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Abstract: As an important data analysis method in the field of machine learning and data mining,
feature learning has a wide range of applications in various industries. The traditional multidimen-
sional scaling (MDS) maintains the topology of data points in the low-dimensional embeddings
obtained during feature learning, but ignores the discriminative nature between classes of low-
dimensional embedded data. Thus, the discriminative multidimensional scaling based on pairwise
constraints for feature learning (pcDMDS) model is proposed in this paper. The model enhances
the discriminativeness from two aspects. The first aspect is to increase the compactness of the new
data representation in the same cluster through fuzzy k-means. The second aspect is to obtain more
extended pairwise constraint information between samples. In the whole feature learning process,
the model considers both the topology of samples in the original space and the cluster structure in
the new space. It also incorporates the extended pairwise constraint information in the samples,
which further improves the model’s ability to obtain discriminative features. Finally, the experimental
results on twelve datasets show that pcDMDS performs 10.31% and 8.31% higher than PMDS model
in terms of accuracy and purity.

Keywords: discriminative feature learning; multidimensional scaling; fuzzy k-means; pairwise
constraint propagation; iterative majorization algorithm

MSC: 62P25

1. Introduction

The high-dimensional nature of large amounts of image data, text data, and video
data is inevitable in today’s big data era. Although image data and text data are simple
and intuitive for humans, for machine learning models, there is a dimensional disaster.
Because the direct use of raw data will not only increase the processing time of subsequent
machine learning models, but may also reduce the performance of classification models
and clustering models due to the influence of information such as redundancy and noise in
the data. Based on this, how to obtain a more discriminative feature from the raw data has
also become a research objective for many scholars.

In feature learning, supervised, semi-supervised and unsupervised feature learning
methods are classified by whether or not the annotation information of the data is used
in the learning process. The classical methods for unsupervised feature learning, semi-
supervised feature learning and unsupervised feature learning are principal component
analysis (PCA) [1], semi-supervised dimensionality deduction (SSDR) [2] and linear dis-
criminant analysis (LDA) [3], respectively. PCA, SSDR and LDA are all linear feature
learning methods, which have the advantage of fast computation and the ability to quickly
compute the data representation of a new sample through the projection matrix when a
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new sample arrives. In contrast, nonlinear feature learning based on stream learning allows
the low-dimensional data representation to preserve the local topology of the original
data as much as possible, such as locally linear embedding (LLE) [4], multidimensional
scaling (MDS) [5] and laplacian eigenmaps (LE) [6], etc. Nonlinear feature learning can
discover the potential flow structure inside the data well, but face the problem of new
samples [7], so there are also a number of algorithms that maintain the local topology as
much as possible in the projection process. For example, locality preserving projection
(LPP) [8] and neighborhood preserving embedding [9] are projection matrices added to LE
and LLE, respectively.

Feature learning has important research significance because of its many applications,
such as data visualization [10], information retrieval [11], and clustering [12]. The MDS, as
a commonly used streaming learning method, considers the distance information between
samples in the feature learning process, but ignores the discriminative nature between data
categories. Based on this, a discriminative multidimensional scaling based on pairwise
constraints for feature learning (pcDMDS) is proposed in this paper in order to obtain more
discriminative features.

The main contributions of this paper are shown below.

• A feature learning algorithm named pcDMDS is proposed, and its corresponding tar-
get formula is designed. The target formula reflects the topological and discriminative
nature of learning, and the cluster structure is discovered while learning the low-
dimensional data representation. It makes the low-dimensional data representation of
the same cluster closer.

• The objective function is approximated using an iterative optimization method, and
the corresponding algorithm is designed according to the inference process.

• Comparative experiments are conducted using public datasets and evaluation criteria,
and the results show that the low-dimensional embeddings obtained by the algorithm
are more discriminative.

The remainder of this paper is organized as follows. In Section 2, existing works that
related to this paper is reviewed. In Section 3, some preliminaries about our work are
introduced. In Section 4, the details of the proposed model, including objective function
and inference are illustrated. Experiments and results are described in Section 5. Finally,
conclusions are drawn in Section 6.

2. Related Work

As a feature learning method that maintains the non-similarity of samples (generally
distance), the MDS is widely used because of its simplicity and efficiency. Feature learning
based on MDS can be divided into two categories [13], one is metric multidimensional
scaling (MMDS) and the other one is non-metric multidimensional scaling (NMDS). In
MMDS, the learned low-dimensional data representation is to preserve the distance of the
original data as much as possible. But in NMDS, the low-dimensional data representation
is to maintain the relationship of distance of the original data. Since the model proposed in
this paper is a MDS of metrics, the MDS of metrics is described in detail below, and MDS
generally refers to MMDS.

