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Abstract: Affine term structure models are widely used for studying the relationship between yields
on assets of different maturities. However, it can be a helpful tool for the construction of fixed-income
portfolios. The monitoring of these bond portfolios is of great importance for the investor. The
purpose of this work is twofold. Firstly, we construct and optimize fixed-income portfolios using
Markowitz’s portfolio approach to a multifactor Gaussian affine term structure model (ATSM) under
no-arbitrage conditions estimated with the minimum chi square estimation method. The fixed-income
portfolios based on the term structure model are compared with some benchmark portfolio strategies,
and our findings show that our proposed approach performs well under the risk–return tradeoff.
Secondly, we propose control chart procedures for monitoring the optimal weights of government
bond portfolios in order to detect possible changes. The results indicate that control chart procedures
can be useful in the detection of changes in the optimal asset allocation of fixed income portfolios.
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1. Introduction

Dynamic term structure models play an important role in fixed-income asset pricing
and strategic asset allocation. However, the connection between dynamic factor models
and portfolio optimization has been explored only in recent years. The literature is mainly
focused on the construction and performance of equity portfolios under the mean variance
(MV) approach (see for example [1,2]). Ref. [3] examined the the validity of the expectation
hypothesis (EH) of the term structure of U.S. repo rates and the profitability of portfo-
lios of bonds that exploit deviations from the EH. Ref. [4] investigated the MV analysis
immunization to real yield curve fluctuations under the Vasicek term structure model.
Ref. [5] using the Vasicek term structure model examined the optimal portfolio choice
under inflation risk. Ref. [6–8] constructed optimal portfolios generated from various
Nelson–Siegel term structure models. Ref. [9] mentioned that if we can estimate expected
bond returns and their variance–covariance matrix, the portfolio optimization procedure is
similar to that of equity portfolios.

The majority of the literature about dynamic factor models and bond portfolios is
focused on the dynamic Nelson–Siegel model. In addition, the application of control chart
procedures is referred mainly to stock portfolios. Our research deals with a different class
of factor models, the Gaussian affine term structure model (ATSM) with the minimum chi
square estimator, and extends the application of control chart procedures to government
bond portfolios. Minimum chi-square estimation (MCSE) avoids many of the numerical
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problems associated with the maximum likelihood estimation (MLE) for the affine term
structure models and ensures the finding of global maximum solutions ([10].) Following
the work of [8], we obtain closed-form solutions for the expected bond returns and the
covariance matrix of bond returns but for a different class of dynamic factor models. The
purpose of this work is, firstly, the construction of an MV and global minimum variance
(GMV) portfolio that consists of government bonds via a no-arbitrage ATSM and secondly
to apply exponentially weighted moving average (EWMA) control charts for monitoring
the optimal portfolio weights. For the covariance of the proposed control statistics, we
propose an iterative procedure.

We mention that in our case, the asset returns, which are the bond expected returns,
due to their structure exhibit autocorrelation, and appropriate control charts are constructed.
The expected return and variance of bond yields are estimated from the distribution of
a dynamic term structure model. The results indicate that the proposed technique for
obtaining bond portfolios could be a good alternative to other existing methods, and we
determine the appropriate monitoring procedure for the fixed-income portfolio.

Government bonds issued by national governments are generally considered low-risk
investments in comparison with stocks. Bonds are usually less volatile than stocks, and
many investors include bonds in their portfolio as a source of diversification so as to reduce
potential losses and overall portfolio risk. Investing in sovereign bonds, especially in times
of economic turmoil, could be a safer choice for individual and institutional investors such
as pension funds. The investor at every time is interested in the optimal portfolio weights,
and structural breaks may cause changes that may have economic effects. The portfolio
investor needs to detect these breaks as soon as possible, since they may alter the optimal
portfolio composition. The presence of structural breaks can influence the estimation of
the portfolio parameters and affects the forecasting procedures. The investor decides every
time period about the optimal wealth allocation. As a result, he needs to know whether
the optimal portfolio allocation in the previous time period can be still considered now
as the optimal. If the current portfolio position is not the optimal, then the investor could
face wealth losses. The new information about bond expected returns arrives sequentially,
and the optimal portfolio weights should be monitored in a sequential manner. In order
to do this, we apply statistical process control (SPC) methods, specially control charts, for
deciding whether the optimal portfolio weights of the last period are still optimal in the
current period.

In Section 2, we present the related literature, and in Section 3, we describe our
data set. Next, in Section 4, we estimate the term structure model, the one-period ahead
expected returns and the variance of the bond yields for a specified out-of-sample period.
In Section 5, we present the framework and the results for the fixed-income portfolio
optimization. Section 6 deals with the application of control charts to optimal weights of
a global minimum variance portfolio (GMVP). Sections 7 and 8 present the results of a
simulation study and an empirical example, respectively. Finally, in Section 9, we present
the conclusion of this work and our contribution.

2. Related Literature

According to [11], since the processes that affect both bond price and bond return
are non-ergodic, the traditional statistical techniques cannot be used to directly model the
expected return and volatility of bond yields. Refs. [12,13] proposed the use of the one-
factor [14] model for the yield curve for the mean variance bond portfolios optimization. In
contrast, our analysis refers to the category of multifactor dynamic term structure model
exploiting the forecasting benefits they have in comparison to one-factor models. Ref. [8]
are focused on Nelson–Siegel models, the Gaussian dynamic term structure model of [15]
and the no-arbitrage representation of a dynamic Nelson–Siegel model of [16]. However,
in our work, we use the term structure model of [10] that combines macroeconomic and
latent factors for a small set of bond yield maturities. This class of ATSMs using the MCSE
approach has many estimation advantages in contrast to models that use MLE such as
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that of [15], especially when applied to highly persistent data. The Nelson–Siegel model is
mainly focused on the bond yields under the empirical measure. The no-arbitrage affine
models specify via appropriate restrictions the dynamic evolution of yields under a risk-
neutral measure and provide through the market price of risk a connection between these
two measures [17].

Another difference is that [8] proposed a dynamic rule to switch each time among
alternative bond strategies. In contrast, our work is focused on extending the affine model
of [10] by constructing optimal bond portfolios and finding techniques for portfolio moni-
toring so as to detect changes in the vector of optimal weights. In addition, in our portfolio
optimization framework, we examine the cases of including or not the short selling con-
straint. Ref. [15] cannot incorporate most auxiliary restrictions on the model dynamics
under the historical probability measure. One important issue is that the representation
that [15] proposed becomes unidentified in the presence of a unit root. There is another
identification issue, which has separately been recognized by [15] using a very different
approach from ours: not all matrices of the factor loadings under the risk-neutral measure
can be transformed into a lower triangular form. The model of [16] requires certain restric-
tions on the ATSM. For example, they impose over-identifying parameter restrictions on
parameters under the Q measure. Furthermore, there is no constant in the equation for the
instantaneous risk-free rate process, and the first factor must be a unit-root process. In addi-
tion, the mean-reversion rates of the second and third factors must be identical. According
to [18], the restrictions imposed are not motivated by beliefs about risk compensation. The
monitoring of optimal portfolio weights is restricted to the case of GMV portfolios.The
main reason is that the GMV portfolio has only the estimation risk concerning the variance
matrix of asset returns. The literature of control charts in portfolio monitoring is mainly
focused in risk assets.

Ref. [7] used Markowitz’s approach to optimize bond portfolios of constant maturity
future contracts based on heteroskedastic dynamic factor models applied to the term struc-
ture of interest rates. The factor models considered here are the dynamic Nelson–Siegel
model proposed by [19] and the extension proposed by [20]. From the factor models,
they estimated expected bond returns and the conditional covariance matrix of bonds
returns. For the estimation of the conditional covariance matrix of bonds returns, they pro-
posed a multivariate generalized autoregressive conditional heteroskedasticity (GARCH)
specification suitable for the estimation and forecast of conditional covariance matrices
for high-dimensional problems. The empirical results confirm the better out-of-sample
performance of the proposed method with respect to a benchmark index.

Ref. [6] estimated the value at risk (VaR) of fixed-income bond portfolios. For the
construction of these bond portfolios, they used the dynamic version of the Nelson–Siegel
three-factor model of [19]. Ref. [21] developed a new factor-augmented model for calcu-
lating the VaR risk of bond portfolios based on the Nelson–Siegel structural framework.
In addition, they tested if the information contained in macroeconomic variables and fi-
nancial stress shocks can improve the accuracy of VaR prediction. Ref. [8] constructed
duration-constrained optimal portfolios from various Nelson–Siegel term structure models
having only yield factors. They used two datasets of bond yields: the first where the
out-of-sample yields have a downward trend and a second with an upward trend. The
expected return and variance of bond yields are estimated from the distribution of the
dynamic term structure model. In addition, [8] proposed a dynamic rule to switch among
all the alternative bond investment strategies.

The main difference in our work is the choice of the class of term structure models.
Instead of the Nelson–Siegel, we use the Gaussian ATSMs with the MCSE method proposed
by [10]. Following the estimation of the yield curve model, we generate forecasts of bond
returns, which subsequently are used for the mean-variance optimization problem. We
mention that an important element of this procedure is the ability to obtain good forecast
results from the term structure model. In our analysis, we perform forecasts of one-period
ahead estimates of fixed-income returns. The distribution of bond returns follows that
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of the ATSM, which is the multivariate normal distribution. The estimated MV bond
portfolios are compared with traditional bond portfolio strategies, and we show that it can
be a reasonable alternative to them.

In recent years, SPC techniques, especially control charts, have been applied to non-
industrial fields such as the surveillance of optimal portfolio weights (see for example [22]).
A control chart should provide to the investor a signal that there is a possible change in
the monitoring process, which is the portfolio weights [23]. The control chart procedure
consists of the control statistic and a rejection area [24]. If the value of the control statistic
lies in the rejection area, then the control chart gives a signal that the monitoring process is
out-of-control. A main characteristic of a control chart procedure is the average run length
(ARL) that represents the average number of subgroups before a signal is given that the
monitoring process is out-of-control. We assume that Zt is the control chart statistic and c is
a control limit that defines when the process is out-of-control. The run length, which is the
number of samples before a signal is given, is

N = inf{t ∈ N : Zt > c} (1)

and ARL is equal to E(N). When the process is in-control, the ARL (ARL0) should be
large and in the out-of-control-state (ARL1), it should be the opposite. Another measure of
the performance of a control chart is the median run length (MRL0), which is the median
number of sample points before the first out-of-control signal is given. Since the work
of [25], various charts procedures have been proposed. Ref. [26] introduced the EWMA
control chart and [27] introduced the multivariate case.

Ref. [28] derived the exact and asymptotic distribution of the optimal portfolio weights
for various portfolio strategies. The asset returns is assumed to follow a stationary normal
distribution. The estimation of optimal portfolio weights depends on two components:
the mean and the variance of asset returns. Assuming k uncorrelated risky asset returns
for n time periods, the vector of the first k − 1 optimal weights in the GMV portfolio
follows a multivariate t-distribution. However, since government bonds are estimated
from a set of common factors, bond yields are correlated, we do not make any assumptions
about the distribution of optimal weights and estimate the necessary quantities from a
simulation study.

The literature regarding monitoring portfolio weights with control charts assumes
independent asset returns. [29] showed that linear combinations of the components of the
GMVP weights follow a multivariate t-distribution. Structural breaks in the covariance
matrix of asset returns have as a consequence changes in the mean and the covariance of
optimal weights. If a change in the covariance matrix occurs, then the optimal portfolio
allocation changes, and a new one is estimated with known mean and covariance.

