
Citation: Hu, C.; Li, Y.; Song, B. P

Systems with Proteins on Active

Membranes. Mathematics 2022, 10,

4076. https://doi.org/10.3390/

math10214076

Academic Editor: Konstantin Kozlov

Received: 9 October 2022

Accepted: 29 October 2022

Published: 2 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

P Systems with Proteins on Active Membranes
Chuanlong Hu, Yanyan Li and Bosheng Song *

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
* Correspondence: boshengsong@hnu.edu.cn

Abstract: P systems with active membranes, as a sort of basic P system, include in communication
rules and out communication rules, where communication rules are controlled by polarizations.
However, the communication of objects among living cells may be controlled by several factors, such
as proteins, polarizations, etc. Based on this biological fact, in this article, a new class of P systems,
named P systems with proteins on active membranes (known as PAM P systems) is considered,
where the movement of objects is controlled by both proteins and polarizations. The computational
theory of PAM P systems is discussed. More specifically, we show that PAM P systems achieve Turing
universality when the systems use two membranes, one protein and one polarization. Moreover, the
PAM P systems, with the help of membrane division rules, make the SAT problem solvable. These
results indicate that PAM P systems are also a sort of powerful system.

Keywords: SAT problem; Turing universality; P systems; active membranes; membrane computing

MSC: 68Q07; 68Q10; 68Q17

1. Introduction

Membrane computing, which aims to discuss computational models abstracted from
the functioning and structure of biological cells, is one sort of natural computing, where
the models are known as P systems [1]. All computing models have in common a set of
compartments separated by membranes and organized by a certain structure (tree, graph).
In general, three main sorts of P systems are discussed: cell-like [1–5], tissue-like [6–11]
and neural-like [12–20] P systems. Since the first article about membrane computing was
published, a large bibliography has been accumulated [5,21–25]. More information on
membrane computing is available on the website http://imcs.org.cn/ or http://ppage.
psystems.eu (accessed on 8 October 2022), where readers can view and download papers
in this field.

P systems with active membranes (known as AM P systems) were first considered
in [26], and the structure of these membranes is represented by a tree. It is an obvious
characteristic of AM P systems that the movement and evolution of objects are controlled by
polarization associated with each membrane, where polarization changes between positive,
negative, or neutral. Some further works on AM P systems have been published, such as
AM P systems and separation rules [27]: separation rules are imported into AM P systems,
and this proves that such P systems are able to make the SAT problem solvable in polynomial
time; AM P systems without using polarizations [28]: in this system, polarization is avoided
but modification of the labels of the membranes is allowed. It has been proved that the
computational power of AM P systems and their variants is powerful; most of them were
proved to achieve Turing universality, and they can give the result of NP-complete problems
or even PSPACE-complete problems [5,29–33].

P systems with proteins on membranes (known as PM P systems) were first considered
in [34]. Such systems include two types of objects: usual objects and proteins. Usual objects
are placed in membrane or in the environment; proteins are placed on membranes (note
that a multiset of proteins is placed on a membrane). According to whether proteins

Mathematics 2022, 10, 4076. https://doi.org/10.3390/math10214076 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10214076
https://doi.org/10.3390/math10214076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1479-5399
http://imcs.org.cn/
http://ppage.psystems.eu
http://ppage.psystems.eu
https://doi.org/10.3390/math10214076
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10214076?type=check_update&version=1

Mathematics 2022, 10, 4076 2 of 10

can be changed or not in systems [34], there are two groups of rules: “res” (representing
“restricted”) and “cp” (representing “change protein”). In [35], a special class of PM P
system, named P systems with flip-flop proteins on membranes, was considered, where
at most two states are allowed for each protein. The SAT problem is solvable with the
help of PM P systems and membrane division rules [36]. Readers who want to learn more
information about PM P systems can review the references [34,37].

As mentioned above, AM P systems contain communication rules, which are con-
trolled by polarizations. PM P systems contain several types of rules, which are controlled
by proteins. Obviously, rules in AM P systems and in PM P systems are controlled by only
one factor. However, chemical reactions happening among living cells may be controlled
by several factors, such as proteins, polarizations, etc. Based on this biological fact, in
this article, a new sort of P system, named P systems with proteins on active membranes
(known as PAM P systems), is considered, where the movement of objects is controlled by
both protein and polarization.

The computational theory of PAM P systems is studied. More specifically, we indicate
that PAM P systems achieve Turing universality when the systems use two membranes, one
protein and one polarization. Moreover, the PAM P systems, with the help of membrane
division rules, make the SAT problem solvable. The results among the P systems with active
membranes, P systems with proteins on membranes and this paper are in Table 1.

Table 1. Results of the P systems with active membranes, P systems with proteins on membranes and
this paper, where NOPm(pror; actc; list− o f − rules) represents the family of all sets of numbers pro-
duced by P systems with m membranes, r proteins in each membrane, and which use c polarizations
and types of rules list− o f − rules; ∗ represents the case where parameter m or r are boundless; the
types of rules 2cpp or 3 f f p combined with the polarizations of membranes become the types of rules
(3) and (4); the types of rules (b) and (c) combined with proteins on membranes become the types of
rules (3) and (4); the types of rules (3) and (4) are defined in this paper; and NRE is the family of all
recursively enumerable sets of natural numbers.