Different MDS methods have been proposed successively. The most classical MDS is
to give the distance between samples and then find a suitable low-dimensional embedding.
This method belongs to a nonlinear feature learning method, so that the sample distance
between the low-dimensional embedding points keeps the distance corresponding to the
original sample as much as possible, and its disadvantage is that it faces the problem of
new samples. Webb [14] introduced a set of basis functions for feature mapping, and then
achieved dimensionality reduction through a projection matrix. At the same time, the new
data representation keeps the Euclidean distance of the original samples as much as possible,
and an iterative update method was proposed to optimize the projection matrix. As an
important manifold learning method, isometric feature mapping [15] uses the geodesic
distance between samples to represent the dissimilarity between samples, and finally uses
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classical MDS to get low-dimensional embedding of data. Bronstein et al. [16] proposed
a generalized multidimensional scaling (GMDS), which uses a non-euclidean distance to
represent the non-similarity of samples, and applied GMDS to 3D face matching. In order
to enhance the discriminativeness of the features learned by MDS, Biswas [17] not only
considered that the low-dimensional embedding points should keep the distance between
the original images, but also considered that the distance between the low-dimensional
embedding points corresponding to the same face should be as small as possible.

Clustering, as an unsupervised machine learning method, is widely used in many
fields [18–20], and its purpose is to divide data into different clusters or subsets by some
criteria. In order to efficiently discover potential cluster structures in data, different scholars
have proposed different clustering algorithms, such as k-means (KM) algorithm [21], affinity
propagation (AP) algorithm [22], and density peak (DP) algorithm [23]. With the proposal
and refinement of fuzzy set theory, fuzzy clustering was proposed [24]. Unlike hard
clustering such as k-means, soft clustering algorithms such as fuzzy clustering can not
only discover the cluster structure among data efficiently, but also give the degree of
affiliation between samples and class clusters, which can discover the overlapping class
cluster structure well.

Fuzzy k-means was proposed by Bezdek et al. [24], which adopted the idea of fuzzy
sets. They believe that there is a degree of attribution between a sample and a cluster rang-
ing from 0 to 1. To improve the clustering performance of fuzzy k-means, Wang et al. [25]
proposed a fuzzy k-means model based on the Euclidean distance with weights by consid-
ering the feature weights while calculating the distance. The traditional FKM fails when
the input sample point information is not known and only the non-similarity information
of sample points is available. Therefore, Hathaway et al. [26] proposed a non-euclidean
relational fuzzy clustering, which can complete the fuzzy clustering under the condition
of only given the dissimilarity between sample points. In order to adopt the clustering
algorithm to noisy data, Nie et al. [27] combined fuzzy k-means with principal component
analysis so that fuzzy k-means can be performed in the low-dimensional subspace obtained
by principal component analysis. To obtain the potential cluster structure of the data on
multi-view data, Zhu et al. [28] proposed an adaptive weighted multi-view clustering
method. This method can not only automatically discover the importance, dispersion and
other information of each view from multi-view data, but also synthesize the common
information of each view to accomplish the clustering task.

Paired constraint information is widely used in feature learning to enhance the discrim-
inant of the learned features because of its ability to provide similar relationships between
samples. Zhang et al. [2] proposed a semi-supervised dimensionality reduction method
based on paired constraint information, whose idea is to obtain new sample points by
transforming the matrix so that the points with must-connect constraints are close together
after the transformation, while the points with do-not-connect constraints are far away
after the transformation. Du et al. [29] applied constraint transferring to dimensionality
reduction and proposed a new semi-supervised feature learning method. The method first
requires a pairwise constraint matrix with only 1, 0 and −1 values initially, where 1 means
constraints must be connected, −1 means constraints do not connected and 0 means the
constraint information is unknown. Then the constraint transferring algorithm is used
to extend the constraint information to other samples. Then it constructs a new weight
matrix using the extended constraint matrix, and finally uses the LPP algorithm for the
new data representation.

