
Citation: Lotfi, R.; Shahsavani, D.;

Arashi, M. Classification in High

Dimension Using the Ledoit–Wolf

Shrinkage Method. Mathematics 2022,

10, 4069. https://doi.org/10.3390/

math10214069

Academic Editor: Christophe

Chesneau

Received: 23 September 2022

Accepted: 25 October 2022

Published: 1 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Classification in High Dimension Using the Ledoit–Wolf
Shrinkage Method
Rasoul Lotfi 1, Davood Shahsavani 1 and Mohammad Arashi 2,3,*

1 Department of Statistics, Faculty of Mathematical Sciences, Shahrood University of Technology,
Shahrood 3619995161, Iran

2 Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad,
Mashhad 9177948974, Iran

3 Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria,
Pretoria 0002, South Africa

* Correspondence: arashi@um.ac.ir; Tel.: +98-915-102-3551

Abstract: Classification using linear discriminant analysis (LDA) is challenging when the number
of variables is large relative to the number of observations. Algorithms such as LDA require the
computation of the feature vector’s precision matrices. In a high-dimension setting, due to the
singularity of the covariance matrix, it is not possible to estimate the maximum likelihood estimator
of the precision matrix. In this paper, we employ the Stein-type shrinkage estimation of Ledoit and
Wolf for high-dimensional data classification. The proposed approach’s efficiency is numerically
compared to existing methods, including LDA, cross-validation, gLasso, and SVM. We use the
misclassification error criterion for comparison.
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1. Introduction

As one of the most widely used classification techniques, linear discriminant analysis
(LDA) is still interesting because of its simplicity, stability, and prediction accuracy. Consider
X as a p-dimensional predictor vector and the response Y ∈ {1, 2, . . . , K} as the class labels.
In LDA, it is assumed that X|Y ∼ Np(µY, Σ), where µY ∈ Rp and Σ > 0; consequently, the
Bayes decision rule involves Σ−1. In the large sample setting, when p < n, the sample
covariance matrix S is an unbiased estimator of Σ. However, in a high-dimensional setting,
p ≈ n or p > n, S will be singular, and the likelihood estimator has many weaknesses such
as inaccuracy (see [1,2]).

Many studies have been conducted using factor methods, sparse, graphical, and
shrinkage methods for estimating Σ. Srivastava [3] examined multivariate theory in a
high-dimensional state and used the Moore–Penrose inverse of the covariance matrix to
solve the singularity problem of S. However, when some covariance matrix values are zero
or close to zero, this idea does not work well.

The idea of estimating the precision matrix using a sparse method was first proposed
by Dempster [4], and later, Meinshausen and Bühlmann [5] proposed the use of least
absolute shrinkage and selection operator (Lasso) regression to identify the zeros of the
inverse covariance matrix. Banerjee et al. [6] performed a penalized maximum likelihood
estimation with the lasso penalty for sparse estimation of the inverse of the covariance
matrix. Friedman et al. [7], proposed the graphical Lasso method, under the sparsity
assumption of Θ = Σ−1 by using coordinate descent for the lasso penalty, through the
objective function

log det Θ− trSΘ− λ‖Θ‖1, (1)
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where Θ > 0, tr(A) denotes the trace of matrix A, and ‖.‖1 is the norm one operator.
Bickel and Levina [8] used the hard thresholding estimator for the sparse estimation of
the covariance matrix Σ. Furthermore, Cai and Zhang [9] developed an optimality theory
for LDA in the high-dimensional setting by considering a different approach to solve the
problem of LDA. Instead of estimating δ = (µ2 − µ1), and Θ = Σ−1 separately, they
proposed a data-driven and tunning free classification rule called AdaLDA by directly
estimating the discriminant direction β = Θδ through solving an optimization problem.
As the hard threshold estimator in regression provides inflexible estimators, Ratman
et al. [10] refined a generalized threshold law by using the combination of the threshold
method and the shrinkage method. Bin and Tibshirani [11] generalized the estimate of a
sparse covariance matrix by simultaneously estimating the nonzero covariance and the
graph structure (location of zeros). Refer to Fan et al. [12] for more related studies.