P Systems with Active Membranes P systems with Proteins on Membranes This Paper

NOP2(act2; (a), (c)) = NRE [38] NOP1(pro2; 2cpp) = NRE [34] NOP2(pro1; act1; (3), (4)) = NRE
NOP2(act1; (a), (b′), (c)) = NRE [38] NOP1(pro∗; 3 f f p) = NRE [34]

2. Preliminaries and Model Description
2.1. Preliminaries

In this subsection, the concepts of formal languages and automata theory are intro-
duced, which will be employed in this article. Readers who want to obtain more details
can refer to [39].

A non-empty finite set constitutes an alphabet denoted by Γ, where each element in the
set is known as a symbol. All strings created by joining any symbols from Γ form a set which
is symbolized by Γ∗. We use λ to represent the case that no symbol appears in a string,
which is called empty string. The non-empty set of Γ∗ is symbolized as Γ+ = Γ∗ \ {λ}. |u|
is known as the length of u, which symbolizes the total number of symbols presented in
string u.

For an alphabet Γ, we use the ordered pair (Γ, f) to represent a multiset over Γ symbol-
ized byM, where f is the mapping of Γ to N (natural numbers set). In addition,M(Γ) and
M+(Γ) are known as the set of all multisets and of all non-empty multisets, respectively.
Given a Γ = {a1, . . . , ak}, {a

f (a1)
1 , . . . , a f (ak)

k } expresses multisetM.
A tuple M = (m, H, l0, lh, I) symbolizes a register machine including m registers, a label

set H, an initial instruction l0 ∈ H, the halting instruction lh ∈ H, and a labeled program-
instructions set I whose instructions are of two types: (1) li : (ADD(r), lj, lk) (register r
increases by one, after that the instructions lj or lk are executed in a non-deterministical

Mathematics 2022, 10, 4076 3 of 10

way); and (2) li : (SUB(r), lj, lk) (subtract 1 from register r if it is non-zero, after that, execute
the instruction lj; otherwise, execute the instruction lk).

N(M) denotes a set including all numbers that are the result of a register machine
M executing instructions. The M works as follows: being empty in all registers at the
initial moment, l0 is applied to start the machine and subsequent instructions continue to
be applied according to the labels; the register 1 contains a number n corresponding to
the result generated by M only when the instruction labeled lh appears in the system. It
is known that all sets of numbers generated by register machines are Turing computable;
therefore, both of them recognize the same family of sets of numbers NRE (the family of all
recursively enumerable sets of natural numbers) [40].

2.2. PAM P Systems

In the following, the definition of PAM P systems will be given. Readers who want to
learn more about AM P systems and PM P systems can review [26] and [34], respectively.

Definition 1. A P system with proteins on active membranes (PAM P system) of degree m ≥ 1 is
a tuple

Π = (O, P, µ, H, w1/z1, . . . , wm/zm, E , R, iout),

where:

• O symbolizes an alphabet including all symbols of objects;
• P symbolizes an alphabet including all the symbols of proteins where O ∩ P = ∅;
• µ symbolizes the initial structure of a membrane including a set of membranes with labels in

1, . . . , m;
• H symbolizes a size-limited set of labels of membranes;
• E ⊆ O symbolizes a set including all objects that are initially placed in the environment;
• w1 . . . wm, symbolize all multisets of objects from O;
• z1 . . . zm, symbolize all multisets of proteins from P;
• R symbolize a set including a finite number of rules which have the following types:

(1) a[p|]e1
i → b[p′|]e2

i , i ∈ H, p, p′ ∈ P, a, b ∈ O, e1, e2 ∈ {+,−, 0}
(this rule can be used only when an object a appears in the parent of membrane i, the
protein p is placed on membrane i and its polarization is e1. When such a rule is applied,
an object a may be evolved to b, the protein p may be evolved to p′, and the polarization
of the membrane may also be modified);

(2) [p|a]e1
i → [p′|b]e2

i , i ∈ H, p, p′ ∈ P, a, b ∈ O, e1, e2 ∈ {+,−, 0}
(this rule can be used only when an object a appears in membrane i, the protein p is placed
on membrane i and its polarization is e1. When such a rule is applied, an object a may be
evolved to b, the protein p may be evolved to p′, and the polarization of the membrane
may also be modified);

(3) a[p|]e1
i → [p′|b]e2

i , i ∈ H, p, p′ ∈ P, a, b ∈ O, e1, e2 ∈ {+,−, 0}
(this rule can be used only when an object a appears in the parent of membrane i, the
protein p is placed on membrane i and its polarization is e1. When such a rule is applied,
an object a is moved into membrane i, and possibly evolved to b during this process,
the protein p may be evolved to p′, and the polarization of the membrane may also be
modified);