Ref. [30] monitored optimal weights of a GMV portfolio using the distribution of
the estimator of the covariance matrix of asset returns so as to construct multivariate
and simultaneous control charts. These control chart procedures are independent of the
covariance matrix of asset returns. Ref. [31] used the local constant volatility approach
for the surveillance of the unconditional covariance matrix of the k assets returns so as to
monitor changes in the optimal GMVP weights. The result of this method is the decrease of
the variance of the GMVP for the out-of-sample period.

Ref. [23] proposed various EWMA control charts for monitoring the optimal weights
of the GMV portfolio. The estimated weights are highly autocorrelated, and they proposed
modified EWMA and control charts based on the first differences of the sample weights.
The authors examined changes in the covariance matrix of asset returns that either affect
only the mean of the optimal portfolio weights or changes that are designed so as to display
the transition from a bull market to a bear market. [31] investigated the distributional
properties of the expected returns and the variance of various portfolio strategies.

Ref. [32] proposed some new characteristics for monitoring optimal portfolio weights
in a global minimum variance process. They suggest alternative processes to the optimal
weights process and to the difference process. Control charts for these alternative charac-
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teristic processes are constructed for both univariate and multivariate EWMA recursion.
Ref. [33] developed directionally invariant cumulative sum (CUSUM) control charts for
monitoring the GMVP estimated optimal weights and the characteristic process. Changes
in the GMVP composition are attributed to changes in the covariance matrix of asset returns.
The MCUSUM1 and MCUSUM2 charts of [34] and the projection pursuit (PPCUSUM)
scheme of [35] are applied for monitoring these processes. The results support the simulta-
neous use of both the control charts for the optimal weights and the characteristic process.

Ref. [36] estimated the optimal GMVP weights with the sample volatility estimators.
The realized GMVP weights are evaluated using the realized volatility measures from
intraday data. According to the authors, the advantage of this method for the estimation of
the covariance matrix of asset returns is that it leads to an improvement in incorporating
new daily market news. Ref. [36] suggested statistical tests in order to check on a daily
basis whether a target portfolio deviates from the GMVP. Ref. [37] used EWMA procedures
for the surveillance of the rebalancing process of index tracking (IT) portfolios. When a
signal is given, the optimal portfolio allocation is changed, and the portfolio needs to be
redesigned via a rebalancing strategy. The proposed EWMA control charts are employed on
a portfolio’s daily returns and daily volatility. The empirical study on stock data compares
the portfolio rebalancing approach using SPC methods with portfolios using the traditional
fixed rebalancing windows. The findings showed that in markets with large volatility, using
SPC methods is more stable than using the approach with fixed rebalancing windows.

Ref. [38] used the CUSUM control chart to regulate the rebalancing dynamic of index-
tracking portfolios. The proposed methodology is applied to stock market data, and a
comparison is made between the estimated CUSUM-based portfolios with portfolios using
fixed rebalancing time windows and EMWA-based portfolios. Portfolios with a fixed
rebalancing window perform better that CUSUM-based portfolios when the control limits
are more sensitive to deviations of the tracking portfolio from the benchmark portfolio.
The opposite happens when control limits are less sensitive to changes. The comparison
between CUSUM and EWMA-based tracking portfolios did not favor clearly any of these
two methods.

The main questions of this paper are the following:

• If we can perform an MV portfolio strategy with or not allowing short selling that can
be an alternative strategy to existing traditional methods.

• If control chart procedures can be helpful in monitoring fixed-income portfolios.

3. Data

Our data set consists of fixed-maturity, end-of-month continuously compounded
yields on U.S. zero-coupon bonds from January 1981 to December 2009, totaling 348
monthly observations. This data set of monthly time series of yields was constructed
from [39] from the Center for Research in Security Prices (CRSP) unsmoothed Fama and
Bliss [40] forward rates and is publicly available in the Journal of Applied Econometrics Data
Archive (these data, denoted here as JKV data set, can be downloaded from the following
link: http://qed.econ.queensu.ca/jae/datasets/jungbacker001/ (accessed on 10 October
2022)). For our work, we have chosen yields with maturities 3,48,60,72,84 and 120 months
for the time period from January 1981 to December 2009. The class of Gaussian ATSMs we
use in our analysis provides a good fit jointly to macroeconomic factors and bond yields.
However, it has the shortcoming when some interest rates are near their zero lower bound
(ZLB), placing positive probabilities on negative interest rates [41]. This condition may be
problematic for the prediction of future bond yields when interest rates are very close to
the ZLB: for example, in U.S. Treasury yields after the financial crisis of 2008–2009. Ref. [41]
found that the standard Gaussian ATSM model performed well until the end of 2008 but
underperformed since then until 2014. As a result, we choose the period until the end of
2009 in order to perform our analysis. Figures 1 and 2 plot the time series of U.S. Treasury
yields. The average yield curve is downward sloping. Usually, in periods where the yield
curve level displays a downward trend, bond returns exhibit good performance [8].

http://qed.econ.queensu.ca/jae/datasets/jungbacker001/
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Figure 1. U.S. Treasury Yields. The graph illustrates annualized monthly zero-coupon bond yields
with maturity periods of 3 months, 5 years, and 10 years. The sample period is 1981:01 to 2009:12.
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Figure 2. U.S. Treasury Yields. The graph illustrates annualized monthly zero-coupon bond yields
with maturity periods of 4 years, 6 years, and 7 years. The sample period is 1981:01 to 2009:12.

Following the recent literature, in the term structure models, we use both macroeco-
nomic and latent factors. Since the seminal work of [42], there has been growing literature
for incorporating macroeconomic factors in the term structure models (e.g., [43–45]). These
studies exploit small macroeconomic information sets, and some authors consider the
dynamics of the term structure augmented with additional factors such as information
on exchange rates or survey data (e.g., [46–48]). Refs. [49,50] modeled yield curve dy-
namics by adding to standard macroeconomic factors three additional financial factors:
credit risk, liquidity risk and risk premium factors ([51]). The incorporation of macroe-
conomic factors contributes to the improvement of yield curve forecasting. Good yield
curve predictions are important in order to achieve better results in terms of fixed-income
portfolio performance. We use two macroeconomic factors: Consumer Price Index (CPI)
monthly time series seasonally adjusted and, as a proxy for the monthly gross domestic
product growth (GDP), the monthly Industrial Production (IP) growth. The CPI measures
the average changes in the price level of a basket of goods. The IP growth measures the
growth rate of the production of goods. The IP growth rates and the CPI time series are
obtained from the Federal Reserve St. Luis database. The data series are displayed in
Figure 3. The CPI factor peaks in early 1981 and in average falls during the recession of
1981–1982. In the subsequent period, an upward trend follows before the fall in the fourth
quarter of 1990. Next, the CPI stays mainly at the same level until an upward trend during
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the period from the end of 1999 until March 2008. For the period from the third quarter
of 2008 until middle of 2009, we have a period of economic downturn due to the global
financial crisis of 2008–2009. The IP index growth rate is seasonally adjusted. Most of the
movements of the IP index growth rate follow that of the business cycles. However, the
time series of CPI has more smooth fluctuations.

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009
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Figure 3. Macroeconomic factors. The figure illustrates the two macroeconomic factors Industrial
Production Index and Consumer Price Index for the sample period 1981:1 to 2009:12.

Tables A1 and A2 present some descriptive statistics for the bond yields and the
macroeconomic observable factors, respectively. The yield levels show mild excess kurtosis
at short maturities, which decreases with maturity, and positive skewness at all maturities.
In Tables A3 and A4, we present the autocorrelations of these time series for lags 1, 5,
12, 20 and 24. An important fact is that the time series of all bond yields are highly
autocorrelated, showing strong persistence. For lags 1 and 5, IP growth rates exhibit a low
level of autocorrelation, and for lag 1, the CPI exhibits a medium level of autocorrelation.
For lags greater than 5, both factors exhibit no autocorrealtion. In Figure 4, we have plotted
the yields term premia, the difference between the 10-year yield and the 3-month yield.
The term premia at the beginning of our sample period starts from a negative position
and continuously increases from 1981:09 to 2009:12 and remains at positive levels with the
exception of time periods 1989:05 to 1989:07, 1989:10 to 1989:11, 2000:07 to 2000:12 and
2006:07 to 2007:04. During the recession periods, the term premia exhibits an upward trend.
The estimation procedure is performed for the in-sample period from 1981:01 to 1999:12,
while the out-of-sample period is from 2000:01 to 2009:12.
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Figure 4. The figure illustrates the yield term premia, the difference between the 10-year yield and
the 3-month yield.
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4. No-Arbitrage Affine Term Structure Model
4.1. General Framework

We assume that the k× 1 vector of state variables Xt follows a vector autoregressive
evolution process:

Xt+1 = µ + ρXt + Σut+1 (2)

where ut+1 is a Gaussian standard error term and µ is k × 1 vector, ρ and Σ are k × k
matrices. The state variables are the two macroeconomic factors we previously mentioned in
Section 3, CPI and IP growth, and three latent factors. Three unobserved (latent) factors
explain much of the yield curve dynamics ([52]). In general, for our term structure model,
we adopt the modeling approach of [53]. Following this approach, according to the authors,
the Gaussian assumption for the model is a sufficient first approximation to the joint
dynamics of bond yields and macroeconomic variables.

Equation (2) can be considered as a discretization of the Ornstein–Uhlenbeck stochastic
differential equation

dXt = (M− AXt)dt + Σ0dWt, (3)

where Xt ∈ Rk×1, M ∈ Rk×1, A ∈ Rk×k and Wt ∈ Rk×1 is a Wiener process, while Σ0 ∈ Rk×k

is a covariance matrix. In fact, using the Euler discretization scheme, for a time step h, we
may obtain an approximation of (3) in terms of

Xt+h − Xt = (M− AXt)h + Σ0(W(t + h)−W(t)), (4)

Since ut := W(t + h)−W(t) is a Gaussian process, we can express (4) in as

Xt+h = Mh + (I − hA)Xt + Σut, (5)

which is in the form of (2) for the choice µ = Mh, b = (I − hA), Σ = Σ0, and renaming
t + h to t + 1.

Similar considerations apply for other popular numerical schemes, such as for instance
the implicit Euler scheme, according to which

Xt+h − Xt = (M− AXt+h)h + Σ0(W(t + h)−W(t)), (6)

which can be rearranged as

Xt+h = (I + hA)−1Mh + (I + hA)−1hXt + (I + hA)−1Σ0(W(t + h)−W(t)) (7)

which is the form (2) for µ = (I + hA)−1Mh, ρ = (I + hA)−1h, Σ = (I + hA)−1Σ0.
Standard results from the numerical analysis of stochastic differential equations (see

e.g., [54]) imply that such discretizations converge as h→ 0 to solutions of the continuous
Ornstein–Uhlenbeck equation (in various senses). Hence, we can stipulate that the results
obtained for problem (2) in the appropriate limits can be generalized for the continuous
versions of the process. This is, however, a subject for future research.