Apart from sparse covariance matrix estimation, a common approach to improve
the estimation of Σ is the use of the class of shrinkage estimators, which was initially
proposed by James and Stein [13] to define bias estimation in order to reduce the variance
of S (see [14–16] for extensive reviews). Di Pillo [17] and Campbell [18] improved the
estimate of Σ−1 using the ridge idea. Peck and Van Niss [2] proposed another type of
shrinkage estimator of Σ−1 by reducing the Fisher’s classification error. Mkhadri [19] used
the cross-validation (CV) method to estimate the shrinkage parameter for the estimation of
Σ−1 in classification rule. However, Choi et al. [20] demonstrated that the use of the CV
method may not lead to a positive definite estimate for the high-dimensional case n� p.

In the shrinkage method and graphical and factor models, additional information is
needed in the estimation process (e.g., Beckel and Levina [21]; Khare and Rajaratnam [22];
Cai and Zhou [23]), whereas this surplus knowledge is not always available (Maurya [24]).
Therefore, Ledoit and Wolf [25] proposed the rule of the optimal linear shrinkage estimator
with optimal asymptotic properties by using the analysis of covariance matrix eigenvalues.
For estimating the inverse covariance matrix (precision matrix) when p ≥ n, other studies
have been conducted such as Wang et al. [26], Hong and Kim [27], and Lee et al. [28].

This paper aims to classify high-dimensional observations using the LDA, where
the inverse sample covariance matrix is singular and not invertible. We apply Lediot
and Wolf’s shrinkage method to estimate Θ and efficiently classify new observations in a
high-dimensional regime. Thus, the plan for the rest of this paper is as follows. In Section 2,
the proposed methodology, along with some theory, is given. Section 3 includes extensive
numerical assessments for performance analysis and compares the proposed discriminant
rule with other existing methods. We conclude with the significant results in Section 4;
Appendix A is allocated for the proofs.

2. Materials and Methods

In discriminant analysis, a set of observations are classified into predetermined cate-
gories using a function called the decision function or discriminant function. In other words,
discriminant analysis seeks to identify linear or nonlinear combinations of independent
variables that are best able to separate groups of observations using the discriminant rule.

Consider distinct populations Π1, . . . , ΠK with density function f j(x); j = 1, 2, . . . , K
and prior probabilities πj = Pr(Y ∈ Πj). An observation x is classified into Πi if

x ∈ Πi ⇐⇒ i = arg max
j

πj f j(x). (2)

In the simplest case, K = 2, it is assumed that Πj ∼ Np(µj, Σj); j = 1, 2, so that Π1
is independent of Π2, µj ∈ Rp, and Σj > 0. In the LDA, it is also assumed Σ1 = Σ2 = Σ.
According to Equation (2), x ∈ Π1 if f1(x) > f2(x); so, the discriminant function is obtained
as follows

D12(x) = (µ1 − µ2)
TΣ−1

(
x− µ1 + µ2

2

)
, (3)
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where µj and Σ are unknown, and we estimate them using the training sample by the
mean vector x̄j and the pooled sample covariance matrix S, respectively, where x̄j =
1
nj

∑i∈Πj
xi, and

NS = ∑
i∈Π1

(xi − x̄1)(xi − x̄1)
T + ∑

i∈Π2

(xi − x̄2)(xi − x̄2)
T ; N = n1 + n2 − 2.

Based on Equation (3), the classification function can be considered as a linear function W

W(x) = (x̄1 − x̄2)
TS−1

(
x− x̄1 + x̄2

2

)
. (4)

Hence, an observation x is classified into Π2 if W(x) > 0, and it is classified into the
population Π1 otherwise. Therefore, the probability of misclassification (PMC) depends on
the sample values x̄1, x̄2, and S. If the S estimate is weak, the PMC will not be minimized
and in high-dimension (p ≥ n); S−1 either cannot be calculated or it is not efficient. In this
case, we use the approach of shrinkage methods.

2.1. Ledoit and Wolf Shrinkage Estimators

The James and Stein shrinkage estimator [13] is a convex combination of a sample
covariance matrix and a target matrix T as follows

S∗ = (1− λ)S + λT, (5)

where λ ∈ (0, 1) is the shrinkage parameter and T is positive definite. The target matrix T
should be chosen to have several properties. The target matrix must be structured, positive
definite, and well-conditioned, representing our application’s true covariance matrix. The T
matrix may be biased; however, with its well-defined structure, it has a low variance. Given
that the matrix T is predetermined, determining the shrinkage parameter λ is important
and should be chosen in such a way that the variance of the shrinkage estimator is less
than the variance of S. If n > p, the variance S∗ must be less than the variance of the
target matrix, i.e., λ→ 0, and if p > n, the target matrix must have less variance than the
variance S∗, i.e., λ→ 1. Therefore, the λ values have a significant effect on the degree of
the misclassification error.