(4) [p|a]e1
i → b[p′|]e2

i , i ∈ H, p, p′ ∈ P, a, b ∈ O, e1, e2 ∈ {+,−, 0}
(this rule can be used only when an object a appears in the membrane i, the protein p is
placed on membrane i and its polarization is e1. When such a rule is applied, an object a
is sent out of membrane i, and possibly evolved to b during this process; the protein p
may be evolved to p′; and the polarization of the membrane may also be modified);

(5) a[p|b]e1
i → c[p′|d]e2

i , i ∈ H, p, p′ ∈ P, a, b, c, d ∈ O, e1, e2 ∈ {+,−, 0}
(this rule can be used only when an object a is contained in the parent of membrane
i, an object b is contained in membrane i, a protein p is placed on membrane i and its
polarization is e1. When such a rule is applied, an object a will be sent into membrane

Mathematics 2022, 10, 4076 4 of 10

i, and possibly evolved to d during this process; simultaneously, an object b will be sent
out of membrane i, and possibly evolved to c during this process; the protein p may be
evolved to p′; and the polarization e1 may also be modified to e2);

(6) [p|]ei → [p′|]e1
i [p′′|]e2

i , i ∈ H, p, p′, p′′ ∈ P, e, e1, e2 ∈ {+,−, 0}, 1 ≤ i ≤ m,
i 6= iout, and i is unable to be the root of the tree
(when such a rule is applied, membrane i is divided into two membranes without changing
label, with protein p evolved to p′ and p′′, with polarization e modified to e1 and e2,
respectively; all the objects in the parent membrane are duplicated in the two new
membranes).

• iout ∈ {0, 1, . . . , m} is the output area (0 is the label of environment).

The maximally parallel way is a common strategy of using rules in a PAM P system,
where the applicable rules of a PAM P system are added into a maximal multiset to be
employed (no more rules are able to be added) at each step. A PAM P system working
in this way has the following limitations: any object can be used in only one rule of any
type, and any membrane can be used in only one rule of types (1)–(5); when a rule of type
(6) (membrane division rules) is applied, the system cannot employ other rules for that
membrane in that step.

For a PAM P system as defined above, a configuration Ct contains the following factors:
the membrane structure and polarization of membranes at moment t; all objects presented
in each area of this membrane structure; all proteins presented on membranes; and all
objects presented in the environment at moment t. We can obtain the initial configuration
from (µ, w1 . . . , wm, z1 . . . zm, E), and the polarization of each membrane in the initial state
is neutral by default.

A system which starts from initial configuration and works in a maximally parallel way
with the restrictions mentioned above can achieve a series of consecutive configurations. If
all the rules of a system are unavailable in a configuration, this configuration is known as a
halting configuration. A transition denoted by Ct ⇒ Ct+1 represents that one configuration Ct
transfers to the next configuration Ct+1. A (finite or infinite) sequence of transitions between
configurations indicates a computation for a PAM P system. Only halting computations whose
last configuration is a halting configuration give a result which appears in the output area
iout as a multiset of objects.

N(Π) symbolizes a set including all numbers produced by a PAM P system Π.
NOPm(pror; actc; list − o f − rules) symbolizes the family of sets of numbers N(Π) pro-
duced by the system Π with the following explanations: (1) the number of membranes are
at most m; (2) the total proteins placed on one membrane are no more than r; (3) c represents
the number of polarizations which will be used in the system; and (4) list − o f − rules
includes the specifical types of rules used in the system. When parameters r or m are
boundless, we use ∗ instead.

To study the computational efficiency of the PAM P systems, the definition of such
systems will be given below [29].

Definition 2. A recognizer PAM P system of degree m ≥ 1 is defined as a tuple

Π = (O, P, Σ, µ, H, w1/z1, . . . , wm/zm, E , R, iin, iout),

where:

• O symbolizes an alphabet including all the symbols of usual objects and two special objects
yes and no;

• P symbolizes an alphabet including all the symbols of proteins;
• Σ ⊆ O symbolizes an input alphabet;
• µ symbolizes the initial structure of the membranes including a set of membranes with labels

in 1, . . . , m;
• H symbolizes a size-limited set of labels of membranes;

Mathematics 2022, 10, 4076 5 of 10

• E ⊆ O symbolizes a set including all the objects initially placed in the environment;
• w1 . . . wm, symbolize multisets of objects from O;
• z1 . . . zm, symbolize multisets of proteins from P;
• R symbolizes a set including the limited number of rules described above in each membrane i;
• iin ∈ {0, 1, . . . , m} is the input area and iout = 0;
• all computations halt;
• the halting condition of Π is that the system must send either object yes or object no (but not

both) into the environment only at the last step of the computation.

In the following, we will give the definition for which the problem is solvable in
polynomial time (in a uniform way) by a family of PAM P systems [41].