3. Preliminaries
3.1. Multidimensional Scaling

The classical MDS is a nonlinear feature learning method. Its characteristic is that
when only the dissimilarity between any two points is given, the corresponding new data
representation can be directly obtained so that the Euclidean distance between samples
is as equal to the given dissimilarity as possible, but it faces the problem of new samples.
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Webb [14] proposed the projective MDS (PMDS), so that the new data representation can
be obtained from the original data representation by projection transformation. In this
paper, a PMDS-based feature learning method is proposed and its principles are described
in detail below.

Given the original data matrix X = [x1, . . . , xN ] ∈ Rn×N , where n and N denote
the dimensionality and the number of the original samples, respectively. The learned
low-dimensional data representation Y = [y1, . . . , yN ] ∈ Rl×N , where l denotes the
dimensionality of the low-dimensional data representation. The loss function of MDS, a
feature learning method that maintains the sample distance, is [30]:

Omds(Y) = 1/2
N

∑
i=1

N

∑
j=1

sij

(
dij − d̂ij

)2
. (1)

dij denotes the distance between the original data points xi and xj, and d̂ij denotes the
distance between the corresponding low-dimensional data representation yi and yj. And
S =

[
sij
]
∈ RN×N is a non-negative symmetric weight matrix, with larger sij indicating a

greater desire for d̂ij to be close to dij , and the literature [6] gives two ways of constructing
the weights.

• Heat kernel weighting: sij = exp
(
−
∥∥xi − xj

∥∥2
2/t
)

if xi is a near neighbor to xj or xj is
a near neighbor to xi, otherwise sj = 0, where t is a real number.

• 0–1 weights: sij = 1 if xi is a near neighbor to xj or xj is a near neighbor to xi, otherwise
sij = 0.

The MDS in Equation (1) is a nonlinear feature learning method that obtains a di-
rect low-dimensional data representation Y. If new data arrives, its corresponding low-
dimensional data representation cannot be obtained directly, that is, the so-called new
sample problem. Webb incorporated the projection matrix into the MDS by means of
pre-given radial basis functions to achieve nonlinear transformations, and proposed the
PMDS, whose objective formulation is [14]:

Opmds(W) =
N

∑
i=1

N

∑
j=1

sij

(
dij − d̂ij

)2

=
N

∑
i=1

N

∑
j=1

sij

(
dij −

∥∥∥WT(xi − xj
)∥∥∥

2

)2
.

(2)

‖ · ‖2 denotes the two-parametric number of vectors and W ∈ Rn×d denotes the projection
matrix, and it can be seen that Y is directly projected from X.

3.2. Fuzzy k-Means Clustering

Fuzzy clustering can give the degree of affiliation of samples with clusters, and the
objective formula for fuzzy k-means is:

O f km(U, V) =
C

∑
k=1

N

∑
i=1

um
ik‖xi − vk‖2

2,

s.t.
C

∑
k=1

uik = 1, ∀i = 1, 2, . . . , N, uik ≥ 0, ∀i = 1, . . . , N, ∀k = 1, . . . , C.

(3)

U = [uik] ∈ RN×C is the affiliation matrix, uik denotes the affiliation of xi with cluster
Ck, and m > 1 denotes the fuzzy index weights.
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3.3. Pairwise Constraint Transmission

Given a sample X = [x1, . . . , xN ] ∈ Rn×N , and the pairwise constraint matrix
P =

[
pij
]
∈ RN×N . pij = 1 if there is a must-connect constraint between samples xi

and xj, pij = −1 if there is a do-not-connect constraint between samples xi and xj, and
pij = 0, if the constraint between xi and xj is unknown.

The constraint-passing algorithm is to extend the constraint matrix P to obtain more
pairwise constraint information. The result matrix is F =

[
fij
]
∈ RN×N , and F has the

following properties:

• fij takes the value in the range of [−1, 1], and the larger the absolute value, the higher
the confidence of the constraint information.

• fij > 0 means that the constraint between xi and xj is must-connect.
• fij < 0 means that the constraint between xi and xj is do-not-connect.
• fij = 0 means that the constraint information is unknown.