In the category of Stein-type shrinkage estimators; Ledoit and Wolf [25] proposed the
estimation of the shrinkage parameter λ using the following result, when p ≥ n.

Theorem 1. Suppose x1, x2, . . . , xn is a random sample from Np(µj, Σ), µj ∈ Rp, Σ > 0,
j = 1, 2, . . . , K and δ2 = E[‖ S− I ‖2]; α2 = E[‖ Σ− I ‖2] and β2 = E[‖ S− Σ ‖2]; then,

1. δ2 = α2 + β2;
2. assuming Σ∗ = (1− λ)S + λI, the optimal shrinkage parameter that minimizes the risk

value of Σ∗ is equal to λ̂LW = β̂2

δ̂2 , where

β̂2 =
1
n

â2 +
p
n

â2
1 ; δ̂2 =

n + 1
n

â2 +
p
n

â2
1 − 2â1 + 1

in which, based on Srivastava [29],

â1 =
1
p

tr(S) ; â2 =
n2

p(n− 1)(n + 2)
(tr(S2)− 1

n
(tr(S))2).

See Ledoit and Wolf [25] for details.
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2.2. Improved Linear Discriminant Rules

Since the shrinkage parameter, λ in the Ledoit and Wolf’s approach is obtained using
the optimization method, in contrast to the CV method used by Mkhaderi [19], it will
always lead to a positive definiteness of the sample covariance matrix. It also does not
require additional information about explanatory variables and their independence. As a
result, it has an advantage over other shrinkage estimation methods (Ledoit and Wolf [30]);
therefore, the proposed method for reducing the misclassification error and the discriminant
analysis in the high-dimensional case p ≥ n leads to the following classification rule

W̃(x, λLW) = (x̄1 − x̄2)
TS̃−1(λLW)

(
x− x̄1 + x̄2

2

)
, (6)

where S̃(λLW) = (1− λLW)S + λLWT can be obtained from the Equation (5), and

λLW = min(λ̂LW , 1). (7)

2.3. Properties of the Improved Discriminant Rule

Given that in the discriminant problem, W(x) has a normal distribution with the mean

E(W(x|Π1)) = (x̄1 − x̄2)
TS−1µ1 −

1
2
(x̄1 − x̄2)

TS−1(x̄1 + x̄2) (8)

and variance of
var(W(x|Π1)) = (x̄1 − x̄2)

TS−1ΣS−1(x̄1 − x̄2), (9)

we have the following results.

Lemma 1. Under the assumptions of Section 2.2, W̃(x, λLW) has a p-dimensional normal distri-
bution with mean

E(W̃(x, λLW)|Π1) = (x̄1 − x̄2)
TS̃−1(λLW)µ1 −

1
2
(x̄1 − x̄2)

TS̃−1(λLW)(x̄1 + x̄2)

and variance

var(W̃(x, λLW)|Π1) = (x̄1 − x̄2)
TS̃−1(λLW)ΣS̃−1(λLW)(x̄1 − x̄2)

Proof. Refer to Appendix A.

Theorem 2. Under the assumption of Section 2.2, using Lemma 1, we have

E(W̃(x, λLW)|Π1) = E(W(x)|Π1) + B

var(W̃(x, λLW)|Π1) ≤ var(W(x)|Π1),

where B = λLW (λLW−2)
n ∆2 and ∆ = [(µ1 − µ2)

TΣ−1(µ1 − µ2)]
1
2 .

Proof. Refer to Appendix A.

3. Numerical Studies

To assess the performance of the estimator (5) in classification, we conducted a simula-
tion study and analyzed some real data.