Definition 3. A family of PAM P systems Π = {Π(n)|n ∈ N} can give the polynomial time
result of a decision problem X = (IX , ΘX) if the following conditions are satisfied:

• the family Π is polynomially uniform by Turing machines;
• there exists a pair (cod, s) of polynomial-time computable functions over IX such that:

– for each instance u ∈ IX, s(u) is a natural number and cod(u) is an input multiset of
system Π(s(u));

– for each n ∈ N, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s);
– the family Π is sound with regard to (X, cod, s);
– the family Π is complete with regard to (X, cod, s).

PMCMRC(list−o f−rules) symbolizes a set including all decision problems for which
the recognizer PAM P systems work in a maximally parallel way to give a result with
polynomial time cost, where list-of-rules represents the types of rules used in the system.

3. Computational Power of PAM P Systems

In what follows, the computational power of PAM P systems will be considered. As
we all know, the register machine has Turing universality, so we can prove that the PAM P
systems are equivalent to the register machine to prove its Turing universality.

Theorem 1. NOP2(pro1; act1; (3), (4)) = NRE.

Proof. We design the PAM P system Π to imitate the register machine M.

Π = (O, P, [[]02]
0
1, H, λ/l0, λ/p, E , R, 1),

where

• O = {ar|1 ≤ r ≤ m} ∪ {c, c′, c′′},
• P = {l, l′, l′′|l ∈ H} ∪ {p},
• H = {1, 2},
• E = {ar|1 ≤ r ≤ m} ∪ {c}.

We assume that the numbers of copies of object ar are infinite.
To simulate the ADD instruction li : (ADD(r), lj, lk) of M, the R is designed as follows:

r1 : ar[li|]01 → [lj|ar]01,
r2 : ar[li|]01 → [lk|ar]01.

This system takes one step to simulate an ADD instruction li. Rules r1 and r2 are
applied non-deterministically. By using r1 or r2, membrane 1 receives one object ar, and
protein li on membrane 1 is modified to lj or lk. Consequently, the system increases one
copy of object ar and turns to simulate the instruction lj or lk.

To simulate the SUB instruction li : (SUB(r), lj, lk) of M, the R is designed as follows:

r3 : c[li|]01 → [l′i |c]01;

Mathematics 2022, 10, 4076 6 of 10

r4 : [l′i |ar]01 → ar[l′′i |]01;
r5 : [l′′i |c′′]01 → c[lj|]01;
r6 : [l′i |c′′]01 → c[lk|]01;
r7 : c[p|]02 → [p|c′]02;
r8 : [p|c′]02 → c′′[p|]02.

The system takes four steps to simulate a SUB instruction li. At step one, with the
influence of protein li, rule r3 is employed, object c in the environment is sent to membrane
1, and protein li is modified to l′i on membrane 1. In the next steps, the running of the
system is divided into two cases, according to whether membrane 1 contains objects ar or
not.

• At least one copy of object ar exists in membrane 1. There are two rules r4 and r7
applied in a parallel way in step two. The system sends a copy of object ar out of
membrane 1 and protein l′i is modified to l′′i . In addition, membrane 2 receives an
object c which is modified to c′ in this process. In step three, the system employs rule
r8 to send object c′ back to membrane 1 and modifies object c′ to c′′. In step four, rule
r5 is applied, and object c′′ is sent to the environment, which is modified to c in this
process; simultaneously, protein l′′i is revised to lj on membrane 1. Consequently, the
system decreases one copy of object ar and turns to simulating instruction lj.

• No object ar exists in membrane 1. Only one rule r7 is employed in step two. The
system sends object c into membrane 2 and modifies object c to c′ in this process.
In step three, object c′ is sent out of membrane 2, which is modified to c′′ in this
process. In step four, the system employs rule r6 to send object c′′ into the environment
and modifies c′′ to c; simultaneously, protein l′i is modified to lk on membrane 1.
Consequently, the system turns to simulating instruction lk.

A system only halts when protein lh appears on membrane 1. Membrane 1 contains
the number of copies of object ar corresponding to the result generated by Π. Therefore, Π
is equivalent to M.

4. Solving the SATSATSAT Problem using PAM P Systems

The SAT problem is a classic NP-complete problem [42] with the following description:
judging whether a Boolean formula in conjunctive normal form (CNF) is satisfiable, that is, whether
there is a truth-value assignments that means the value of CNF is true.

In the following, we will prove that working in a maximally parallel way, a family of
PAM P systems is able to give the result of the SAT problem in polynomial time.

Theorem 2. SAT ∈ PMCMRC((2),(3),(4),(6)).

Proof. Let ϕ = C1 ∧ · · · ∧ Cm be a Boolean formula, where Ci = yi,1 ∨ · · · ∨ yi,pi , with
yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}, 1 ≤ i ≤ n, 1 ≤ j ≤ pi.

We use a family of PAM P systems Π = {Π(t)|t ∈ N} to work out the result of the
SAT problem in polynomial time, where all propositional formulas ϕ have m clauses and n
variables.