4. Proposed Method
4.1. Discriminative Multidimensional Scaling Based on Pairwise Constraints for Feature Learning

The overall process of model pcDMDS is shown in Figure 1, which shows that after
obtaining some of the pairwise constraint information through data X, more constraint
information is first extended by the constraint transferring algorithm. For the extended
constraint information, its value is [−1, 1]. If the value is greater than 0, it indicates a
must-connect constraint, while if it is less than 0, it indicates a do-not-connect constraint.
And the larger the absolute value, the higher the confidence level of the constraint. After
obtaining the extended pairwise constraint information, for each iteration of the model,
we hope to maintain the topology of the samples on the one hand. On the other hand, we
hope to find the cluster structure within the samples and make the data representations
of the samples in the same cluster close to their cluster centers. Furthermore, we hope to
make the data representations of the samples with the must-connect constraints close to
each other and the data representations of the samples with the do-not-connect constraints
far from each other through pairwise constraints. After several iterations, the model can
reach a balance between these three aspects. Thus, it further improves the discriminative
properties of the learned features. After the model converges or reaches the maximum
number of iterations, the new data representation is obtained by transforming the matrix.

Following this idea, the loss function can be described as the minimum ofOpcdmds(W, U, V).
Moreover,

Opcdmds(W, U, V) =
N

∑
i=1

N

∑
j=1

sij

(
dij −

∥∥∥WT(xi − xj
)∥∥∥

2

)2

+β
N

∑
i=1

c

∑
k=1

uik
m
∥∥∥WTxi − vk

∥∥∥2

2

+λ

 1
2NML

∑
(i,j)∈ML

φij

∥∥∥WT(xi − xj
)∥∥∥2

2

− 1
2NCL

∑
(i,j)∈CL

φij

∥∥∥WT(xi − xj
)∥∥∥2

2


=O1(W) + βO2(W, U, V) + λOpcloss(W),

s. t.
c

∑
k=1

uik = 1, i = 1, 2, . . . , N,

uik ≥ 0, i = 1, . . . , N, k = 1, . . . , C.

(4)

In Equation (4), ML denotes the set of the indexes of the sample pairs with must-
connect constraints and CL denotes the set of the indexes of the sample pairs with do-
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not-connect constraints. NML denotes the number of sample pairs with must-connect
constraints, and ML is the size of the set. Similarly, NCL denotes the number of sample
pairs with do-not-connect constraints, and CL is the size of the set. Φ =

[
φij
]

denotes the
confidence of the pairwise constraint between samples xi and xj, which takes the values
[0, 1], and a larger value indicates a higher confidence of the pairwise constraint and a
symmetric matrix.

Data Xx

pairwise 
constraint

Expanded 
pairwise 

constraints

Cluster
information

and 
Transformati
on Marices

must-link 
constraints

cannot-link 
constraints

Discovery of 
sample cluster 

structure

Transformation 
Marices

Affiliation and 
Cluster Center

By transforming 
the matrix to the 

new data 
representation

Get

Constraint
 Passing

Initialization

Divided into

Start Iteration

Keeping 
distance

Discovery 
Class Cluster

Integration

Update

Update

Maximum number 
of iterations or other
 termination 
Conditions reached

Discriminative feature learning 
combined with pairwise constraints

Maintain 
sample 

topology

Figure 1. The overall process of discriminative multidimensional scalar learning based on pair-
wise constraints.

From Equation (4), it can be seen that the objective formulation of the pcDMDS model
can be divided into three parts. It can be seen that the pcDMDS model is a balance among
these three terms.

i. The first part is used to make the Euclidean distance d̂ij between any samples xi
and the new data representation corresponding to xj keeps the Euclidean distance
dijin the original space as much as possible, which reflects the feature learning
process in which the new data representation keeps the topology in the original
data representation.

ii. The second part is used to automatically discover the cluster structure in the sam-
ples and make the data representation in the same cluster close to its cluster center
in the new data representation, increasing the compactness of the new data repre-
sentation in the same cluster, and reflecting the unsupervised way to enhance the
discriminative nature of the learned data representation and adjust its weight by
the parameter β.

iii. The third term is the loss term of the pairwise constraint, which aims to make
the data representation of sample points with the must-connect constraint close
and the data representation of sample points with the do-not-connect constraint.
The third term is the pairwise constraint loss term, which aims to make the data
representations of sample points with the must-connect constraint close and those of
sample points with the do-not-connect constraint far away, thus further enhancing
the model’s ability to learn discriminative features and controlling its weights by
the parameter λ.

To simplify Equation (4) for subsequent optimization, note the matrix Ψ =
[
ψij
]
∈ RN×N,

whose elements are defined as:

ψij =


1

NML
φij (i, j) ∈ ML,

− 1
NCL

φij (i, j) ∈ CL,
0 otherwise .