3.1. Simulation Study

Data were generated from two populations Np(0, Σ) and Np(µ, Σ), with p = 12 in
which 0 is a p-dimensional zero vector, µ is a p-dimensional desired vector, and Σ is a
p-dimensional square matrix. When the covariance matrix is almost singular, discrimi-
nant analysis is likely to be sensitive to different choices of the mean vector; so in this
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paper, two different forms for the mean vector µ are selected, namely, (m∗, 0, . . . , 0)T and
(m, m, . . . , m)T (named Mod1 and Mod2, respectively). The values of m∗ and m were cho-
sen so that the Mahalanobis distance, D = (µTΣ−1µ)

1
2 , was the same for each case, and

the µ were chosen using different values of D (0.5, 1.5 and 2.5). The covariance matrix
was also considered as Σ = (1− ρ)I + ρJ, where −1

p−1 ≤ ρ ≤ 1, I is the identity matrix,
and J is the unit matrix of dimension p× p. In order to determine the correlation role of
the explanatory variables in the estimator, two values 0.2 and 0.4 for ρ were considered.
For each population and different combinations of µ and Σ, we generated 10 p-dimensional
training and 50 p-dimensional test data vectors. We chose the target matrix as T = I, so the
sample covariance matrix shrank to the identity matrix. This target imposed no variance to
the shrinkage estimator. This simulation was repeated 1000 times, and the performance
of proposed methodology LW was compared with linear discriminant analysis (LDA),
the Mkhaderi method [19] (CV), the graphic lasso method (gLasso), and support vector
machine (SVM).

The results for each case µ, i.e., Mod1 and Mod2, are summarized in Tables 1 and 2.
The column ‘Test’ shows the average value of the misclassification test errors for each
parameter value of ρ. Further, in these tables, the mean value of the shrinkage parameter
λ for each discriminant rule is shown. The quantities in parentheses are the standard
deviations of the respective means. Bold values are the smallest among all, showing the
best method.

Table 1. Misclassification error and shrinkage parameter values for Mod1.

ρ = 0.2 ρ = 0.4

Test λ̄ Test λ̄

D = 0.5 LDA 0.487(0.037) −−− 0.475(0.072) −−−
CV 0.462(0.042) 0.949(0.043) 0.472(0.052) 0.957(0.031)
LW 0.443(0.039) 0.796(0.146) 0.462(0.070) 0.409(0.161)
gLasso 0.478(0.040) 0.007(0.001) 0.479(0.072) 0.009(0.002)
SVM 0.504(0.035) −−− 0.506(0.034) −−−

D = 1.5 LDA 0.406(0.064) −−− 0.369(0.055) −−−
CV 0.374(0.072) 0.974(0.023) 0.340(0.043) 0.952(0.029)
LW 0.351(0.073) 0.846(0.160) 0.318(0.034) 0.439(0.121)
gLasso 0.390(0.066) 0.007(0.002) 0.345(0.046) 0.009(0.002)
SVM 0.461(0.052) −−− 0.441(0.057) −−−

D = 2.5 LDA 0.268(0.058) −−− 0.251(0.060) −−−
CV 0.195(0.042) 0.975(0.033) 0.235(0.068) 0.969(0.032)
LW 0.183(0.050) 0.833(0.177) 0.189(0.045) 0.591(0.153)
gLasso 0.233(0.041) 0.007(0.002) 0.233(0.057) 0.008(0.002)
SVM 0.315(0.064) −−− 0.332(0.087) −−−

The improvement of the shrinkage algorithm strongly depends on the Mahalanobis
distance between two populations. When the Euclidean distance between the means is
small, the mean estimation error caused by the poor estimate of Σ is very damaging to the
classification. Therefore, as the Euclidean distance increases, the means move further apart,
and it does not have much relative effect on the classification.

According to Table 1, by increasing D, the misclassification error decreased. Appar-
ently, for each D, the shrinkage method LW had a lower classification error compared to
the LDA, CV, gLasso, and SVM methods. This means that the Ledoit and Wolf method had
better performance in determining and assigning new observations to populations.

On the other hand, according to Table 2, by changing the strategy and considering
Mod2, the results obtained in Mod1 were still valid. Thus, changing all the values of the
mean vector µ was established (better efficiency and performance of the proposed method
of this research than the studied methods). Figure 1 simply shows the results stated in
Tables 1 and 2. Bold values are the smallest among all, showing the best method.
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Table 2. Misclassification error and shrinkage parameter values for Mod2.