We define s(ϕ) = 〈n, m〉 and

cod(ϕ) = α1,1 . . . αn,1α1,2 . . . αn,2 . . . α1,m . . . αn,m,

where, for each 1 ≤ i ≤ n, 1 ≤ j ≤ m, we have:

αi,j =

di,j if xi appears in Cj;
d
′
i,j if ¬xi appears in Cj;

d
′′
i,j if xi and ¬xi do not appears in Cj.

Mathematics 2022, 10, 4076 7 of 10

For each m, n ∈ N, we design the recognizer PAM P system

Π = (O, P, Σ, []01, H, w1/z1, E , R, 1, 0),

where

• O = Σ ∪ {mi|1 ≤ i ≤ nm + m + 3} ∪ {cj|1 ≤ j ≤ m} ∪ {e, m, yes, no};
• P = {βi|1 ≤ i ≤ nm + m + 3} ∪ {pi,j, p+i,j, p−i,j|1 ≤ i ≤ n + 1, 1 ≤ j ≤ m + 1};
• Σ = {di,j, d′i,j, d′′i,j|1 ≤ i ≤ n, 1 ≤ j ≤ m};
• H = {1};
• w1 = {m1, cod(ϕ)};
• z1 = {β1, p1,1};
• E = {m};
• the rules of R are designed as follows:

r1,i ≡ [pi,1|]01 → [p+i,1|]
0
1[p
−
i,1|]

0
1, 1 ≤ i ≤ n.

r2,i,j ≡ {[p+i,j|di,j]
0
1 → [p+i,j+1|cj]210,

[p+i,j|d
′
i,j]

0
1 → [p+i,j+1|d

′
i,j]

0
1,

[p+i,j|d
′′
i,j]

0
1 → [p+i,j+1|d

′′
i,j]

0
1|1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}.

r3,i,j ≡ {[p−i,j|di,j]
0
1 → [p−i,j+1|di,j]

0
1,

[p−i,j|d
′
i,j]

0
1 → [p−i,j+1|cj]

0
1,

[p−i,j|d
′′
i,j]

0
1 → [p−i,j+1|d

′′
i,j]

0
1|1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}.

r4,i ≡ {[p+i,m|di,m]
0
1 → [pi+1,1|cm]

0
1,

[p+i,m|d
′
i,m]

0
1 → [pi+1,1|d

′
i,m]

0
1,

[p+i,m|d
′′
i,m]

0
1 → [pi+1,1|d

′′
i,m]

0
1|1 ≤ i ≤ n}.

r5,i ≡ {[p−i,m|di,m]
0
1 → [pi+1,1|di,m]

0
1,

[p−i,m|d
′
i,m]

0
1 → [pi+1,1|cm]

0
1,

[p−i,m|d
′′
i,m]

0
1 → [pi+1,1|d

′′
i,m]

0
1|1 ≤ i ≤ n}.

r6,j ≡ [pn+1,j|cj]
0
1 → [pn+1,j+1|cj]

0
1, 1 ≤ j ≤ m.

r7 ≡ m[pn+1,m+1|]01 → [pn+1,m+1|e]01.
r8 ≡ [pn+1,m+1|e]01 → e[pn+1,m+1|]01.
r9,i ≡ [βi|mi]

0
1 → [βi+1|mi+1]

0
1, 1 ≤ i ≤ nm + m + 2.

r10 ≡ e[βnm+m+3|]01 → [βnm+m+3|yes]01.
r11 ≡ m[βnm+m+3|]01 → [βnm+m+3|no]01.
r12 ≡ [βnm+m+3|yes]01 → yes[βnm+m+3|]01.
r13 ≡ [βnm+m+3|no]01 → no[βnm+m+3|]01.

Generation stage.
The system produces 2n truth assignments for n variables in the generation stage,

Π(〈n, m〉) checks each truth assignment to decide whether all clauses are true; the genera-
tion stage takes nm + n steps, which contain n iterations (each iteration has m + 1 steps).
Next, we analyze each iteration as follows.

In the first step of the i-th iteration, the system employs rule r1,i for each membrane 1
divided into two membranes without changing its label, and each protein pi,1 is replaced
by p+i,1 and p−i,1, respectively.

In the next m − 1 steps of the i-th iteration, in membrane 1 containing protein p+i,j
(resp., protein p−i,j), one of the rules in r2,i,j (resp., r3,i,j) can be employed. If membrane 1

contains protein p+i,j and object di,j (resp., d′i,j or d′′i,j), with the influence of protein p+i,1, object

di,j is modified to cj, and the protein is modified to p+i,j+1. If membrane 1 contains protein

Mathematics 2022, 10, 4076 8 of 10

p−i,j and object d′i,j (resp., di,j or d′′i,j), with the influence of protein p−i,j, object d′i,j is modified

to cj, and the protein is modified to p−i,j+1.

In step m + 1 of the i-th iteration, if membrane 1 contains protein p+i,m and object di,m

(resp., d′i,m or d′′i,m), with the influence of protein p+i,m, one of the rules in r4,i,j is used, object
di,m is modified to cm, and the protein is modified to pi+1,1. If membrane 1 contains protein
p−i,m and object d′i,m (resp., di,m or d′′i,m), with the influence of protein p−i,m, one of the rules in
r5,i,j is used, object d′i,m is modified to cm, and the protein is modified to pi+1,1.

