

where

pF = P[Sm n+1 ≤ V] =
∫ ∞

0
F∗m n+1(t)dG(t),

and

E[
x(V)

∑
i=x(V)−l

cei Hi] =
n

∑
j=m

( m−1

∑
i=j−l

ceiE[Hi] +
j

∑
i=m

ceiE[Hi]
∫ ∞

0
P[X(t) = j|X(0) = m]dG(t)

)
.

Proof. The proof of this statement is based on relations (13) and (14), and it is similar to
that applied to the first model with instantaneous failures. The details are omitted here.
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3.2. Mean Time to Failure

As there are preventative repairs in this model, the random time T to complete failure
will consist of other components. Let us introduce the following notations: TF—the random
time from the beginning of the regenerative cycle until the moment of a complete failure if
it occurs, TNF—the random duration of the regenerative cycle without a complete failure,
and N—the random number of cycles to complete failure. Since the complete failure occurs
in each regenerative cycle with the probability pF, the number of cycles N has a geometric
distribution, i.e.,

P[N = k] = (1− pF)
k−1 pF, k ≥ 1,

E[N] =
1
pF

.

Then the mean time to the first complete failure r(m, n) = E[T] is of the form.

Proposition 6. The mean time to the first complete failure r(m, n) given that the initial state is
X(0) = 0 satisfies the relation,

E[T] = E[S0m] +E[TNF](E[N]− 1) +E[TF] =

= E[S0m] +E[min{V, Sm n+1}]
1
pF

+ (E[Ux(V)] +E[Sx(V)−l m])
( 1

pF
− 1
)

. (15)

Proof. Due to the structure of the random variable T and the law of the total probability,
we have,

r(m, n) = E[T] = E[S0m] +
∞

∑
k=1

E[T|N = k]P[N = k]

= E[S0m] +E[TNF]
∞

∑
k=1

(k− 1)(1− pF)
k−1 pF +E[TF]

= E[S0m] +E[TNF]
( 1

pF
− 1
)
+E[TF].

Consistent with the definition introduced for random variables TF and TNF, we
obtain E[TF] = E[Sm n+1] and E[TNF] = E[V] + E[Ux(V)] + E[Sx(V)−l m]. By substitut-
ing these expectations into the last expressions and subsequent taking into account that
E[min{V, Sm n+1}] = E[Sm n+1]pF + E[V](1− pF) after some simple algebra, we get the
relation (15).

Now we will briefly discuss the problem of calculating the reliability function
R(t) = P[T > t]. Let us assume that the complete failure of the system is a rare event.
Further, we introduce the following notation: TN—the random time from the beginning of
the regenerative cycle up to the time moment of the first complete failure within the Nth
cycle. Due to the limiting theorem for the sojourn time of ergodic regenerative processes
(see, e.g., [16]) the following statement holds.

Proposition 7. Let the failure in one regenerative cycle be a rare event, i.e., the number of regen-
eration cycles N is significantly large. If E[Tq

NF] < ∞ for some q > 1, then for each t ≥ 0 the
following asymptotic property can be derived,

R(t) ≈ lim
N→∞

P[TN > t] = lim
N→∞

e
− 1

E[TN ]
t
= e
− pF

E[TNF ] , (16)
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where

E[TN ] =
1
pF

E[TNF], N → ∞.

In assumption of the Markov property, the reliability function of the degradation unit
with an arbitrary pF can be calculated explicitly. The calculation is performed by means of
conditional Laplace transforms f̃i(s) =

∫ ∞
0 fi(t)e−stdt, Re[s] ≥ 0, of the probability density

function for the residual life time fi(t)dt = P[T ∈ [t, t + dt)|X(0) = i] given that the initial
state is i. Obviously, in absorbing state F the conditional Laplace transform f̃F(s) = 1.

Proposition 8. The Laplace transform R̃(s) of the reliability Function R(t) satisfies the relation,

R̃(s) =
1
s

(
1− q0(s)∏n

i=m σi(s)
1−∑n

i=m τi(s)qi−l(s)∏i−1
j=m σj(s)

)
, (17)

where

qi(s) =
m−1

∏
j=i

λj

s + λj
, i = 0, . . . , m,

τi(s) =
νµi

(s + µi)(s + λi + ν)
, i = m, . . . , n,

σi(s) =
λi

s + λi + ν
, i = m, . . . , n.

Proof. The time T is a duration commencing the initial state of the degradation process
0 and ends when the degrading unit visits the complete failure state F. The first-step
analysis is employed for the Markov chain with an absorption in state F to get the system
of equations for the conditional Laplace transforms f̃i(s), i ∈ EX .

f̃i(s) =
λi

s + λi
f̃i+1(s), i = 0, . . . , m− 1,

f̃i(s) =
λi

s + λi + ν
f̃i+1(s) +

νµi
(s + µi)(s + λi + ν)

f̃i−l(s), i = m, . . . , n− 1,

f̃n(s) =
λn

s + λn + ν
+

νµn

(s + µn)(s + λn + ν)
f̃n−l(s). (18)

In (18), the equality for state i includes the term at ν, which represents the transition
with a rate ν to a preventive maintenance state, from which the unit moves to a newer
gradual failure state i − l after an exponentially distributed time with a parameter µi.
Solving recursively equations (18) and using for convenience the notations qi(s), τi(s) and
σi(s) from the statement, we obtain explicit solutions for this system. In particular for the
function f̃0(s) after some simple algebra we have

f̃0(s) =
q0(s)∏n

i=m σi(s)
1−∑n

i=m τi(s)qi−l(s)∏i−1
j=m σj(s).