We consider the following two representations of Equation (2) under the risk-neutral
pricing measure Q and under the physical probability measure P:

Xt+1 = µQ + ρQXt + ΣuQ
t+1 (8)

Xt+1 = µP + ρPXt + ΣuP
t+1 (9)

The vector of state variables Xt that describes the economy is partitioned into observ-
ables Xo

t and unobservables or latent variables Xu
t . The time-varying market prices of risk,

λt, are affine functions of the underlying state variables Xt:
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λt = λ0 + λ1Xt (10)

where λ0 is a k× 1 vector and λ1 is an k× k matrix. The relation of the parameters of the
P-measure to the Q-measure are given by:

µQ = µP − Σλ0 (11)

ρQ = ρP − Σλ1 (12)

In addition, we assume that the short rate is an affine function of the state variables:

rt = δ0 + δ
′
1Xt (13)

where δ0 is a scalar and δ1 is an k× 1 vector. The pricing kernel in the affine term structure
model is

Mt,t+1 = exp(−rt −
1
2

λ
′
tλt − λ

′
tut+1) (14)

with λt = 0 in the case of risk neutrality. The pricing kernel allows us to price any asset in
the economy such as nominal bond prices. Bond prices are also affine functions of the state
variables and can be estimated as follows

Pn
t = Et(Mt+1Pn−1

t+1 ) = exp(an + b
′
nXt) (15)

where

an+1 = an + b
′
n(µ− Σλ0) +

1
2

b
′
nΣΣ

′
bn − δ0 (16)

bn+1 = b
′
n(ρ− Σλ1)− δ

′
1 (17)

with a1 = −δ0 and b1 = −δ1. Now, the yield of an n-period zero coupon bond is:

Yn
t = − log Pn

t
n

= An + B
′
nXt (18)

where An = − an
n and Bn = − bn

n .
Following [10], the measurement specification for Equation (18) is defined as[

Y1
t

Y2
t

]
=

[
A1

A2

]
+

[
B1

B2

][
Xo

t
Xu

t

]
+

[
0

Σe

]
ue

t (19)

where Σe is typically taken to be diagonal. Ai and Bi, i = 1, 2, are calculated by stacking
(16) and (17), respectively, for the appropriate n. Σe determines the variance of the measure-
ment error with ue

t ∼ N(0, INe). In order to estimate our model, we follow the approach
of [55] according to which Equation (18) holds exactly for as many yields as the number
l of latent factors. The remaining observed yields differ from the predicted value by a
small measurement error. The choice of the maturity sets measured with error or not
is driven by the interest in obtaining good forecasting of the 10-year yield. As a result,
in our model, we assume that yields maturing at 3, 60, 120 months are priced without
error and yields with maturities of 48, 72 and 84 months are priced with error. Let Y1

t
denote the l × 1 vector consisting of those linear combinations of yields that are priced
without error and Y2 denote the remaining (Ne × 1) linear combinations that are priced
with measurement error. We also maintain the parameter restrictions imposed by [10,56].
These are Σlm = 0, Σll = INl , δ1l ≥ 0, µQ

l = 0 where Σmm is lower triangular matrix. The
notations l and m denote the partitions for the latent and macro factors, respectively.
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Table A5 presents the mapping between structural and reduced form parameters.
When the number of parameters in the structural form of the model is equal to the number
of reduced-form parameters, then the model is just identified. The reduced form parameters
are collected in a vector π and can be estimated by least squares methods. Then, the vector
of the structural parameters θ = {µ, ρ, Σ, µQ, ρQ, δ0, δ1} can be estimated by the minimum
chi square method. The main assumption of the method is that the reduced form parameters
are equal to a function of the structural parameters, π̂ = g(θ). The minimum chi square
method uses the Wald test in order to test the hypothesis that π = g(θ). The MCSE is then
given by:

min
θ

T(π̂ − g(θ))
′
R(π̂ − g(θ)) (20)

where R is the information matrix of the full information maximum likelihood function
L(θ; Y). The minimal value that is found by this estimator would have an asymptotic χ2(q)
distribution under the null hypothesis where q is the dimension of π (for more details,
see [10]).

Since we estimate the model parameters, we can estimate the coefficients αn, bn from
the recursive Equations (16) and (17). The results of the parameter estimation under the
risk-neutral and historical probability measure are presented in Table A6.

Forecasts

After the estimation, we try to test the forecasting ability of our yield curve model.
The estimation of forecasts for our model is a crucial procedure for the estimation of the
moments of bond returns and consequently for the portfolio optimization. We implement
an out-of sample forecast for a period of 120 monthly time series of yields, from 2000:01
to 2009:12. In order to examine the forecasting ability of our model, we calculate the root
mean square errors (RMSE) and the mean absolute error (MAE). Table 1 presents the results
for RMSEs and MAEs for the yields with maturities of 3 months and 4, 5, 6, 7 and 10 years.
Lower values of RMSE and MAE denote better forecasts. Root mean square errors are
estimated according to the following equation

RMSE =

√√√√ 1
T

T

∑
t=1

(Ŷn
t −Yn

t )
2 (21)

where Ŷn
t and Yn

t are the predicted and the actual yields, respectively, of a bond with
maturity n months, and T indicates the total length of the forecasting period, which here is
120 months. The mean absolute errors are estimated as

MAE =
∑T

i=1 |Yi − Ŷi|
T

(22)

From Table 1, we can generally conclude that our term structure model with the two
macroeconomic factors and three latent factors gives satisfactory forecasting results for the
six maturities that we have. The results presented are for annualized data.

Table 1. Forecast comparisons. The table presents the out-of-sample forecasts. The out-of-sample
forecasting period is from 2000:01 to 2009:12, a total of 120 months. The root mean square error
(RMSE) and the mean absolute error (MAE) for annualized data are calculated.

Yields

3 m 48 m 60 m 72 m 84 m 120 m

RMSE 0.0102 −0.7085 0.4968 −0.3315 −0.3312 −0.3470
MAE 0.2850 0.2647 0.4547 0.2778 0.2652 0.3148

Figure 5 presents the actual bond yields versus the estimated bond yields for the
out-of-sample period 2000:01 to 2009:12. For the 3-, 48-, and 72-month yield, the fitting is
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almost identical. The fitted 60-month bond yield is very close to the actual and mimics
its course. The 84-month bond yield is almost identical to the actual except for the period
2002:03 to 2005:10 when there is a small deviation. Finally, for the 120-month yield, the
deviation between the fitted and the actual yields is larger than the 84-month yield but
generally performs well.
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Figure 5. Fitted and actual yield for the out-of-sample period 2000:01 to 2009:12. The blue line is the
predicted values and the red line is the actual yield.

4.2. The Distribution and Estimation of Bond Returns

The main problem of fixed-income portfolios is the prediction of the distribution
of asset returns for a set of maturities and the selection of the optimal portfolio weights
conditional on expected returns and risk preferences. As a consequence, this requires the
estimation of the expected asset returns for each maturity and their covariance matrix.
The ATSM that we previously presented can be used for the construction of a fixed-
income portfolio. In this section, we derive closed-form expressions for the one-period
ahead expected log-returns of bonds and their covariance matrix based on the affine
dynamic factor model. These estimates are key concepts to the problem of bond portfolio
optimization. Following the discussion in [8], we can obtain expressions for expected bond
returns and their covariance matrix based on the distribution of the yield curve model.
Specifically, we are interested in the distribution of one-step-ahead forecasts of continuously
compounded zero-coupon bond yields.

The Gaussian ATSM for bond yields presented in the following equation[
Y1

t
Y2

t

]
=

[
A1

A2

]
+

[
B1

B2

][
Xo

t
Xu

t

]
+

[
0

Σe

]
ue

t (23)

implies that the distribution of one-step-ahead forecasts of continuously compounded
zero-coupon bond yields is the normal distribution (for the estimation of the moments of
bond yields, see Appendix A).

So, the one-step ahead forecasts of bond yields Yt+1|t ∼ N(µYt+1|t , ΣYt+1|t) with mean
and variance given by

µYt+1|t = An + B
′
nX̂t+1|t (24)

and
ΣYt+1|t = BnSt+1|tB

′
n + Σ (25)
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respectively, where X̂t+1|t = Et[Xt+1] denotes the expected value of the state factors Xt
based on the estimates from the term structure model of Equation (2). St+1|t is the covari-
ance matrix not of the true factors Xt but of the filtered states based on the predicted state
factors X̂t+1|t ([8]). The covariance of the predicted states is given by St+1|t = ΣΣ

′
+ρQΣρQ′

n .
We remind that in our affine model, as we see from Equation (2), we assume homoscedas-
ticity. As we mentioned earlier, in order to apply the mean-variance (MV) optimization
approach, we need the estimation of expected bond returns and their covariance matrix.
For this procedure, we need to estimate the one-period ahead of log-bond returns. We
assume that the investor’s one-period return comes from holding a bond from period t to
t + 1 while its maturity decreases. The log-return ri,t of holding a bond from period t to
t + 1 while its maturity decreases from i to i− 1 , i = 2, . . . , N, is

ri,t = log
(Pi−1

t+1

Pi
t

)
= log(Pi−1

t+1)− log(Pi
t ) = −(i− 1)Yi−1

t+1 + iYi
t (26)

One-step-ahead forecasts of log-returns of bonds are normally distributed with mean
given by

ri,t+1|t = −(i− 1) · µYi−1,t+1|t + i ·Yi
t−1 (27)

The positive definite covariance matrix Σrt+1|t has diagonal elements given by:

σri,t+1|t = (i− 1)2(bi−1St+1|tb
′
i−1 + σ2

i−1) (28)

and non-diagonal elements

σri ,rj = (i− 1)(j− 1)(bi−1St+1|tb
′
j−1 + σi−1,j−1) (29)

where σ2
i−1 is the (i − 1)th diagonal element of Σ and (bni−1St+1|tb

′
nj−1σni−1nj−1) is the

(i− 1, j− 1) element of the covariance matrix Σµt+1|t of expected bond yields. The choice of
the set of maturities depends among others on the investment horizon of the investor.

5. Fixed-Income Portfolio Optimization

In this section, we adopt the MV and GMV portfolio optimization approach allowing
or not short selling for the construction of optimal bond portfolios based on the Gaussian
ATSMs proposed by [10]. The results for the expected bond yield returns and the covariance
obtained in the previous section are used for the bond portfolio optimization. The proposed
MV and GMV bond portfolios are compared with traditional yield curve strategies, and its
performance is evaluated.

5.1. Portfolio Framework

The portfolio theory introduced by [57] provides a basis for portfolio selection and
optimization in a single-period set up. The Markowitz’s approach assumes an investor
that needs two main key ingredients in order to construct an investment portfolio: (i) the
estimated expected return for each investment and (ii) the covariance matrix of returns. The
fixed maturity of bonds means that all bonds having maturities less than the investment
horizon T1 will not exist at time T1. Bond prices are functions of time and interest rates, and
so, they become non-random at the maturity date. Ref. [9] considers that the major problem
of a fixed-income portfolio optimization is that of constructing the variance–covariance
matrix of bond returns. As a consequence, traditional portfolio optimization models such
as the Markowitz portfolio method cannot be used directly for the construction of fixed-
income portfolios and modifications should be used. In our work, we assume, at the time
of the portfolio selection, that investors are only concerned with the expected returns of
U.S. Treasury yields for the one-step-ahead forecast horizon and its variance–covariance
matrix. The rebalancing frequency is 3 months.
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The GMV portfolio is the portfolio with the smallest variance for a given covariance
matrix of asset returns ([58]). The optimal portfolio weights are determined independently
from the expected asset returns. This has the advantage that the optimization depends
completely on the covariance matrix of asset returns. The covariance matrix can be esti-
mated with more reliability than expected returns ([33]). The GMV portfolio is given from
the following minimization

minimize
wt

w
′
tΣrt+1|t wt

subject to w
′
t1 = 1

wt ≥ 0

(30)

where the last inequality is valid when short selling is not allowed. The optimal weights
for the GMV portfolio when short selling is allowed are given by

w =
Σ−1

rt+1|t
1

1′Σ−1
rt+1|t 1

(31)

The result of this optimization gives the vector of the optimal weights for each time
period. The GMV portfolio is the only portfolio of the efficient frontier that does not depend
on the expected returns and has the lowest volatility. In our work, we estimate the GMV
portfolio for both the cases of allowing or not short selling on assets. Allowing short selling,
we have a better portfolio performance in terms of expected return and volatility compared
to the constrained GMV portfolio. However, this results in higher transaction costs and
portfolio turnover rate.