Checking stage.
The checking stage takes m steps. In the checking stage, each assignment in each

membrane 1 is checked for whether all clauses are satisfied. More specifically, when at least
one membrane 1 includes all objects c1, . . . , cm, then it indicates that all clauses in ϕ are
satisfied for that assignment in that membrane; consequently, the computation result of ϕ
is TRUE; when no membrane 1 includes all objects c1, . . . , cm, then it indicates that in each
membrane 1, the Boolean formula ϕ cannot be satisfied; consequently, the computation
result of ϕ is FALSE.

At the j-th (1 ≤ j ≤ m) step of the checking stage, rule r6,j is employed, and protein
pn+1,j is modified to pn+1,j+1. Note that when object cj (1 ≤ j ≤ m) does not appear in a
membrane 1, rule r6,j cannot be employed in this step.

Output stage.
The system sends the correct result to the environment in this stage. Rules r9,i are used

for counting the computation steps except when rules r1,i are used.
If there exists a membrane 1 that has protein pn+1,m+1 (ϕ is satisfied), at step nm + n +

m + 1, rule r7 is employed, object m is sent into membrane 1, and it is modified to e. At
step nm + n + m + 2, rule r8 is employed, and object e is sent to the environment. At step
nm + n + m + 3, the system employs rule r10, and object e is sent to membrane 1, which is
modified to yes in this process. At step nm + n + m + 4, rule r12 is applied, object yes is
sent to the environment, and the system stops. Consequently, the computation result of ϕ
is positive.

If protein pn+1,m+1 does not appear in any membrane 1 (ϕ is not satisfied), then
at step nm + n + m + 1 and step nm + n + m + 2, only rules r9,i are applied. At step
nm + n + m + 3, rule r11 is applied, object m is sent to membrane 1, and it is modified to no.
At step nm + n + m + 4, rule r13 is applied, object no is sent to the environment, and the
system stops. Consequently, the computation result of ϕ is negative.

To design the PAM P system, the necessary resources are counted as follows: (1) the
total number of objects is 4nm + n + 2m + 7; (2) the total number of proteins is 4nm + 3n +
4m + 6; (3) the initial number of membranes is 1; (3) the total number of objects at initial
configuration is nm+ 1; (4) the total number of rules used in the system is 7nm+ n+ 2m+ 8;
and (5) the length of a rule (not counting proteins) is no more than 2. Consequently, a PAM
P system Π(〈n, m〉) is constructible in polynomial time by a Turing machine.

Object yes (resp., no) as the result of the PAM P system Π(〈n, m〉) is transferred to the
environment in the last step nm + n + m + 4. Consequently, the PAM P system Π(〈n, m〉)
is polynomially bounded concerning the sizes of clauses and variants for ϕ.

Consequently, the family of PAM P systems Π offers a uniform result of a Boolean
satisfiability problem.

5. Conclusions

In this paper, a novel class of P systems whose name is P systems with proteins on
active membranes is introduced. The computational power and computational efficiency of
PAM P systems are discussed. We showed that PAM P systems achieve Turing universality
when the systems use two membranes, one protein and one polarization. In addition, PAM
P systems with the help of membrane division rules are able to make the SAT problem
solvable.

We showed conclusions that PAM P systems (using rules of types (3) and (4)) have
Turing universality and (using rules of types (2), (3), (4) and (6)) can give the result of the

Mathematics 2022, 10, 4076 9 of 10

SAT problem. A clear remaining problem is discussing whether the numbers of the types of
rules of PAM P systems are optimal in order to achieve universality and to give the result
of the SAT problem.

Many variants of P systems are able to make the QSAT problem solvable [4,5,32]. A
clear remaining problem is how to make the QSAT problem solvable in PAM P systems.

Author Contributions: Investigation, Y.L. and B.S.; Writing—original draft, C.H. All authors have
read and agreed to the published version of the manuscript.

Funding: The work was supported by the National Natural Science Foundation of China (62272151,
61972138, 62122025, 61872309, 62102140); Hunan Provincial Natural Science Foundation of China
(2022JJ20016, 2022RC1099); the Key Research and Development Program of Changsha (kq2004016);
and the Open Research Projects of Zhejiang Lab (2021RD0AB02).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Păun, G. Computing with membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
2. Song, B.; Li, K.; Orellana-Martín, D.; Pérez-Jiménez, M.J.; PéRez-Hurtado, I. A survey of nature-inspired computing: Membrane

computing. ACM Comput. Surv. (CSUR) 2021, 54, 1–31. [CrossRef]
3. Song, B.; Li, K.; Orellana-Martín, D.; Valencia-Cabrera, L.; Pérez-Jiménez, M.J. Cell-like P systems with evolutional sym-

port/antiport rules and membrane creation. Inf. Comput. 2020, 275, 104542. [CrossRef]
4. Pan, L.; Orellana-Martín, D.; Song, B.; Pérez-Jiménez, M.J. Cell-like P systems with polarizations and minimal rules. Theor.