(19)

The statement further follows from the fact that the Laplace transform R̃(s) and the
conditional Laplace transform f̃0(s) satisfy the relation

R̃(s) =
1
s

(
1− f̃0(s)

)
.
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The inverse transformation of the function R(s) is required to get R(t). Differentiation
of the function R̃(s) with respect to the parameter s at point s = 0 results in the mean life
time to a complete failure, i.e.,

E[T] = − d
ds

f̃0(s)
∣∣∣
s=0

.

3.3. Numerical Examples

We next present the numerical examples involving the optimal policy (m∗, n∗) for
different optimization problems and the numerical inversion of the transform R̃(s). In the
following examples we assume that n ≤ 14, 0 ≤ m ≤ n, and l = n−m ≤ m. Moreover,
µi > µi+1, i = m, . . . , n, λi < λi+1, i = 0, . . . , n, where λi, µi and the costs ci, cei, cr and cR
take the same values as for the previous model. We further fix ν = 0.10.

Example 4. In Figure 8, we calculate the optimal policy (m∗, n∗) as the cost ci (the figure labeled
by “a”) and the cost cei (the figure labeled by “b”) varies. For example, the figure for the repair cost
ci shows that if ci = 1, then the optimal policy is (m∗, n∗) = (6, 11), and if ci = 3, then we obtain
(m∗, n∗) = (5, 8). From the figure for the operating cost cei, we can see that if cei = 0.2, 0.6, 1.2,
then the optimal policy is respectively equal to (m∗, n∗) = (5, 9), (4, 8), (1, 2). Thus, the values of
the optimal thresholds decrease monotonically with an increase in the cost ci, while we no longer
observe such monotonicity with an increase in the cost cei. Moreover, at high operating costs, it
becomes advantageous to limit the number of intermediate degradation states to a small number, i.e.,
by the policy (1, 2), so that the unit can be repaired to an almost new state after a complete failure.

(a) (b)

Figure 8. (m∗, n∗) versus ci (a) and cei (b) for the model with a preventive repair.

The influence of the repair costs cr and cR is illustrated in Figure 9 (the figure labeled
respectively by “a” and “b”). Here we observe, for example, that if cr = 1, 6, the policies
(m∗, n∗) = (4, 7), (6, 10) are optimal, and if cR = 5, 15, we then get the optimal policies
(m∗, n∗) = (6, 10), (5, 0). In both cases the changes are monotonic, although the optimal control
appears to be less sensitive to an increase in the cost cR.

Example 5. Table 3 summarizes the results of the calculations of optimal threshold levels for the
different optimization criteria proposed in (10). In this case, just as in the previous degradation model,
we obtained completely different optimal thresholds for different optimization criteria. The highest
mean time to failure is naturally given by optimizing the function r(m, n), i.e., r(4, 8) = 948.61.
However, we obtained the shortest mean time to failure by minimizing the steady-state probability of
a complete failure state πF(n, m), i.e., πF(5, 6) = 436.15, which is not an obvious result.
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(a) (b)

Figure 9. (m∗, n∗) versus cr (a) and cR (b) for the model with a preventive repair.

Table 3. Comparison of different optimization problems for the model with a preventive repair.

Case Nr. Opt. Problem (m∗, n∗) g(·, ·) pF(·, ·) πF(·, ·) r(·, ·)
1 g(m, n)⇒ min

m,n
(3, 6) 0.1279 0.1871 0.0030 848.44

2 pF(m, n)⇒ min
m,n

(2, 4) 0.1280 0.1636 0.0037 626.16

3 πF(m, n)⇒ min
m,n

(5, 6) 0.2426 0.5718 0.0020 436.15

4 g(m, n)⇒ min
m,n (4, 8) 0.1317 0.2535 0.0031 948.61

r(m, n) > 900

5 r(m, n)⇒ max
m,n

(4, 8) 0.1317 0.2535 0.0031 948.61

Example 6. In Figure 10, we take ν = 0.05 (the figure labeled by “a”) and ν = 0.10 (the figure
labeled by “b”). The control policy in both cases is (m, n) = (7, 14). The other parameters take on
the values defined above and display the real reliability function R(t) as a numerical inversion of
the Laplace transform R̃(s) from (17), together with the asymptotic function (16). The asymptotic
function is defined respectively by R(t) = e−0.0048t with E[TNF] = 57.31, pF = 0.2775, and
R(t) = e−0.0014t with E[TNF] = 70.19, pF = 0.0982.
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Figure 10. Real and asymptotic reliability functions R(t) for ν = 0.05 (a) and ν = 0.10 (b).

We observe here that in the figure, which corresponds to a lower value for the probability of com-
plete failure in a regeneration cycle pF, the asymptotic curve better approximates the corresponding
real reliability function.
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4. Conclusions

We investigated two types of degradation processes on a set of intermediate degra-
dation states with the random time to an instantaneous failure and the random time to a
preventive repair. In both cases, the rationality of using a two-threshold control policy to
optimize a range of performance and reliability characteristics of degraded systems was
confirmed. Thus, when modeling and putting into operation the technical units subject to a
progressive process of degradation, it is possible to use the results of this work to provide
the monitoring system with information about the optimal signal state and the optimal
maximum number of discrete intermediate degradation states. In the case of the death
Markov process, the reliability characteristics of the presented degradation units can be
calculated analytically.
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