ρ = 0.2 ρ = 0.4

Test λ̄ Test λ̄

D = 0.5 LDA 0.491(0.057) −−− 0.502(0.050) −−−−
CV 0.420(0.091) 0.938(0.039) 0.456(0.065) 0.915(0.040)
LW 0.399(0.099) 0.791(0.204) 0.445(0.053) 0.389(0.120)
gLasso 0.479(0.042) 0.007(0.001) 0.479(0.055) 0.010(0.002)
SVM 0.438(0.0679) −−− 0.467(0.086) −−−

D = 1.5 LDA 0.214(0.077) 0.00 0.324(0.066) 0.00
CV 0.104(0.030) 0.965(0.035) 0.218(0.059) 0.950(0.036)
LW 0.100(0.035) 0.716(0.226) 0.214(0.036) 0.679(0.273)
gLasso 0.186(0.044) 0.007(0.001) 0.303(0.082) 0.008(0.002)
SVM 0.140(0.078) −−− 0.215(0.030) −−−

D = 2.5 LDA 0.097(0.076) −−− 0.183(0.054) −−−
CV 0.024(0.013) 0.989(0.014) 0.085(0.027) 0.960(0.030)
LW 0.023(0.012) 0.501(0.142) 0.081(0.031) 0.580(0.180)
gLasso 0.063(0.025) 0.007(0.001) 0.147(0.041) 0.008(0.001)
SVM 0.031(0.020) −−− 0.083(0.029) −−−

(a) (b)

(c) (d)

Figure 1. Misclassification error by increasing the Mahalanobis distance. (a) Mod1, ρ = 0.2, n = 10;
(b) Mod1, ρ = 0.4, n = 10; (c) Mod2, ρ = 0.2, n = 10; (d) Mod2, ρ = 0.4, n = 10.

Figure 2 depicts the misclassification error for varying sample sizes. Not surprisingly,
as n increased, the misclassification error decreased for all the methods in this study, but
surprisingly, none of the methods had a smaller error compared to the LW. As shown
in Figure 2, with the increasing sample size, the misclassification error in all methods
was higher than the proposed method. Moreover, as the Mahalanobis distance increased,
it became easier to identify which population the new observation x∗ belonged to, which
improved the classification in the proposed method.
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(a)

(b)

(c)

Figure 2. Misclassification error by increasing sample size and p = 12. (a) Mod1, ρ = 0.2, D = 0.5;
(b) Mod1, ρ = 0.2, D = 1.5; (c) Mod1, ρ = 0.2, D = 2.5.

To evaluate the efficiency of the LW method, simulations were performed using
p = 16, 30, 50, 100, 500 values. These results are summarized in Table 3. As the dimension
increased, the classical method of linear discriminant analysis as well as the proposed
cross-validation method of Mkhaderi [19] could not be used due to the singularity of
the covariance matrix. With an increase in the value of D, the misclassification error
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decreased, and for each value D, the shrinkage method of LW was significantly better than
the other methods.

Table 3. Misclassification error and shrinkage parameter values for ρ = 0.4 in Mod1 state.

LDA CV LW gLasso SVM

D = 0.5 p = 12 0.475(0.072) 0.472(0.052) 0.462(0.070) 0.479(0.072) 0.506(0.034)
p = 16 0.494(0.060) 0.494(0.042) 0.450(0.050) 0.477(0.054) 502(0.050)
p = 30 −−− a −−− 0.478(0.066) 0.495(0.076) 0.511(0.030)
p = 50 −−− −−− 0.470(0.063) 0.493(0.061) 0.504(0.037)
p = 100 −−− −−− 0.496(0.045) 0.504(0.039) 0.515(0.034)
p = 500 −−− −−− 0.502(0.044) 0.519(0.056) 0.505(0.034)

D = 1.5 p = 12 0.369(0.055) 0.340(0.043) 0.318(0.034) 0.345(0.046) 0.441(0.057)
p = 16 0.413(0.077) 0.537(0.098) 0.334(0.049) 0.373(0.074) 0.458(0.045)
p = 30 −−− −−− 0.372(0.041) 0.410(0.070) 0.501(0.053)
p = 50 −−− −−− 0.409(0.073) 0.417(0.061) 0.490(0.037)
p = 100 −−− −−− 0.415(0.055) 0.422(0.040) 0.502(0.027)
p = 500 −−− −−− 0.451(0.059) 0.462(0.038) 0.518(0.027)

D = 2.5 p = 12 0.251(0.060) 0.235(0.068) 0.189(0.045) 0.233(0.057) 0.332(0.087)
p = 16 0.338(0.072) 0.592(0.115) 0.213(0.054) 0.260(0.057) 0.391(0.078)
p = 30 −−− −−− 0.235(0.062) 0.276(0.070) 0.410(0.079)
p = 50 −−− −−− 0.266(0.055) 0.286(0.061) 0.466(0.051)
p = 100 −−− −−− 0.326(0.067) 0.330(0.053) 0.482(0.044)
p = 500 −−− −−− 0.428(0.069) 0.430(0.076) 0.488(0.061)

a The covariance matrix is singular.