Comput. Sci. 2020, 816, 1–18. [CrossRef]
5. Gazdag, Z.; Hajagos, K.; Iván, S. On the power of P systems with active membranes using weak non-elementary membrane

division. J. Membr. Comput. 2021, 3, 258–269. [CrossRef]
6. Bernardini, F.; Gheorghe, M. Cell communication in tissue P systems: Universality results. Soft Comput. 2005, 9, 640–649.

[CrossRef]
7. Martín-Vide, C.; Păun, G.; Pazos, J.; Rodríguez-Patón, A. Tissue P systems. Theor. Comput. Sci. 2003, 296, 295–326. [CrossRef]
8. Freund, R.; Păun, G.; Pérez-Jiménez, M.J. Tissue P systems with channel states. Theor. Comput. Sci. 2005, 330, 101–116. [CrossRef]
9. Song, B.; Huang, S.; Zeng, X. The computational power of monodirectional tissue P systems with symport rules. Inf. Comput.

2021, 281, 104751. [CrossRef]
10. Song, B.; Li, K.; Zeng, X. Monodirectional evolutional symport tissue P systems with promoters and cell division. IEEE Trans.

Parallel Distrib. Syst. 2021, 33, 332–342. [CrossRef]
11. Song, B.; Pan, L. Rule synchronization for tissue P systems. Inf. Comput. 2021, 281, 104685. [CrossRef]
12. Păun, A.; Păun, G. Small universal spiking neural P systems. BioSystems 2007, 90, 48–60. [CrossRef] [PubMed]
13. Ionescu, M.; Păun, G.; Yokomori, T. Spiking neural P systems. Fundam. Inform. 2006, 71, 279–308.
14. Ibarra, O.H.; Woodworth, S. Characterizations of some restricted spiking neural P systems. In International Workshop on Membrane

Computing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 424–442. [CrossRef]
15. Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Wang, H.; Shao, J.; Wang, T. Fuzzy reasoning spiking neural P system for fault diagnosis.

Inf. Sci. 2013, 235, 106–116. [CrossRef]
16. Zhu, M.; Yang, Q.; Dong, J.; Zhang, G.; Gou, X.; Rong, H.; Paul, P.; Neri, F. An adaptive optimization spiking neural P system for

binary problems. Int. J. Neural Syst. 2021, 31, 2050054. [CrossRef]
17. Jiang, Y.; Su, Y.; Luo, F. An improved universal spiking neural P system with generalized use of rules. J. Membr. Comput. 2019,

1, 270–278. [CrossRef]
18. Song, T.; Pan, L.; Păun, G. Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 2013, 219, 197–207.

[CrossRef]
19. Pan, L.; Păun, G.; Zhang, G.; Neri, F. Spiking neural P systems with communication on request. Int. J. Neural Syst. 2017,

27, 1750042. [CrossRef]
20. Wu, T.; Neri, F.; Pan, L. On the Tuning of the Computation Capability of Spiking Neural Membrane Systems with Communication

on Request. Int. J. Neural Syst. 2022, 32, 2250037. [CrossRef]
21. Bäck, T.; Kok, J.N.; Rozenberg, G. Handbook of Natural Computing; Springer: Berlin/Heidelberg, Germany; New York, NY, USA,

2012. [CrossRef]
22. Alhazov, A.; Freund, R.; Verlan, S. P systems working in maximal variants of the set derivation mode. In International Conference

on Membrane Computing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 83–102. [CrossRef]

http://doi.org/10.1006/jcss.1999.1693
http://dx.doi.org/10.1145/3431234
http://dx.doi.org/10.1016/j.ic.2020.104542
http://dx.doi.org/10.1016/j.tcs.2019.10.001
http://dx.doi.org/10.1007/s41965-021-00082-2
http://dx.doi.org/10.1007/s00500-004-0393-4
http://dx.doi.org/10.1016/S0304-3975(02)00659-X
http://dx.doi.org/10.1016/j.tcs.2004.09.013
http://dx.doi.org/10.1016/j.ic.2021.104751
http://dx.doi.org/10.1109/TPDS.2021.3065397
http://dx.doi.org/10.1016/j.ic.2020.104685
http://dx.doi.org/10.1016/j.biosystems.2006.06.006
http://www.ncbi.nlm.nih.gov/pubmed/16965853
http://dx.doi.org/10.1007/11963516_27
http://dx.doi.org/10.1016/j.ins.2012.07.015
http://dx.doi.org/10.1142/S0129065720500549
http://dx.doi.org/10.1007/s41965-019-00025-y
http://dx.doi.org/10.1016/j.ins.2012.07.023
http://dx.doi.org/10.1142/S0129065717500423
http://dx.doi.org/10.1142/S012906572250037X
http://dx.doi.org/10.1007/978-3-540-92910-9_13
http://dx.doi.org/10.1007/978-3-319-54072-6_6

Mathematics 2022, 10, 4076 10 of 10

23. Liu, L.; Jiang, K. Universality of spiking neural P systems with polarizations working in sequential mode induced by maximum
spike number. J. Membr. Comput. 2021, 4, 56–67. [CrossRef]

24. Aman, B. On the efficiency of synchronized P systems. J. Membr. Comput. 2022, 4, 1–10. [CrossRef]
25. Ceterchi, R.; Orellana-Martín, D.; Zhang, G. Division rules for tissue P systems inspired by space filling curves. J. Membr. Comput.