In general, the mean variance portfolio problem can be formulated by minimizing the
portfolio variance for a particular one-step-ahead expected bond return, subject or not to a
set of additional restrictions on the vector of optimal weights wt. The mean variance frame-
work in case that short selling is not allowed (constrained portfolio) has the following form

minimize
wt

w
′
tΣrt+1|t wt − δw

′
tµrt+1|t

subject to w
′
t1 = 1

wt ≥ 0

(32)

where µrtt+1|t
is a N × 1 vector of expected returns of maturities ni, i = 1, . . . , N, and N is

the number of yield maturities. Σrtt+1|t
is a N × N variance–covariance matrix of expected

returns estimated from Equations (28) and (29) and 1 is a N × 1 vector of ones, and δ is the
risk aversion coefficient. In the case where short selling is allowed in the last restriction
in (32), wt can take negative values. The optimization problem in both cases is subject to a
budget constraint, which ensures that all wealth is invested in the investment assets. The
mean variance portfolio problem as we see from (32) solves a quadratic utility function. The
mean variance problem can be stated as a myopic single-period problem where portfolio
weights are calculated based on one-step-ahead bond return forecasts. In addition, when an
investor changes the composition of its portfolio over time, it is then faced with transaction
costs, and these costs are a function of the frequency and magnitude of asset allocation
changes in the portfolio. The portfolio turnover is estimated as

Tr =
1

T − 1

T−1

∑
t=1

N

∑
i=1

(|wi,t−1 −wi,t|) (33)

The transaction costs are set to 3 basis points (bps) per transaction. Then, the cost of a
trade over all assets is

Tc = 0.003
T−1

∑
t=1

N

∑
i=1

(|wi,t−1 −wi,t|) (34)
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Later, in our portfolio monitoring analysis, we focus on the GMV portfolio. This
is due to the fact that expected portfolio returns are more difficult to estimate than the
variance of returns and the latter can be estimated more precisely [58]. The MV portfolio
framework contains the risk aversion coefficient which reflects the investor’s perception of
risk. The GMV portfolio corresponds to a fully risk-averse investor who aims to minimize
the variance without taking into consideration the expected return.

5.2. Benchmark Portfolio Strategies and Portfolio Evaluation Performance

The relative performance of the proposed bond portfolio strategy based on the
Markowitz’s portfolio theory is compared with a set of yield curve strategies (for more
information about traditional yield curve strategies, see [9,59]). We consider the following
yield curve strategies: barbell strategy, bullet strategy and ladder or equally weighted
portfolio strategy. The main purpose of these strategies is to reduce yield volatility and
risk. In the barbell portfolio strategy, the maturity of the bonds included in the portfolio is
equally weighted in the two extreme maturities, the 3-month and the 10-year bond. In the
bullet strategy, the maturity of the bonds in the portfolio is concentrated at one point on
the bond yield curve. This strategy means that the investor can invest either in 48-month or
60-month or 72-month or 84-month bonds, totaling four alternative portfolios. Finally, in
the equally weighted portfolio strategy, the portfolio is constructed so as to have an equal
amount of each yield maturity.

The empirical implementation of the mean variance optimization problem defined
by (32) is performed by using one- step-ahead estimates of the vector of expected returns
and its covariance matrix, considering alternative values for the risk aversion coefficient δ,
0.0001, 0.01, 0.1, 0.5, 1, 2 and 4.

The performance of optimal mean variance and minimum variance portfolios is
evaluated using the average portfolio return (µr), the average excess return with respect
to the risk-free rate (µex) and the Sharpe ratio (SR). We consider the risk-free rate to be the
Federal Funds rate. These statistics are calculated as

µ̂r =
1

T − 1

T−1

∑
t=1

w
′
i,tRt+1 (35)

µ̂ex =
1

T − 1

T−1

∑
t=τ

(w
′
tRt+1 − r f

t+1) (36)

SR =
µ̂ex

σ̂
(37)

where r f is the risk-free rate, which in our case is the federal feds rate, and wt is the vector
of weights in the portfolio in period t. Rt = [r1,t, . . . , rN,t]

′
is a vector with the bond returns

of all maturities and σ is the standard deviation of the portfolio’s excess return.

5.3. Results for MV and GMV Portfolios

We now present the optimal mean variance portfolios for the out-of-sample period,
totaling 120 months, for the JKV data set and for different levels of the risk-aversion
coefficient δ. Optimal portfolio compositions are rebalanced on a 3-month basis. First, we
estimate the optimal weights under the mean-variance framework for both allowing or
not short selling and subsequently the optimal weights for the GMV portfolio. The excess
return is calculated using the Federal Funds rate, as the risk-free asset and the level of
transaction costs is set to 3 bps. The results presented here for the mean variance portfolio
are for risk aversion δ = 0.001.

Table 2 reports the following monthly performance measures: mean gross return,
mean net excess return, portfolio standard deviation and the Sharpe ratio of the proposed
portfolio strategy for both the cases allowing short selling or not. The table includes
the results for the barbell strategy, the portfolio strategy of investing in the maturities
remaining after excluding the 3-month and the 10-year bond (portfolio strategy A). In
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addition, Table 2 reports the performance measures for the ladder portfolio strategy and
a bullet strategy investing either in a 4-year, 5-year, 6-year or 7-year bond. The results
show that our portfolio strategy (ATSM-MV) based on the ATSM produces returns and
Sharpe ratios higher from many of the other benchmark strategies. Table 2 shows that
the optimal mean variance portfolio of U.S. Treasury bonds achieved a mean monthly
average gross return of 9.83% for unconstrained portfolio and 9.89% when short selling
is not allowed. The monthly standard deviation is 1.815% and 1.785%, respectively. The
risk-adjusted performance is measured by the Sharpe ratio, which is equal to 4.71% and
5.44% for unconstrained and constrained portfolios, respectively. The results indicate that
our proposed mean-variance bond portfolio strategy can be a very good alternative to
many traditional portfolio strategies.

Table 2. Comparison of portfolio strategies.

Portfolio Strategy Mean Monthly
Return (%)

Mean Net Excess
Return (%) Std (%) Sharpe Ratio (%)

ATSM-MV 9.83 9.59 1.815 4.71
Barbell 16.58 16.34 2.201 4.35
A 7.41 7.17 2.650 4.30
ATSM-MV NS 9.89 9.65 1.785 5.44
Barbell NS 16.58 16.34 2.260 3.62
ANS 5.36 5.12 2.620 1.93

ATSM-GMV 8.58 8.33 1.759 4.77
Barbell-GMV 14.04 13.8 2.570 3.62
A-GMV 2.55 2.3 3.189 1.93
ATSM-GMV NS 9.17 8.33 1.777 4.73
Barbell-GMV NS 14.04 13.8 2.137 3.62
A-GMV NS 2.87 2.63 2.603 2.61

Ladder 7.64 7.4 3.189 5.43
4-year Bond 3.42 3.17 2.700 3.32
5-year Bond 1.31 1.07 3.180 0.89
6-year Bond 5.31 5.07 3.810 4.79
7-year Bond 1.41 1.39 5.150 7.71

Performance of MV and GMV portfolio yield curve strategies, using U.S. zero-coupon yields, for both allowing
and not short selling (with NS are denoted the results when short selling is not allowed) compared with traditional
yield curve strategies. The risk-aversion coefficient is equal to 0.001, and the transaction costs is 3 bps. The excess
return is calculated using the Federal Funds rate as the risk-free asset. The affine term structure model used is that
of [10] (ATSM).

Figure A3a illustrates for the case of no short selling the cumulative returns of optimal
portfolios estimated through our term structure model in comparison with some basic
benchmark portfolio strategies. Specifically, we have estimated the cumulative returns
following the barbell, A and ladder portfolio strategy. The cumulative returns of the mean
variance portfolios obtained from the term structure model using the minimum chi-square
method outperform the other strategies for the out-of-sample period. In case of short selling
(see Figure A3b), again, our method outperforms the others. For both cases, cumulative
returns exhibit similar patterns.

In addition, Table 2 presents the performance measures for the unconstrained and
constrained GMV portfolio. The results show that our portfolio strategy based on the
affine term structure model (ATSM-GMV) performs quite well in terms of mean returns,
since only the barbell portfolio strategy outperforms our strategy but at the cost of higher
portfolio standard deviation. The performance of the GMV portfolio constructed via an
ATSM is compared in terms of cumulative returns, for the entire out-of-sample period, with
other benchmark portfolio strategies (see Figure A3c,d). The results favor our method of
GMV optimal portfolios either with short selling or not. In the GMV portfolio strategy,
the term structure-based method performs in terms of monthly returns quite satisfactory,
and only the barbell strategy outperforms ours. The results show that in terms of mean
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gross and excess returns, only the barbell strategy performs better than our strategy. The
Sharpe ratio with our approach is larger than that of the barbell strategy. A comparative
analysis of the performance of MV and GMV portfolios shows that the first generates
higher Sharpe ratios, but the latter exhibits a lower standard deviation. The evolution of
portfolio allocation shows that as in the MV portfolio optimization, the position of the
investor is concentrated in holding a 48-month bond at time t and a 3-month bond at time
t+ 1 but now in lower levels. In addition, our portfolio strategy for the entire out-of-sample
period produces lower standard deviation from the barbell, bullet and ladder portfolio
strategies (see Figures A1 and A2). The portfolio turnover in both the unconstrained and
constrained case shows a large increase at the end of 2008 during the global financial crisis
(Figure A4a,b). A much lower increase for the unconstrained portfolio arises in the middle
of 2006.

In Figure 6, we present for example the efficient frontier for a specific time period,
July 2009, for the case of a constrained MV portfolio along with the benchmark portfolio
strategies. We remind that the efficient frontier represents the optimal portfolios for given
amounts of risk and return. Specifically, when a portfolio is on the efficient frontier, then
there is no other portfolio with higher expected return and lower risk. From the graph,
we see that all the benchmark portfolios lie below the efficient frontier having higher risk
levels for the defined rate of return.
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Figure 6. Mean-Variance Efficient Frontier and Benchmark Portfolios for July 2009.

Figure A5 presents the evolution of optimal mean variance portfolio weights for
the out-of-sample period under the assumption that short selling is not allowed and
Figure A6 presents the evolution of optimal weights for each bond when short selling is
allowed. In both cases, the investor’s position is concentrated in levels higher than 55%,
holding a 48-month bond at time t and a 3-month bond at time t + 1. In the constrained
case, the weights are concentrated in investing in the first three maturities at time t and
moving to a bond of the next maturity at time t + 1. In the unconstrained portfolio case,
this happens for the first two maturities.