3.2. Real Data Analyses

In this section, we assess the performance of the five methods in classification for the
datasets in Table 4.

Table 4. Datasets (Accessed on 30 November 2022).

DataName Speci f ication Link

Data1 BreastCancer n = 116 www.UCIMachineLearning.com
p = 10

Data2 Insurance n = 36, 634 www.Kaggle.com
p = 17

Data3 LSV T n = 126 www.UCIMachineLearning.com
p = 309

Data4 mRN A n = 219 www.UCIMachineLearning.com
p = 1650

As shown in Table 5, the LW shrinkage method for classification was superior compar-
atively (marked as bold). In Data 4, the execution time in the system with specifications
CPU: i7− 4720HQ and Ram: 8 GB for the gLasso method took more than 10 h, and for
the LW method it was less than 5 min, which was a sign of the rapidity of the shrinkage
method in the classification of high-dimensional data.

www.UCI Machine Learning.com
www.Kaggle.com
www.UCI Machine Learning.com
www.UCI Machine Learning.com
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Table 5. Misclassification error for the real datasets in Table 4.

LDA CV SVM gLasso LW

Data1 0.31707 0.26829 0.34146 0.29268 0.26829

Data2 0.00063 0.00063 0.00009 0.00018 0.00009

Data3 NaN a NaN 0.21053 0.18421 0.10526

Data4 NaN NaN 0.00000 0.00000 0.00000
a The covariance matrix is singular.

Figure 3 depicts the average of misclassification errors for the five methods, discussed
in the paper.

Figure 3. Misclassification error for the four real datasets.

4. Discussion and Conclusions

In the present paper, we aimed to improve the efficiency of the LDA classification
method in high-dimensional situations, where the singularity of the inverse covariance ma-
trix produced problems. We proposed to estimate the precision matrix with the shrinkage
approach of Ledoit and Wolf (LW) [25], where the sample covariance matrix and a target
matrix were linearly combined through a penalty factor in LDA classification.

The implementation of the suggested method on simulation data showed that for
different scenarios, the proposed approach was superior to two powerful competitors,
gLasso and SVM, in the sense of misclassification error. By increasing the Mahalanobis
distance and using p = 100 and p = 500, we became more confident that the LW method
could be considered as an alternative to some well-known methods for better classification.

In the real data analyses, three results were considerable. First, the analysis of Data1
and Data2 showed that LW was as good as the other competitors or much better when
n >> p. Second, the misclassification of Data3 (n = 126, p = 309) exhibited that our
method was more reliable than the others in high-dimensional regimes (n < p). Third, the
LW method had the same misclassification error for Data4 when n << p, compared to
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others. However, the execution time of the LW method was much shorter. In addition to
high accuracy, the LW method was strongly recommended from the computation burden
point of view, especially in a high-dimensional setting, where computing precision matrix
estimation is challenging.

Lastly, if the covariance matrices of the populations are not the same (Σi 6= Σj;
i, j = 1, 2, . . . , K), instead of LDA, it is possible to use the quadratic discriminant analysis
(QDA). Friedman [31] proposed the method of regularized discriminant analysis (RDA) by
using the trace estimator, p−1tr(Σi)Ip, and applying twice the shrinking sample covariance
matrix. Since the trace estimator pools the diagonal elements of sample covariance matrices
and ignores off-diagonal elements, Wu et al. [32] introduced the ppQDA estimator, which
pools all elements in the covariance matrix, and it does not need to impose sparse assump-
tions. Although the ppQDA method has good asymptotic properties, it may not have a
good performance for data classification. Therefore, considering (5) and Friedman’s [31]
method as follows

Si(λ, γ) = (1− γ)Si(λ) + γ
(

p−1tr(Si(λ))Ip

)
,

where λ, γ are tuning parameters, and Si(λ) =
(1−λ)(ni−1)Si+λ(n1+n2−2)S
(1−λ)(ni−1)+λ(n1+n2−2) , it seems that by

using the shrinkage method presented in this article, estimation of Σi can be improved and
it is possible to reduce the misclassification error of high-dimensional data in the quadratic
discriminant analysis mode.
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Appendix A

Here, we give the sketch of the proofs of Lemma 1 and Theorem 2.