2021, 3, 105–115. [CrossRef]
26. Păun, G. P Systems with Active Membranes: Attacking NP Complete Problems; Technical Report; Department of Computer Science,

The University of Auckland: Auckland, New Zealand, 1999.
27. Pan, L.; Ishdorj, T.O. P systems with active membranes and separation rules. In Proceedings of the Second Brainstorming Week

on Membrane Computing, 325–341. Sevilla, ETS de Ingeniería Informática, Sevilla, Spain, 2–7 February 2004 .
28. Alhazov, A.; Pan, L.; Păun, G. Trading polarizations for labels in P systems with active membranes. Acta Inform. 2004, 41, 111–144.

[CrossRef]
29. Song, T.; Macías-Ramos, L.F.; Pan, L.; Pérez-Jiménez, M.J. Time-free solution to SAT problem using P systems with active

membranes. Theor. Comput. Sci. 2014, 529, 61–68. [CrossRef]
30. Zandron, C.; Ferretti, C.; Mauri, G. Solving NP-complete problems using P systems with active membranes. In Unconventional

Models of Computation, UMC’2K; Springer: New York, NY, USA, 2001; pp. 289–301. [CrossRef]
31. Alhazov, A.; Martín-Vide, C.; Pan, L. Solving a PSPACE-complete problem by recognizing P systems with restricted active

membranes. Fundam. Inform. 2003, 58, 67–77.
32. Song, B.; Pérez-Jiménez, M.J.; Pan, L. An efficient time-free solution to QSAT problem using P systems with proteins on

membranes. Inf. Comput. 2017, 256, 287–299. [CrossRef]
33. Wu, T.; Pan, L.; Yu, Q.; Tan, K.C. Numerical Spiking Neural P Systems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 2443–2457.

[CrossRef]
34. Păun, A.; Popa, B. P systems with proteins on membranes. Fundam. Inform. 2006, 72, 467–483.
35. Păun, A.; Rodríguez-Patón, A. On flip-flop membrane systems with proteins. Lect. Notes Comput. Sci. 2007, 4860, 414–427.

[CrossRef]
36. Păun, A.; Popa, B. P systems with proteins on membranes and membrane division. In International Conference on Developments in

Language Theory; Springer: Berlin/Heidelberg, Germany, 2006; pp. 292–303. [CrossRef]
37. Song, B.; Luo, X.; Valencia-Cabrera, L.; Zeng, X. The computational power of cell-like P systems with one protein on membrane.

J. Membr. Comput. 2020, 2, 332–340. [CrossRef]
38. Păun, G. Membrane computing. Scholarpedia 2010, 5, 9259. [CrossRef]
39. Rozenberg, G.; Salomaa, A. (Eds.) Handbook of Formal Languages: Volume 3 Beyond Words; Springer Science & Business Media:

New York, NY, USA, 2012.
40. Clarke, D. Computation: Finite and Infinite Machines. SIAM Rev. 1969, 11, 99–100. [CrossRef]
41. Pérez-Jiménez, M.J. An approach to computational complexity in membrane computing. In International Workshop on Membrane

Computing; Springer: Berlin/Heidelberg, Germany, 2004; pp. 85–109. [CrossRef]
42. Hartmanis, J. Computers and intractability: A guide to the theory of np-completeness (michael r. garey and david s. johnson).

Siam Rev. 1982, 24, 90. [CrossRef]

http://dx.doi.org/10.1007/s41965-021-00088-w
http://dx.doi.org/10.1007/s41965-021-00091-1
http://dx.doi.org/10.1007/s41965-021-00071-5
http://dx.doi.org/10.1007/s00236-004-0153-z
http://dx.doi.org/10.1016/j.tcs.2013.11.014
http://dx.doi.org/10.1007/978-1-4471-0313-4_21
http://dx.doi.org/10.1016/j.ic.2017.06.005
http://dx.doi.org/10.1109/TNNLS.2020.3005538
http://dx.doi.org/10.1007/978-3-540-77312-2_25
http://dx.doi.org/10.1007/11779148_27
http://dx.doi.org/10.1007/s41965-020-00063-x
http://dx.doi.org/10.4249/scholarpedia.9259
http://dx.doi.org/10.2307/2313471
http://dx.doi.org/10.1007/978-3-540-31837-8_5
http://dx.doi.org/10.1137/1024022

	Introduction
	Preliminaries and Model Description
	Preliminaries
	PAM P Systems

	Computational Power of PAM P Systems
	Solving the SAT-.4 Problem using PAM P Systems
	Conclusions
	References