In conclusion, the results obtained from the construction of optimal portfolios from the
affine term structure presented in Section 4 can be summarized as follows. The proposed
bond portfolio strategies for the MV potfolio (ATSM-MV) and the GMV portfolio (ATSM-
GMV) in most of the cases produce better mean returns and Sharpe ratios with lower risk
in comparison with traditional bond portfolio strategies. The results are valid regardless or
not of the choice of allowing short selling.

Ref. [7] compared the results from MV and minimum MV portfolios for various
rebalancing frequencies assuming different specifications for the transition equation of
the factors with some benchmark indices. The average and cumulative returns of the MV
portfolio exceeded those obtained by the benchmark indices with lower standard deviation.
Ref. [8] applied their analysis on two bond yield data sets: one where the out-of-sample
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yields display a downward trend (the JKV data set) and another with an upward trend. For
the JKV data set, most of the MV portfolios had risk-adjusted performance better than that
of the benchmark strategies. The dynamic factor-based portfolios did not produce higher
Sharpe ratios for every benchmark strategy. In our case, only the investment in a 7-year
bond produced a higher Sharpe ratio than any other investment strategy but with poor
performance in the risk–return tradeoff.

6. Control Charts and Optimal Weights Monitoring

In this section, we construct control chart procedures for monitoring optimal portfolio
weights obtained from the method described in the previous section. Our sequential
monitoring analysis is restricted to GMV optimal portfolio weights. In contrast with the
MV portfolio, the GMVP weights depend only on the covariance matrix of yield returns but
not on the mean yield returns, which increases the estimation risk of the portfolio. Since the
investment decisions are mainly made in terms of portfolio weights, we choose to monitor
the vector of optimal weights for each time period. In addition, monitoring optimal weights
in government bond portfolios can be very helpful in cases of liquidity problems.

6.1. Sequential Monitoring of Optimal Portfolio Weights

Structural changes in the distribution of assets returns may have as a result changes
in the optimal asset portfolio allocation. The fast detection of these changes in optimal
portfolio weights has an economic effect for the investor who is interested in knowing at
every time if the portfolio allocation is optimal. A very common assumption in the finance
literature is that asset returns are i.i.d and follow the normal distribution. In our case,
bond expected returns due to their construction from the same dynamic term structure
model exhibit correlation. The results show that expected returns in most of the cases show
correlation greater than 0.68 (see Table A7). In our work, we use the control charts for the
first differences of [23] but with a different approach to the estimation of the covariance
matrix of the control statistic. We assume that the covariance matrix of asset returns remains
unchanged between two consecutive change points. The Mahalanobis distance of the first
differences of the optimal weights ŵ∗t,n that contains the first k − 1 components of ŵt,n,
Dt,n = ŵt,n − ŵt−1,n from the mean when the process is in-control, which is defined as

Td
t,n = (Dt,n − E0(Dt,n))

′
Ω∗−1

d (Dt,n − E0(Dt,n)) (38)

with Ω∗d = Cov0(Dt,n), the covariance matrix when the process is in-control and Ω∗ denotes
the (k− 1)× (k− 1) matrix obtained by dropping the k-th row and the k-th column of the
matrix Ω. In addition, when the process is in-control, we have Eo(Dt,n) = 0; then, the
Malanobis distance takes the following form

Td
t,n = Dt,nΩ∗−1

d Dt,n (39)

The univariate EWMA recursion is given by

Zd
t,n = (1− λ)Zd

t−1,n + λTd
t,n (40)

where t ≥ 1 and λ ∈ (0, 1].
The starting value for the control statistic is

Zd
0,n = E0(D

′
t,nCov0(Dt,n)

−1Dt,n) = E0(Td
t,n) = k− 1,

where E0(.) is the expected value when the process is in-control.The monitoring process is
out-of-control if Zd

t,n > cd, cd is an appropriately chosen control limit. For the difference
control charts based on the multivariate EWMA recursion, the control statistic is

Zd
t,n = (I-R) Zd

t−1,n + R Dt,n, t ≥ 1 (41)
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with starting value Zd
0,n = E0(Dt,n) = 0. The process is out-of-control if

Zd′
t,nCov0(Zd

t,n)
−1Zd

t,n > c1d (42)

The control limit of a control chart defines the rejection area in every control scheme
and is estimated through a simulation study for a predetermined value h of the ARL0.
Usually, in financial applications, this ARL0 is equal to 120 days or 1/2 year of daily
observations [60]. When the control chart gives a signal, the financial analyst should
investigate it and determine the next steps about the optimal portfolio composition.

We chose the in-control average run length to be equal to 6 months. This means that
on average, the first false signal comes after six months of observations. The critical value
cd is the solution of Equation (1). First, we choose a starting value for the control limit and
we simulate the difference process of optimal weights. Next, these simulated values are
applied to the control chart procedure, and the stopping times of the control charts are
simulated. Finally, we simulate values of the difference process of optimal weights, and the
stopping times are recorded. This simulation procedure at every step is iterated 5× 104

times. The estimated ARL in the in-control state is the average of simulated stopping times.
The iterations are stopped if the absolute deviation from the prespecified in-control ARL is
less than an accepted level of error, which here is 0.2%. For the estimation of the control
limit using the median run length (MRL), we follow the same technique as described with
the ARL, and the MRL0 is chosen equal to 6 months.

6.2. Estimation of the Covariance of Optimal Weights

The optimal portfolio weights for the MV portfolio framework depend on the un-
known parameters of the asset returns distribution which are subject to unknown structural
breaks. In the GMV portfolio framework, the expected portfolio return and the portfolio
risk depends on the optimal weights composition on the variance of asset returns. Because
the variance of asset return is unknown in practice, it has to be estimated. The parameter
estimation causes an estimation risk in the optimal portfolio selection, and ignoring it
may have negative consequences in optimal portfolio selection [61]. Various methods
have been applied in order to reduce the estimation risk (see for example [2,62]). A very
common estimator of the covariance matrix of asset returns is the sample covariance matrix.
In our work, the covariance matrix of asset returns is estimated through the affine term
structure model.

The main problem in order to estimate the control statistics for the difference charts we
presented in the previous section is the estimation of the covariances when the process is
in-control of the differences of the optimal weights. Suppose a portfolio consisting of risky
assets under the assumption of independent and normally distributed returns. Since the
exact estimation of the autocovariances of the control statistics we previously mentioned
is difficult, [23] based on the work of [28] propose an approximation for large n. Ref. [32]
mentioned that an alternative method for the covariance estimation could be a Monte Carlo
approach. In our case, due to the high correlation of the asset returns we have, we choose
to estimate these quantities through a simulation study. Specifically, we try to approximate
the covariance matrix through a simulation study. This simulation approach requires
generating data from the term structure model. The assumption of normality in the affine
model makes this procedure much easier and faster. The challenging part is the definition
of the in-control condition for the term structure model. Since this period is defined, we
generate the state evolution process from the known mean and variance matrix of the real
data. In the in-control condition, the estimation of the covariance of the control statistic Zd

t,n
needs the estimation of the covariance matrix between the k− 1 optimal weights. Ref. [23]
study and approximate the limit behavior of Cov0(Zd

t,n) as n tends to infinity.
For the estimation of the autocovariance matrix of the first differences of optimal

weights, we use the following iterative procedure:
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(1) Generate data from the state evolution process Xt ∼ N(µX , ΣΣ
′
) when the process is

in-control and µX is the mean of the state process.
(2) Generate residual data for the state evolution process from U ∼ N(0, I).
(3) Estimate the covariance matrix of the filtered states Xt|t+1.
(4) Estimate the covariance matrix of one-period ahead bond yields Yt|t+1.
(5) Estimate one-period ahead realized returns according to Section 4.2.
(6) Estimate optimal global minimum variance portfolio weights.
(7) Estimate the first differences of optimal weights.
(8) Estimate variance of first differences of optimal weights.
(9) Repeat the above procedure.

After the estimation of the autocovariances of optimal weights from Equations (40)
and (41), we can estimate the control statistics for the first difference procedures of the
EWMA based on the Mahalanobis distance and the multivariate EWMA recursion.

7. Simulation Study

The proposed difference control schemes for correlated data along with their detection
ability are analyzed within a simulation study. At first, the control limits for all charts are
determined in such a way that the control charts provide the same in-control average run
lengths, which are here assumed to be equal to a period of six months. After obtaining
the control limits through simulation as described previously, the performance of control
charts assuming that a change point happens at the beginning the performance is evaluated
by computing the ARL1 and the out-of-control median run length (MRL1). The optimal
performance provides the smallest out-of-control average run length. A small ARL1 value
means that the control chart is capable of detecting as soon as possible the shift in the
process given that the process is out-of-control.

7.1. Modeling the Out-of-Control State

In our simulation study, we follow a similar approach to that of [33] for modeling the
variance of asset returns. We assume that we have m = 6 fixed-income assets, government
bond yields, that follow the normal distribution with monthly in-control mean µ0,Y and
variance Σ0,Y which has the following form

Σ0,Y = S0,Y ·C0,Y · S0,Y (43)

where S0,Y is a diagonal matrix that contains the standard deviations and C0,Y is the
correlation matrix of bond yields. In addition, the variance of the out-of-control state has
the following form

Σ1,Y = S1,Y ·C1,Y · S1,Y (44)

where S1 = [0.7h 0.8h 0.85h 0.9h 0.95h 0.99h] × I, and

C1 =


1 0.403v 0.421v 0.433v 0.331v

0.0403v 1 0.8030v 0.8319v 0.6757v
0.421v 0.8030v 1 0.8570v 0.7015v
0.433v 0.8319v 0.8570v 1 0.7287v
0.331v 0.6757v 0.7015v 0.7287v 1


The numerical values in the mean, variance and correlation matrices are chosen so as

to be in accordance with the real data that we have in our empirical example and described
in Section 3. Here, we assume changes only in the variance of the bond yield returns, so we
set v = 1. This assumption is necessary because we did not want to reduce the correlation of
assets returns, since our example refers to government bonds that due to their construction
exhibit strong correlation. The standard deviation parameter h that defines the shift in
the variance process can take values from the set {1.5, 2, 2.5, 3, 3.5, 4, 4.5}. For the out-of-
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control condition, the in-control variance Σ0,Y changes to the new variance Σ1,Y, and we
estimate the out-of control optimal weights for the GMV portfolio. The estimation window
n for the construction of optimal portfolio weights is equal to 40 monthly observations.
The smoothing parameter in the univariate EMWA based on the Mahalanobis distance
is λ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.75, 0.9}. The multivariate EWMA
control charts are constructed with all smoothing parameters in the main diagonal equal,
R = λI. In our simulation study, we examine in total 84 different out-of-control cases. In
each of these out-of-control cases, we apply the proposed control chart procedures and
calculate the ARL1 and the MRL1. We mention that these measures are calculated under
the restrictive assumption that the change happens at time t = 1.

7.2. Simulation Study Results

Ref. [28], under the assumption that the asset returns are independent and identically
normally distributed, derives the exact distribution of optimal weights ŵt and proves
they are asymptotically normal. In our work, the independence of asset returns is not
valid, because bond yields are estimated via a common dynamic factor model. In order
to overcome this problem, we choose to follow a simulation approach for estimating the
necessary moments of optimal weights.