Proof of Lemma 1. According to (3), replacing S−1 with S̃−1(λLW), the decision function
W̃(x, λLW) is given by

W̃(x, λLW) =(x̄1 − x̄2)
TS̃−1(λLW)(x− x̄1 + x̄2

2
)

=(x̄1 − x̄2)
TS̃−1(λLW)x− 1

2
(x̄1 − x̄2)

TS̃−1(λLW)(x̄1 + x̄2).
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On the other hand, since x ∼ Np(µ, Σ) is independent of x̄1, x̄2, and S, the conditional
distribution W̃(x, λLW) given Π1 has the following mean and variance

E(W̃(x, λLW)|Π1) = (x̄1 − x̄2)
TS̃−1(λLW)E(x|Π1)−

1
2
(x̄1 − x̄2)

TS̃−1(λLW)(x̄1 + x̄2).

var(W̃(x, λLW)|Π1) = (x̄1 − x̄2)
TS̃−1(λLW)var(x|Π1)S̃−1(λLW)(x̄1 − x̄2)

The proof is complete.

Proof of Theorem 2. Considering d = x̄1 − x̄2 and d∗ = x̄1+x̄2
2 in Equations (8) and (9),

we have
E(W(x|Π1)) = dTS−1µ1 − dTS−1d∗

var(W(x|Π1)) = dTS−1ΣS−1d.

Let x∗ = Ax + b, where A is a nonsingular matrix, A and b are considered in such a
way that Σ −→ I; µ1 − µ2 −→ δ, δ = (∆, 0, . . . 0); ∆ = ((µ1 − µ2)TΣ−1(µ1 − µ2))

1
2 ; and

µ1 −→ 0; we also define the variables Y , V and Z as follows

S = I +
1√
n

V ; x̄1 =
1√
n

Z ; d = δ− 1√
n

Y .

As a result, Equations (8) and (9) are equal to

E(W(x|Π1)) = −dTS−1d∗

and
var(W(x|Π1)) = dTS−2d.

Using the Taylor’s series expansion, we have

E(W(x|Π1)) =− dTS−1d∗

=− dT(I− 1

n
1
2

V +
1
n

V2 − 1

n
3
2

V3 + . . . )d∗

=− dTd∗ +
1

n
1
2

dTVd∗ − 1
n

dTV2d∗ + O(n−
3
2 )

and

var(W(x|Π1)) =dTS−2d

=dT(I− 2

n
1
2

V +
3
n

V2 − 4

n
3
2

V3 + . . . )d

=dTd− 2

n
1
2

dTVd− 3
n

dTV2d + o(n−
3
2 ).

Using Ledoit and Wolf [25] and S̃(λLW) = (1− λLW)S + λLWT, we obtain
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E(W̃(x, λLW)|Π1)) =− dTS̃−1(λLW)d∗

=− dTd∗ +
1− λLW

n
1
2

dTVd∗ − (1− λLW)2

n
dTV2d∗

+O((1− λLW)3n−
3
2 )

=− dTd∗ +
1

n
1
2

dTVd∗ − 1
n

dTV2d∗ − λLW

n
1
2

dTVd∗

−λLW(λLW − 2)
n

dTV2d∗ + O((1− λLW)3n−
3
2 )

=E(W(x|Π1)) + B + O(λLWn−
1
2 ),

where B = λLW (λLW−2)
n ∆2.

Moreover,

var(W̃(x, λLW)|Π1) =dTS̃−2(λLW)d

=dTd− 2(1− λLW)

n
1
2

dTVd− 3(1− λLW)2

n
dTV2d + o((1− λLW)3n−

3
2 )

=dTd− 2

n
1
2

dTVd +
3
n

dTV2d +
3λLW(λLW − 2)

n
dTV2d

+o(λLWn−
1
2 )

=var(W(x|Π1)) + ψ(λLW)∆2 + o(λLWn−
1
2 ),

in which ψ(λLW) = 3λLW (λLW−2)
n . Since 0 < λLW < 1, we obtain ψ(λLW) < 0, and the proof

is complete.
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