(5)
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Since Φ = Φ> , it follows that Ψ = ΨT . Then Equation (4) can be rewritten as:

Opcdmds(W, U, V) =
N

∑
i=1

N

∑
j=1

sij

(
dij −

∥∥∥WT(xi − xj
)∥∥∥

2

)2

+ β
N

∑
i=1

C

∑
k=1

uik
m
∥∥∥WTxi − vk

∥∥∥2

2

+
λ

2

N

∑
i=1

N

∑
j=1

ψij

∥∥∥WT(xi − xj
)∥∥∥2

2
,

s.t.
C

∑
k=1

uik = 1, i = 1, 2, . . . , N,

uik ≥ 0, i = 1, . . . , N, k = 1, . . . , C.

(6)

4.2. The Inference of Discriminative Multidimensional Scaling Based on Pairwise Constraints for
Feature Learning

For the objective Equation (6), the parameters to be solved are the transformation
matrix W, the samples and cluster affiliation matrix U, and the cluster center matrix V.
Since the closed-form solutions of Equation (6) with respect to W, U, and V cannot be
obtained directly, an iterative optimization approach is used for solving the problem.

(1) Fix U and V, and update W. At this point the target equation in Equation (6) is a
function of W only and can be expressed as:

L1(W) = O1(W) + βO2(W) + λOpcloss (W), (7)

to facilitate the solution, first rewrite Opcloss(W):

Opcloss (W) =
1
2

Tr
(

YDΨYT
)
− Tr

(
YΨYT

)
+

1
2

Tr
(

YDΨTYT
)

= Tr
(

Y(DΨ −Ψ)YT
)

= Tr
(

YLΨYT
)

= Tr
(

WTXLΨXTW
)

.

(8)

Since ‖A‖2
2 = Tr

(
AAT) = Tr

(
AT A

)
, Tr(·) denotes the trace of the matrix, a simplifi-

cation of the second term O2(W) in Equation (7) gives:

O2(W) = Tr
(
WTXDŨXTW

)
− 2 Tr

(
WTXŨVT

)
+ Tr

(
VDŨT VT). (9)

Ũ =
[
um

ik
]
∈ RN×C, DŨ and DÛT are all diagonal arrays,

Dv̄ =

 (Dv̄)11
. . .

(DŪ)NN

, DŪT =

 (DŪT)11
. . .

(DŪT)CC

. (10)



Mathematics 2022, 10, 4059 8 of 16

The objective function in Equation (8) can be optimized using the IMA [5,14,17]
algorithm, the constructed auxiliary function is σpcdnds(W, Z) , which is defined as:

σpcdmds(W, Z) =Tr
(

WT AW
)
+

N

∑
i=1

N

∑
j=1

sijd2
ij − 2 Tr

(
ZTD(Z)W

)
+ β

(
Tr
(

WTXDŪXTW
)
− 2 Tr

(
WTXŨVT

)
+ Tr

(
VDŪT VT

))
+ λ Tr

(
WTXLΨXTW

)
.

(11)

A in Equation (11) is defined as:

A =
N

∑
i=1

N

∑
j=1

sij
(
xi − xj

)(
xi − xj

)T. (12)

The definition of D(Z) in Equation (11) is:

D(Z) = ∑N
i=1 ∑N

j=1 cij(Z)
(
xi − xj

)(
xi − xj

)T,

cij(Z) =

{
sijdij/d̂ij(Z) d̂ij(Z) > 0,
0 d̂ij(Z) = 0.

(13)

In Equation (13), d̂ij(Z) =
∥∥ZT(xi − xj

)∥∥
2.

Calculate the gradient of W with respect to Equation (11) and set the gradient to be 0,
then we have the update equation of W:

W =
(

A + βXDÛXT + λXLΨXT
)−1(

D(Z)Z + βXŨVT
)

. (14)

(2) Fix the matrices W and V, and solve for U. At this point, the first and third terms
in Equation (6) are constant terms, and the optimization of Equation (6) is equivalent to the
optimization of:

L2(U) =
N

∑
i=1

C

∑
k=1

um
ik‖yi − vk‖2

2

=
N

∑
i=1

C

∑
k=1

um
ik , d2(yi, vk),

s.t.
C

∑
k=1

uik = 1, i = 1, 2, . . . , N,

uik ≥ 0, i = 1, . . . , N, k = 1, . . . , C.