The simulation study compares the results for the out-of-sample period of four control
chart cases: the univariate EWMA control charts based on Mahalanobis distance for un-
constrained (Mahalu) and constrained portfolio (Mahalc), the control charts based on the
multivariate EWMA (MEWMA) statistic for unconstrained (MEWMAu) and constrained
portfolio (MEWMAc). For the first case (Mahalu), the ARL1 is reduced for each certain
level of the smoothing parameter λ as the variance increases. For values λ = {0.05, 1}
and λ = {0.75, 9}, we observe large values for the ARL1. In parentheses, we present
the MRL1s, which follow the same pattern as the ARL1s. The results for the second case
(Table A8) show that the strategy of not allowing short selling gives smaller out-of-sample
ARL1s. Again, for a given value of the smoothing parameter, as the shock in variance
increases, the ARL1 decreases. Control charts based on the MEWMA statistic for the
unconstrained portfolio exhibit lower values of ARL1 for the Mahalanobis distance case.
Finally, the fourth case (Table A9) gives the lowest ARL1 except in the cases with smoothing
parameters λ = {0.75, 0.9}. Generally, the examples with portfolios not allowing short
selling perform better in terms of ARL1 than allowing short selling. The MRL1s for the
constrained portfolios indicate that our method gives a signal at the next time period when
the monitoring process of portfolio weights is already in the out-of-control state. The fact
that the MRL1 is smaller in some cases from the ARL1 indicates that the distribution of the
run length may be extremely right-skewed [23].

Table 3 presents the best ARL1 values for each control chart case and the corresponding
value of smoothing parameter λ for each shock in the variance matrix. For the Mahalu case,
the control chart with smoothing parameter λ = 0.35 performs better and gives the smallest
out-of-sample ARL1. In Mahalc, this happens for smoothing parameter λ = 0.1. On the
contrary, in MEWMAu and MEWMAc, there is no unique smoothing parameter value that
outperforms the others. In the first case, small shocks are detected faster from large values
of λ in contrast to larger shocks where small values of the smoothing parameter are more
appropriate. In the latter, for all shocks in the variance, the best results are given for small
values of the smoothing parameter. Table 3 exhibits the best MRL1s values for the two
cases for unconstrained portfolio, Mahalu and MEWMAu, along with the corresponding
smoothing parameter values. In both cases, there is no specific value for the smoothing
parameter that outperforms the others.

The difference control charts based on the Mahalanobis distance perform better than
those based on the multivariate EMWA recursion in the case of unconstrained portfolios.
This does not always happen when short selling is not allowed, since in many cases, the
control schemes based on MEWMA recursion have slightly better results in terms of out-
of-sample ARL1. As a portfolio strategy, the prohibition of short selling has as a result a
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lower out-of-sample ARL1s and MRL1s. The smallest out-of-sample ARL1s obtained for
the Mahalu control charts are comparable with the results from the MEWMAu control
charts. With some exceptions, the proposed difference control schemes for monitoring
optimal weights from a government bond portfolio favor small values of the smoothing
parameter. This is in accordance with the results for the case of portfolios constructed from
risky assets ([23]). Additionally, the difference control schemes appear to react slowly in
small changes in the variance of asset returns, and the out-of-sample ARL1 takes large
values except in the case of MEWMAc.

Table 3. Simulation results for the out-of-control ARL and MRL.

ARL1 MRL1

Shock Control Charts

u Mahalu Mahalc MEWMAu MEWMAc Malalu MEWMAu

1.5 4.27 (0.35) 1.12 (0.1) 5.46 (0.75) 1.36 (0.05) 5 (0.5) 4 (*)
2 4.15 (0.35) 1.07 (0.1) 5.35 (0.75) 1.2 (0.1) 5 (0.5) 3 (0.3)

2.5 4.08 (0.35) 1.03 (0.1) 2.20 (0.5) 1.06 (0.1) 5 (0.15) 4 (*)
3 3.97 (0.35) 1.02 (0.1) 4.90 (0.05) 1.02 (0.05) 4 (0.5) 4 (*)

3.5 3.78 (0.35) 1.02 (0.1) 4.53 (0.25) 1.01 (0.05) 4 (0.5) 3 (*)
4 3.67 (0.35) 1.01 (0.1) 3.99 (0.05) 1.01 (0.1) 5 (*) 3 (*)

4.5 3.47 (0.35) 1.00 (0.1) 3.77 (0.15) 1.01 (0.1) 4 (0.05) 3 (*)
Best out-of-control ARLs and MRLs values for each shock in variance of asset returns, for n = 40. The corresponding
smoothing parameter values are given in parentheses. The out-of-control MRLs are for the unconstrained
portfolio case. The notation (*) means that more than one value of λ is appropriate.

8. Empirical Example

The control charts based on the first differences of optimal portfolio weights are
applied in the out-of-sample period from January 2000 to December 2009 for a total of
120 months. We assume an investor holds a portfolio consisting of k = 6 U.S. Treasury
bonds. Before we construct the control charts, it is necessary to determine the target process
or else the in-control process. This may be quite challenging for real data in financial
applications, especially in our example, where we have less frequent data than daily or
monthly. When the monitoring process is in-control, it is assumed there is no change point
and the target process is estimated.

We choose the period from September 1996 to December 1999, for a total of 40 months,
as the prerun period where the process is in-control. In this period, the U.S. Treasury
bond returns are assumed to be in the in-control state.This period is before the recession
at March 2001 according to the National Bureau of Economic Research (NBER) (see https:
//www.nber.org/cycles/main.html (accessed on 10 October 2022)). Using the observations
from this period, we estimate the in-control one-period ahead log-realized returns, the one-
period ahead expected returns, the covariance matrix of bond returns and the target optimal
GMV portfolio weights. The control charts are constructed for the out-of-sample period,
and there is no-reestimation of the target process in case of a change point. After the control
chart gives a signal and is confirmed from the financial analyst that this is a structural
break, normally, the target process should be reevaluated (see, for example [23,33]). Since,
in our case, we have less frequent data, a possible solution to this problem may be via
simulation. The control limits are chosen for a prespecified value h of the ARL0, which
is equal to 6 months: this means that on average, each control chart should give the
first false alarm after six months. The control charts are estimated for the following set of
smoothing parameters: λ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.75, 0.9}. Ref. [23]
mentioned that a benefit of the first difference control charts is that they give an alarm
almost immediately with high probability if the change in the parameters we monitor is
large. The estimation algorithm is presented in Appendix B.

Ref. [63] is in favor of lower values for the smoothing parameter and found that the
optimal value of λ is time varying and clusters in high and low periods. In contrast, [64]

https://www.nber.org/cycles/main.html
https://www.nber.org/cycles/main.html
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support the choice of large values of the smoothing parameters in the EWMA model in
financial applications. In our empirical example, we find that in the case of control schemes
based on the Mahalanobis distance, constrained and unconstrained GMVP values equal
or lower than 0.15 and 0.3, respectively, are appropriate. In addition, for control schemes
based on multivariate EWMA recursion for both cases, smoothing parameter values equal
or lower than 0.3 are preferred.

Figures 7 and 8 present analogously the control statistics based on the MEWMA
recursion. We remind that for the MEWMA charts, the smoothing matrix is taken as a
diagonal matrix with diagonal elements equal to λ, R = λI. In the control schemes, based
on the Mahalanobis distance, the control statistics show large oscillations in contrast with
those of MEWMA recursion that exhibit a very smoother behavior. As a consequence,
control statistics based on Mahalanobis distance are more often lying above the control
limit from those based on MEWMA recursion.
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Figure 7. MEWMA control statistics for constrained GMVP for λ = {0.05, 0.1, 0.15, 0.2, 0.25, 3}. The
out-of-sample period is 2000:01 to 2009:12.

The main purpose of an investor is to minimize the one-period-ahead out-of-sample
portfolio variance. The proposed control charts give a signal when a structural break in
the optimal portfolio weights is likely to happen. Table 4 presents for the two control chart
procedures, constrained and unconstrained portfolio optimization, the control limits and
the corresponding smoothing parameters. The smoothing parameters for the procedures
based on the Mahalanobis distance are set equal to 0.15, and for the MEWMA statistics, both
optimization cases are equal to 0.2. Additional results for other values of the smoothing
parameter are available upon request. Figure 9 illustrates the change points for the control
schemes based on the MEWMA. We remind that when a signal is given and a change point
is identified, the process should be re-estimated, as [23] mentioned.

Table 4. Control limits.

Control Scheme Smooth Parameter Control Limit

Mahal. dist. (constrained) 0.15 29.8
Mahal. dist. (unconstrained) 0.15 31.8
MEMWA (constrained) 0.2 1809.8
MEMWA (unconstrained) 0.2 12.9

Control limits for the out-of-sample period for the various control schemes. The control schemes are applied to
constrained or unconstrained portfolios.
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Figure 8. MEWMA control statistics for unconstrained GMVP for λ = {0.05, 0.1, 0.15, 0.2, 0.25, 3}.
The out-of-sample period is 2000:01 to 2009:12.

Figure 9 presents the control charts for the two portfolio strategies based on the multi-
variate EWMA recursion. The difference control charts using the Mahalanobis distance for
both constrained and unconstrained portfolios give more signals than the charts using the
MEWMA statistic. The latter control schemes behave better, which is in contradiction with
the results for risk assets and daily data that [23] found. A possible explanation could be
the difference in the risk characteristics of the data, since here, we have less risky assets
than stocks: government bonds. A possible advantage of using less frequently than daily
data could be the reduction of a large number of signals especially in terms of structure
models. A distinction between real and false alarm, is difficult and each signal obtained
should be evaluated for further actions by a financial analyst. In our work, we attempt to
give, if it is possible, an economic interpretation of the signals obtained from the control
charts. The use of a difference MEWMA control chart for an unconstrained portfolio gives
in the out-of-sample period four signals (without reestimation). The dates of the signals
are 2005:09, 2007:10, 2008:10 and 2008:11. The difference MEWMA control chart for a
constrained portfolio gives signals at the following dates: 2005:09, 2005:11, 2007:09 and
2008:10. The economic evaluation of all given signals is of great importance in finance. In
December 2007, the global financial crisis started, which led to the Great Recession until
June 2009 according to the NBER. Both control schemes detect the structural break due
to the financial crisis of 2007. However, the MEWMA chart for the constrained portfolio
gives a signal a month earlier than the chart in an unconstrained case. The signals that
both charts give in September 2005 could be associated with the housing market correction
during the period 2005–2006 that started in June 2005.

If we estimate the Sharpe ratios for the constrained and unconstrained GMV portfolio
for the time periods before and after the change point at September 2005, we see a decline
in the values (see Table 5). This is an extra indication that the financial analyst should
examine the composition of the optimal portfolio. Specifically, from the results in Table 5,
we see that ignoring a structural break may have important economic consequences for
the investor, since the performance of the investment has deteriorated, and the optimal
portfolio allocation has changed. From Figures A1 and A2, for the unconstrained and
constrained GMV portfolio, respectively, we see fluctuations and a rise in the portfolio
standard deviation from September 2005 until the end of the out-of-sample period.
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Figure 9. Control charts based on MEWMA statistic for smoothing parameter equal to 0.2. The
out-of-sample period is 2000:01 to 2009:12.

Table 5. Sharpe ratios.

Portfolio Sharpe Ratio (%)
Before c.p After c.p.

GMVP (constrained) 5.4249 4.6143
GMVP (unconstrained) 5.1140 4.3092

Sharpe ratios for the constrained and unconstrained GMVP before and after the first change point (c.p.) at 9/2005
from the MEWMA charts for λ = 0.2.

The number of signals that detect previous works about monitoring stock portfolios
with control charts (e.g., [23,33]) is quite large, especially in comparison with our analysis
about term structure-based portfolios. This can make the work of an analyst more difficult
so as to explore the causes and the results of each detected change from the control chart.

9. Concluding Remarks

In this work, we first apply the mean variance portfolio approach introduced by
Markowitz ([57]) to obtain optimal portfolios composed of government bonds. The portfolio
optimization is based on an affine term structure model estimated using the minimum chi
square approach. The research is restricted to the class of Gaussian VAR affine term structure
models using both latent and macro factors. For the state evolution process, we assume
homoscedasticity. This portfolio optimization strategy is compared with other benchmark
strategies and outperforms most of them for both allowing short selling or not. In addition,
the results confirm the finding of previous works (e.g., [7,8]) that portfolio optimization
based on dynamic factor models could be an alternative to traditional bond strategies.
Second, we propose control charts for the surveillance of optimal portfolio weights based
on the differences between two successive estimated global minimum variance portfolio
(GMVP) weights. We apply these control schemes in two portfolio optimization cases,
allowing short selling or not. The difference control charts are based on the univariate
EWMA recursion using the Mahalanobis distance and the multivariate EWMA recursion.

The estimation of the control charts requires the knowledge of the moments of the
estimated optimal weights and especially their autocovariance. For the estimation of the
covariance, we use a simulation approach, since our asset returns are correlated. The
proposed control schemes are constructed so as to have the same in-control average run
length (ARL) or media run length (MRL). Next, they are compared using as a performance
measure the out-of-control ARL and MRL. For the out-of-sample period, only changes
in the variance of bond returns are considered. The MEWMA difference control chart



Mathematics 2022, 10, 4094 25 of 33

performs better than the the Mahalanobis difference chart, and for every control scheme, the
results for a constrained portfolio outperform those for an unconstrained. The smoothing
parameter values should be chosen from the interval 0.1 to 0.3. In addition, an empirical
study is performed with the results for the out-of-sample period favoring the MEWMA
difference control chart and the Malananobis difference charts giving a larger number of
signals. Previous works for stock portfolios that use EWMA control charts, such as those
of [23], support the use of difference control chart procedures with values for the smoothing
parameter within the interval [0.1,0.25]. An important issue is the economic interpretation
of the signals and the identification as structural breaks or not.

Finally, further research should be focused on techniques for the estimation of the mo-
ments of optimal portfolio weights when the asset returns are identical and data-dependent
under the normality assumption. In addition, further analysis should be extended to
non-Gaussian affine models or models that allows heteroscedasticity.
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Appendix A. Moments of Bond Yields

Suppose that the yield of an n-period zero coupon bond is given by

Yn
t = An + B

′
nXt + εt, εt ∼ N(0, ΣY).

The expected value is

Et−1[Yt] = An + B
′
nEt−1[Xt] = An + B

′
nXt|t−1,

where Xt|t−1 is the one-step-ahead predictions of the state factors.
The conditional covariance matrix of bond yields is given by

ΣYt = Et−1[Yt − Et−1(Yt)][Yt − Et−1(Yt)]

= Et−1[An + B
′
nXt + εt − An − B

′
nEt−1(Xt)][An + B

′
nXt + εt − An − B

′
nEt−1(Xt)]

′

= Et−1[B
′
nXt − B

′
nEt−1(Xt) + εt][B

′
nXt − B

′
nEt−1(Xt) + εt]

′

= Et−1[B
′
nXt − B

′
n(µ + ρXt−1)][B

′
nXt − B

′
n(µ + ρXt−1)]

′

= Et−1[(B
′
n(Xt − µ− ρXt−1) + εt)(B

′
n(Xt − µ− ρXt−1) + εt)

′
]

= Et−1[(B
′
n(µ + ρXt−1 + ut − µ− ρXt−1)(B

′
n(µ + ρXt−1 + ut − µ− ρXt−1)

′
]

= Et−1[(B
′
nut + εt)(B

′
nut + εt)

′
]

= Et−1[B
′
nutu

′
tBn + εtε

′
t]

= B
′
nEt−1[utu

′
t]Bn + Et−1[εtε

′
t].

http://qed.econ.queensu.ca/jae/datasets/jungbacker001/
https://fred.stlouisfed.org
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Appendix B. Estimation Algorithm

Here, we describe briefly the steps for the proposed method using Matlab (the
code is available from https://github.com/KChBis/ATSMs-Applications-in-portfolio-
optimization-and-change-point-detection (accessed on 25 October 2022)). The algorithm is
as follows:

Step 1: Estimate the parameters of the ATSM using the MCSE method and evaluate the
forecasting ability of the model.

Step 2: For the out-of-sample period, estimate the one-step-ahead forecasts of log-returns
of bonds.

Step 3: (1) Construct the constrained and unconstrained GMV and MV portfolios from
the results of the previous step.

(2) Estimate the benchmark portfolio strategies.
(3) Compare the portfolio strategies based on the ATSM with the benchmark

strategies.
Step 4: (1) Perform simulation study (for constrained and unconstrained GMVP) in

order to calculate the control limits for fixed ARL0.
(2) Evaluate the detection ability of the control chart procedures for an out-of-

sample study and define the appropriate smoothing parameters.
Step 5: (1) Apply the proposed control chart procedures to an empirical example for

the out-of-sample period of the real data.
(2) Calculate the control limits via a simulation study for fixed ARL0.
(3) Detect the possible change points from the control charts and how these

affect the portfolio performance.

Appendix C. Tables

Table A1. Descriptive statistics of U.S. Treasury yields.

Yields

3 m 48 m 60 m 72 m 84 m 120 m

Mean 5.3335 6.4689 6.5854 6.7159 6.8025 6.9385
Skewness 0.8014 0.7117 0.7477 0.7597 0.8143 0.8817
Kurtosis 4.0964 3.111 3.0446 2.9959 3.0382 3.0774

Std
deviation 3.1443 3.0252 2.9415 2.9185 2.8444 2.724

Maximum 16.019 15.599 15.129 15.108 15.024 15.194
Minimum 0.041 1.019 1.556 1.525 2.179 2.679

Range 15.978 14.58 13.573 13.583 12.845 12.515
The table reports summary statistics of Treasury yields with maturities of 3, 48, 60, 72, 84, and 120 months.

Table A2. Descriptive Statistics of Macroeconomic Factors.

CPI IP Index

Maximum 1.4 2.7841
Minimum −1.8 −3.5293

Mean 0.3 0.1875
Median 0.3 0.2343
Mode 0.0 −3.5293

St. Deviation 0.3 0.7770
Variance 0.1 0.6037
Skewness −1.0 −0.7906
Kurtosis 12.8 6.7616
Range 3.1 6.3134
Sum 92.5 65.2391
Sem 0.0 0.0416

https://github.com/KChBis/ATSMs-Applications-in-portfolio-optimization-and-change-point-detection
https://github.com/KChBis/ATSMs-Applications-in-portfolio-optimization-and-change-point-detection


Mathematics 2022, 10, 4094 27 of 33

Table A3. Autocorrelation of U.S. Treasury Yields.

Yields Lag 1 Lag 5 Lag 12 Lag 20 Lag 24

3 months 0.9724 0.8597 0.6538 0.4385 0.3848
48 months 0.9833 0.9025 0.7497 0.6009 0.5681
60 months 0.9834 0.9056 0.7593 0.6209 0.5915
72 months 0.9841 0.9108 0.771 0.6381 0.609
84 months 0.984 0.9099 0.7676 0.639 0.6159

120 months 0.9844 0.9123 0.7701 0.6504 0.6321
Autocorrelation of U.S. Treasury yields for the sample period 1981:01 to 2009:12.

Table A4. Autocorrelation of macroeconomic factors.

Macro Factors Lag 1 Lag 5 Lag 12 Lag 20 Lag 24

CPI 0.4730 0.0049 −0.0616 0.0107 0.0268
IP Index 0.2852 0.2249 −0.0107 −0.0028 −0.1105

Autocorrelation of macroeconomic factors, Consumer Price Index and Industrial Production Index. The sample
period is 1981:01 to 2009:12.

Table A5. Mapping between structural and reduced-form parameters for the affine term struc-
ture model.

VAR No. of
Elements Σe Σmm ρQ δ1 ρml ρmm ρll ρlm δ0 cQ cm cl

Ω∗2 3 X
Ω∗m 3 X
ψ∗1m 6 X X
φ∗2m 9 X X
φ∗21 9 X X
Ω∗1 6 X X
φ∗m1 6 X X X
φ∗mm 4 X X X X
φ∗11 9 X X X
φ∗1m 6 X X X X
A∗2 3 X X X X X
A∗m 2 X X X X X X
A∗1 3 X X X X X X

Table A6. Parameter estimates under both risk-neutral measure and historical probability measure
along with asymptotic standard errors (in parentheses).

ρQ 1.1564 0.0417 −0.0513 0.0379 −0.0803
(0.0015) (0.0005) (0.0029) (0.0009) (0.0002)
−0.1827 0.9415 −0.0693 0.0282 0.0112
( 0.0018) (0.0028) (0.0019) (0.0038) (0.0012)
0.3301 −0.0839 0.5979 0 0
(0.0018) (0.0034) (0.0012)
−0.0830 −0.0584 −0.0633 0.9775 0.0476
(0.0016) (0.0004) (0.0010) (0.0003) (0.0000)
0.0766 0.0277 −0.0494 0.1284 0.9775
(0.0011) (0.0021) (0.0019) (0.0030 ) (0.0003)

δ0 −0.0036
(1.2126× 10−5)

δ1 1.3367× 10−05 2.3692 × 10−6 3.5697 × 10−4 2.1568 × 10−4 1.6369 × 10−4

(7.4344× 10−6) (7.0254× 10−6) (4.1176× 10−6) (5.2728× 10−6) (4.7532× 10−6)

µQ 0.5151 0.7697 0 0 0
(2.3627× 10−5) (2.8129× 10−6)
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Table A6. Cont.

Σ 0.2388 0 0 0 0
(2.3552× 10−6)
0.0637 0.7076 0 0 0
(2.4858× 10−6) (2.2066× 10−6)
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

µ −0.0208 0.6422 0.7131 −0.0605 −0.4171
(3.9700× 10−4) (3.4757× 10−4) (3.7405× 10−4) (4.3087× 10−4) (3.7323× 10−4)

ρ 0.4025 −0.0032 0.0264 0.0099 0.0191
(2.3839× 10−4) (9.7510× 10−4) (0.0031) (0.0048 ) (0.0058)
0.3538 0.1414 −0.1949

0.0548
0.0239

(1.0182× 10−4) (7.1410× 10−5) (0.0028) (0.0016) (0.0012)
0.5871 0.0545 0.7882 0.0482 0.0263
(1.3142× 10−4) (3.4708× 10−4) (0.0020) (0.0037) (0.0037)
0.8148 −0.1672 0.0443 0.9668 0.0017
(1.4495× 10−4) (5.6863× 10−4) (0.0023) (0.0051) (0.0038
−1.2708 0.1074 0.1000 −0.0227 0.9346
(8.8173× 10−5) (2.4898× 10−4) (0.0029) (0.0030 ) (0.0023)

Table A7. Correlation coefficients for bond expected returns.