(15)

Using the Lagrangian multiplier method [31]:

Lλ(U) =
N

∑
i=1

C

∑
k=1

um
ikd2(yi, vk) + λ

(
C

∑
k=1

uik − 1

)
. (16)

By:
∂Lλ(U)

∂uik
= m(uik)

m−1d2(yi, vk)− λ = 0,

∂Lλ(U)
∂λ = ∑C

k=1 uik − 1 = 0,

(17)
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solve the update equation for uik as:

uih̄ =
1

∑c
j=1

(
1

d(yi ,vj)

) 2
m−1

(
1

d(yi, vk)

) 2
m−1

=
1

∑c
j=1

(
d(yi ,vk)

d(yi ,vj)

) 2
m−1

. (18)

The iterative update of the U matrix is given by:

uik =


1/ ∑c

j=1

(
d(yi ,vk)

d(yi ,vj)

) 2
m−1

Ii = ∅,
1
|Ii |

Ii 6= ∅, k ∈ Ii,
0 Ii 6= ∅, k /∈ Ii.

(19)

Ii = {r ∈ N≤C | yi = vr} , N≤C denotes the set of positive integers less than or equal
to C, and |Ii| denotes the number of elements in the set Ii. It means that when there exists
a sample point yi that happens to be the cluster center of multiple clusters, yi has equal
affiliation with these clusters, both being 1/|Ii|.

(3) Fix W and U, and update V. Similar to step (2):

L3(V) =
N

∑
i=1

C

∑
k=1

um
ik

∥∥∥WTxi − vk

∥∥∥2

2

=
N

∑
i=1

C

∑
k=1

um
ik Tr

(
yiyT

i − yivT
k − vkyT

i + vkvT
k

)
.

(20)

Calculate the partial derivative with respect to vk for Equation (20):

∂L3(V)

∂vk
=

N

∑
i=1

um
ik(−yi − yi + 2vk) =

N

∑
i=1

um
ik(2vk − 2yi). (21)

According to Equations (20) and (21), the iterative update of V can be derived as:

vk =
N

∑
i=1

um
ikyi/

N

∑
i=1

um
ik . (22)

4.3. Algorithm
4.3.1. Algorithm Description

It can be seen from Algorithm 1 that the algorithm flow of pcDMDS is mainly divided
into two processes. The first process is mainly to expand pairwise constraint information
through constraint transferring. The second process is to update it iteratively according
to the update formulas of W, U and V, and output the transformation matrix after the
iteration is completed. Specifically, for the first process, the pairwise constraint matrix P is
first constructed according to the set of sample pairwise constraints. Then the extended
pairwise constraint information F is obtained through the constraint transfer algorithm,
and F is post-processed and assigned to Ψ. Then the distance matrices D, S and A are
calculated respectively, and then the W, V and U matrices are initialized. The second
process starts the iteration process, updating W, U and V in turn, and stops iteration when
W and U are stable or reach the maximum number of iterations. Finally, the transformation
matrix W is returned.
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Algorithm 1: pcDMDS feature learning algorithm
Input: X: data matrix; C: number of clusters; l: dimensionality of the

low-dimensional data representation; m: fuzzy index weight; β:
discriminative weight; λ: pairwise constraint loss weight; ML: set of
must-connect constraints; CL: set of do-not-connect constraints; α:
constraint transferring parameter; ò : stopping condition; T: maximum
number of iterations

Output: W: Projection matrix;
1 Construct the pairwise constraint matrix P from ML and CL;
2 Call the E2CP constraint transferring algorithm to obtain the constraint

transferring result F;
3 The maximum value of the absolute value of each element of the F matrix divided

by the absolute value in the F matrix;
4 Assignment Ψ = F ;
5 Constructing the distance matrix D from the data matrix X;
6 Construct the distance weight matrix S;
7 Calculate A = 2X(DS − S)XT ;
8 Initialize the matrices W and V as random numbers obeying a uniform

distribution of [−1, 1];
9 Initialize the elements of the matrix [−1, 1]U to 1/C;

10 for 1: T do
11 W

′ ←W, U
′ ← U, Z ←W;

12 Calculate Ũ =
[
um

ik
]

, and use Equation (10) to calculate Dũ ;
13 Use Equation (13) to calculate D(Z);
14 Update W using Equation (14);
15 Computation of the low-dimensional data representation Y = WTX ;
16 Update the matrix U using Equation (19);
17 Update the matrix V using Equation (22);

18 if
∣∣∣W ′ −W

∣∣∣ ≤ o and
∣∣∣U′ −U

∣∣∣ ≤ o then
19 return W
20 end
21 end
22 return W

4.3.2. Study on Computational Complexity

The time complexity of the model is discussed. According to the algorithm flow in
Algorithm 1, pcDMDS needs to call the constraint passing algorithm of the E2CP with a
time complexity of O

(
N3). The time complexity of the matrix D(Z) is O

(
n2N + nN2) . The

symmetric matrix of size D(Z) and its Moore-Penrose inverse can be obtained by singular
value decomposition, and since the time complexity of singular value decomposition is
O
(
n3) [32], the time complexity of updating W once is O

(
n2N + nN2 + n3) according to

Equation (14). According to Equation (19), the time complexity of updating the matrix U
once is O

(
NC2l

)
. From Equation (22), it is known that the time complexity of updating the

cluster center matrix V once is O(NCl). Considering that the updates of matrices W, U and
V are performed sequentially, and the time complexity of the three updates and the time
complexity of constraint passing are combined, it is known that the time complexity of the
pcDMDS algorithm is O

(
N3 = T

(
nN2 + nn2N + n3 + NC2l

))
, where T is the maximum

number of iterations.
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Then, the space complexity of the model is discussed. The input data matrix X has
size of Nn. The space complexity of P, F, D and S are O

(
N2). The space complexity of

A is O
(

Nn + N2 + n2). W, V and U has the size of nl, lC and NC, respectively. During
the iteration, the space complexity of Ũ and DŨ are O(NC) and O(N). The space com-
plexity of D(Z) is O(Nl). The space complexity of W is O

(
n2 + nN + N2 + nl + NC + Cl

)
.

The space complexity of Y is O(lN + ln + nN). Therefore, the total space complexity is
O
(

Nn + N2 + n2 + nl + lC + NC + Nl
)
.

4.3.3. Visualization

Figure 2 shows the visualization results of the wine dataset with 178 samples, 3 cat-
egories, and the number of attributes of each sample is 13. It can be seen from the visu-
alization results in Figure 2a that the boundaries of different categories in the 2D data
representation are fuzzy and unclear, that is, the discriminability between different cate-
gories has not been improved, and since the MDS method maintains the distance between
samples, the samples in the same category are not more compact. In order to more in-
tuitively show that pcDMDS can learn more discriminative features, the visualization
result graph of pcDMDS is shown in Figure 2b. By comparing Figure 2a,b, it can be found
that compared with MDS, pcDMDS has a more compact sample distribution in the same
category in the new data representation, and the boundaries between different categories
are clearer, which makes the learning features more discriminative.

Figure 2. Visualization of wine dataset after dimensionality reduction using MDS and pcDMDS.

5. Experiments
5.1. Datasets

The datasets used for the experiments on the discriminative multidimensional scalar
feature learning algorithm based on pairwise constraints are from 12 publicly available
datasets in the MSRA- MM [33] database. Table 1 describes the details of the 12 datasets used.

Table 1. Datasets.

No. Dataset Samples Features Categories

D1 amber 880 892 3
D2 arrow 834 892 3
D3 balloon 830 892 3
D4 bicycle 844 892 3
D5 birthdaycake 932 892 3
D6 boomerang 910 892 3
D7 border 840 892 3
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Table 1. Cont.

No. Dataset Samples Features Categories

D8 bow 834 892 3
D9 brain 891 892 3

D10 cactus 919 892 3
D11 vistawallpaper 799 899 3
D12 weapon 858 899 3

5.2. Experimental Setting

The pairwise constraint loss terms in pcDMDS are controlled by the parameter λ to
control their weights. The pairwise constraint information in the experiment is obtained di-
rectly from the ten percent label information, and then the constraint transferring algorithm
obtains the extended constraint information as the final pairwise constraint information.
For the pcDMDS algorithm, the parameter λ is set to 0.8, and the parameter α in the
constraint transferring algorithm is set to 0.1. In order to reduce the differences in the
experimental results, all feature learning algorithms are run 10 times in the experiments,
and then the average of the 10 times is taken as the final result.

The experiments of pcDMDS algorithm are to evaluate the ability of pcDMDS to
learn discriminative features. The experiments are designed in such a way that multiple
clustering experiments are performed on the low-dimensional data representation obtained
from the original data, the low-dimensional data representation obtained from the PMDS
algorithm and the data representation obtained from pcDMDS, respectively. If the data
representation is more discriminative, the clustering algorithm performs better. The selected
clustering algorithms include KM, AP and DP.