Yields

3 M 48 M 60 M 72 M 84 M 120 M

1.0000 0.1445 0.3650 0.2697 0.3008 −0.1696
0.1445 1.0000 0.1655 0.9798 0.8138 0.8326
0.3650 0.1655 1.0000 0.1714 0.6826 −0.3383
0.2697 0.9798 0.1714 1.0000 0.8067 0.7795
0.3008 0.8138 0.6826 0.8067 1.0000 0.4126
−0.1696 0.8326 −0.3383 0.7795 0.4126 1.0000

Table A8. Out-of-control ARLs for n = 40 for the case of control chart based on Mahalanobis distance
for constrained portfolio.

λ
u 1.5 2 2.5 3 3.5 4 4.5

0.05 3.12 (1) 2.18 (1) 1.77 (1) 1.5558 (1) 1.40 (1) 1.32 (1) 1.22 (1)
0.1 1.12 (1) 1.07 (1) 1.03 (1) 1.02 (1) 1.02 (1) 1.01 (1) 1.00 (1)

0.15 2.16 (1) 1.67 (1) 1.47 (1) 1.35 (1) 1.26 (1) 1.22 (1) 1.17 (1)
0.2 2.11 (1) 1.69 (1) 1.47 (1) 1.37 (1) 1.29 (1) 1.22 (1) 1.17 (1)

0.25 2.08 (1) 1.68 (1) 1.47 (1) 1.41 (1) 1.30 (1) 1.22 (1) 1.18 (1)
0.3 1.94 (1) 1.59 (1) 1.43 (1) 1.34 (1) 1.28 (1) 1.22 (1) 1.19 (1)

0.35 1.92 (1) 1.59 (1) 1.45 (1) 1.36 (1) 1.30 (1) 1.23 (1) 1.19 (1)
0.4 2.43 (1) 1.85 (1) 1.69 (1) 1.38 (1) 1.44 (1) 1.35 (1) 1.28 (1)

0.45 2.31 (1) 1.86 (1) 1.67 (1) 1.53 (1) 1.41 (1) 1.35 (1) 1.28 (1)
0.5 2.06 (1) 1.71 (1) 1.55 (1) 1.46 (1) 1.38 (1) 1.33 (1) 1.26 (1)

0.75 1.94 (1) 1.69 (1) 1.52 (1) 1.44 (1) 1.36 (1) 1.31 (1) 1.25 (1)
0.9 1.92 (1) 1.61 (1) 1.50 (1) 1.41 (1) 1.36 (1) 1.31 (1) 1.25 (1)
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Table A9. Out-of-control ARLs for n = 40 for the case of control chart based on MEWMA statistic for
constrained portfolio.

λ
u 1.5 2 2.5 3 3.5 4 4.5

0.05 1.37 (1) 1.38 (1) 1.41 (1) 1.012 (1) 1.01 (1) 1.01 (1) 1.01 (1)
0.1 1.45 (1) 1.20 (1) 1.06 (1) 1.02 (1) 1.02 (1) 1.01 (1) 1.01 (1)

0.15 1.62 (1) 1.31 (1) 1.11 (1) 1.06(1) 1.03 (1) 1.02 (1) 1.01 (1)
0.2 1.72 (1) 1.38 (1) 1.20 (1) 1.10 (1) 1.05 (1) 1.03 (1) 1.02 (1)

0.25 1.76 (1) 1.44 (1) 1.23 (1) 1.12 (1) 1.07 (1) 1.04 (1) 1.03 (1)
0.3 1.83 (1) 1.47 (1) 1.27 (1) 1.15 (1) 1.09 (1) 1.05 (1) 1.03 (1)

0.35 1.89 (1) 1.51 (1) 1.31 (1) 1.21 (1) 1.13 (1) 1.08 (1) 1.05 (1)
0.4 1.86 (1) 1.55 (1) 1.35 (1) 1.22 (1) 1.15 (1) 1.10 (1) 1.06 (1)

0.45 1.99 (1) 1.63 (1) 1.42 (1) 1.28 (1) 1.18 (1) 1.13 (1) 1.09 (1)
0.5 1.99 (1) 1.66 (1) 1.45 (1) 1.30 (1) 1.22 (1) 1.16 (1) 1.12 (1)

0.75 2.45 (1) 2.08 (1) 1.83 (1) 1.62 (1) 1.53 (1) 1.42 (1) 1.32 ()
0.9 5.90 (1) 5.24 (1) 5.67 (1) 4.99 (1) 4.11 (1) 3.55 (1) 3.17 (1)

Appendix D. Figures
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Figure A1. Monthly standard deviation for the GMVP and the barbell, bullet and equally weighted
portfolio, with short selling for the out-of-sample period 2000:01 to 2009:12.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.0175

0.018

0.0185

0.019

GMVP costrained

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.021

0.0215

0.022

0.0225

0.023

0.0235

Barbell portfolio

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.0255

0.026

0.0265

0.027

0.0275

0.028

0.0285

Bullet portfolio

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.026

0.0265

0.027

0.0275

0.028

Equally weighted portfolio

Figure A2. Monthly standard deviation for the GMVP and the barbell, bullet and equally weighted
portfolio and no short selling for the out-of-sample period 2000:01 to 2009:12.
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Figure A3. Out-of-sample cumulative returns for the MV and GMV portfolio of US government
bonds; (a) Cumulative MVP returns no short selling; (b) Cumulative MVP returns with short selling;
(c) Cumulative GMVP returns no short selling; (d) Cumulative GMVP returns with short selling.
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Figure A4. Out-of-sample portfolio turnover for the MV and GMV portfolio of U.S. government
bonds; (a) Portfolio turnover for unconstrained MV portfolio; (b) Portfolio turnover for constrained
MV portfolio; (c) Portfolio turnover for the unconstrained GMVP; (d) Portfolio turnover for the
constrained GMVP.
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Figure A5. Mean variance constrained portfolio weights for risk aversion δ = 0.001.
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Figure A6. Mean variance unconstrained portfolio weights for risk aversion δ = 0.001.
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51. Goliński, A.; Spencer, P. The advantages of using excess returns to model the term structure. J. Financ. Econ. 2017, 125, 163–181.

[CrossRef]
52. Knez, P.J.; Litterman, R.; Scheinkman, J. Explorations into factors explaining money market returns. J. Financ. 1994, 49, 1861–1882.

[CrossRef]

http://dx.doi.org/10.1016/j.jeconom.2005.03.005
http://dx.doi.org/10.1016/j.jempfin.2017.11.010
http://dx.doi.org/10.1002/qre.2962
http://dx.doi.org/10.1080/07474940701247099
http://dx.doi.org/10.1080/00401706.1959.10489860
http://dx.doi.org/10.2307/1269551
http://dx.doi.org/10.1016/j.jeconom.2005.06.022
http://dx.doi.org/10.1007/s00184-007-0126-7
http://dx.doi.org/10.1524/stnd.2008.0918
http://dx.doi.org/10.1080/02331880903023845
http://dx.doi.org/10.1016/j.csda.2011.05.004
http://dx.doi.org/10.1080/00224065.1990.11979237
http://dx.doi.org/10.1016/j.ecosta.2018.08.003
http://dx.doi.org/10.1080/01605682.2018.1495887
http://dx.doi.org/10.1080/0013791X.2021.1936320
http://dx.doi.org/10.1002/jae.2319
http://dx.doi.org/10.1016/j.jeconom.2005.01.012
http://dx.doi.org/10.1016/j.jeconom.2005.01.011
http://dx.doi.org/10.1353/mcb.2006.0014
http://dx.doi.org/10.1017/S0022109010000438
http://dx.doi.org/10.1111/jofi.12700
http://dx.doi.org/10.1017/S0022109011000627
http://dx.doi.org/10.1017/S0022109011000469
http://dx.doi.org/10.1002/jae.2305
http://dx.doi.org/10.1016/j.jfineco.2017.05.001
http://dx.doi.org/10.1111/j.1540-6261.1994.tb04784.x


Mathematics 2022, 10, 4094 33 of 33

53. Ang, A.; Piazzesi, M. A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables.
J. Monet. Econ. 2003, 50, 745–787. [CrossRef]

54. Kloeden, P.E.; Platen, E. Stochastic Differential Equations. In Numerical Solution of Stochastic Differential Equations; Springer:
Berlin/Heidelberg, Germany, 1992; pp. 103–160.

55. Chen, R.R.; Scott, L. Maximum Likelihood Estimation for a Multifactor Equilibrium Model of the Term Structure of Interest Rates.
J. Fixed Income 1993, 3, 14–31. [CrossRef]

56. Pericoli, M.; Taboga, M. Canonical Term-Structure Models with Observable Factors and the Dynamics of Bond Risk Premia. J.
Money Credit. Bank. 2008, 40, 1471–1488. [CrossRef]

57. Markowitz, H. Portfolio Selection. J. Financ. 1952, 7, 77–91.
58. Kempf, A.; Memmel, C. Estimating the global minimum variance portfolio. Schmalenbach Bus. Rev. 2006, 58, 332–348. [CrossRef]
59. Fabozzi, F.J. The Handbook of Financial Instruments; John Wiley & Sons: Hoboken, NJ, USA, 2018.
60. Golosnoy, V.; Schmid, W.; Okhrin, I. Sequential Monitoring of Optimal Portfolio Weights. In Financial Surveillance; John Wiley &

Sons, Ltd.: Hoboken, NJ, USA, 2008; Chapter 7; pp. 179–210.
61. Frisén, M. Financial Surveillance; Wiley Online Library: Hoboken, NJ, USA, 2008; Volume 71.
62. Brandt, M.W. Portfolio choice problems. In Handbook of Financial Econometrics: Tools and Techniques; Elsevier: Amsterdam,

The Netherlands, 2010; pp. 269–336.
63. Bollen, B. What should the value of lambda be in the exponentially weighted moving average volatility model? Appl. Econ. 2015,

47, 853–860. [CrossRef]
64. Longerstaey, J.; Spencer, M. Riskmetricstm—Technical Document; Morgan Guaranty Trust Company of New York: New York, NY,

USA, 1996; Volume 51, p. 54.

http://dx.doi.org/10.1016/S0304-3932(03)00032-1
http://dx.doi.org/10.3905/jfi.1993.408090
http://dx.doi.org/10.1111/j.1538-4616.2008.00167.x
http://dx.doi.org/10.1007/BF03396737
http://dx.doi.org/10.1080/00036846.2014.982853

	Introduction
	Related Literature
	Data
	No-Arbitrage Affine Term Structure Model
	General Framework
	The Distribution and Estimation of Bond Returns

	Fixed-Income Portfolio Optimization
	Portfolio Framework
	Benchmark Portfolio Strategies and Portfolio Evaluation Performance
	Results for MV and GMV Portfolios

	Control Charts and Optimal Weights Monitoring
	Sequential Monitoring of Optimal Portfolio Weights
	Estimation of the Covariance of Optimal Weights

	Simulation Study
	Modeling the Out-of-Control State
	Simulation Study Results

	Empirical Example
	Concluding Remarks
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