5.3. Evaluation Metric

Since features with discriminative properties tend to improve the performance of
subsequent machine learning tasks, the discriminative properties of the learned features
can be evaluated by evaluating the performance of subsequent machine learning tasks.
The subsequent machine learning tasks include clustering tasks and classification tasks,
so the performance of the learned features is evaluated by using the evaluation metrics of
clustering and classification.

5.3.1. Accuracy

Accuracy, a common metric for clustering, measures the degree of difference between
the sample cluster results given by a clustering model and the true labels of the samples.
The calculation of clustering accuracy and classification accuracy is slightly different. For
clustering, the accuracy is computed as [34].

Acc =
1
N

N

∑
i=1

δ(li, map(ri)). (23)

N denotes the number of sample points, and map(·) is a function that maps the cluster
index to the category label. li and ri denote the category label and the cluster index of
sample point xi, respectively. δ(a, b) is a function whose value is 1 when a = b. Otherwise,
it is 0. For the classification task, ri denotes the classifier’s predicted category label, at this
time map(·) can be considered as a constant mapping. The output value is equal to the
input value.

5.3.2. Purity

Purity is a common metric used to measure the performance of clustering algorithms
and is defined as [35]:
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Purity =
1
N

C

∑
k=1

max
1≤r≤q

nr
k. (24)

N denotes the number of sample points, C denotes the number of clusters, k denotes
the cluster index, and q is the number of classes. In general, q is equal to C. nr

k denotes the
number of samples with class label r in the k cluster.

5.3.3. Friedman Test

Friedman statistic is a statistical method for non-parametric testing to evaluate the
overall difference in performance of a set of algorithms on different datasets. Friedman
statistic requires first getting the ranking of each algorithm’s performance on the same
dataset, with the best performing algorithm ranked as 1, the next best algorithm ranked as
2, and so on to get the rankings of all algorithms, and if there is the same performance, the
average ranking value is taken. The ranking value of an algorithm is also called rank value.
Specifically, the Friedman statistic is defined as [36]:

XF
2 =

12a
b(b + 1)

[
b

∑
j=1

R2
j −

b(b + 1)2

4

]
. (25)

The a denotes the number of datasets, b denotes the number of algorithms,
Rj =

1
a ∑a

i=1 rji , rji denotes the rank value of the j-th algorithm on the i-th dataset, and it
can be seen that Rj denotes the average rank value of the j-th algorithm on all datasets, X2

F
obeys the chi-square distribution with degrees of freedom b− 1.

Iman and Davenport improved the deficiencies of the Friedman statistic X2
F by propos-

ing a better statistic defined as [37]:

FF =
(a− 1)X2

F
a(b− 1)− X2

F
. (26)

FF is the F distribution with degrees of freedom b− 1 and (b− 1)(a− 1). The p-value
is obtained by looking up the table, and the significance of the differences between all
algorithms is evaluated based on the p-value.

5.4. Results

Tables 2 and 3 give the accuracy and purity results obtained by clustering the 12 data
sets by KM, AP and DP under three different data representations, respectively. Specifically,
in Table 2, columns KM, AP and DP are the clustering accuracies of the three algorithms on
the original data representation. PMDS-KM, PMDS-AP and PMDS-DP are the clustering
accuracies of the three clustering algorithms on the low-dimensional data representation
obtained by the PMDS algorithm. pcDMDS-KM, pcDMDS-AP and pcDMDS-DP are the
clustering accuracies of the three clustering algorithms on the low-dimensional data repre-
sentation obtained by the pcDMDS algorithm. The Avg column is the mean of columns KM,
AP and DP. Column PMDS-Avg is the mean value of columns PMDS-KM, PMDS-AP and
PMDS-DP. Similarly, column pcDMDS-Avg is the mean value of columns pcDMDS-KM,
pcDMDS-AP and pcDMDS-DP. The meaning of the table headers in Table 3 is similar to
that in Table 2, except that the data in the table are purity rather than accuracy, which is not
repeated here.

From Table 2, it can be seen that 10 of the models with the highest accuracy in these
12 datasets are on the data representation learned by pcDMDS features (bolded data in
the table), and 2 are on the original data representation, which indicates that pcDMDS can
improve the discriminatory performance of the data representation. Moreover, for the same
clustering algorithm, the performance exhibited on the data representation obtained by the
pcDMDS algorithm is overwhelmingly better than the original data representation and the
PMDS data representation. In addition, in terms of the average accuracy, the 12 highest
average accuracies are in the feature representation of the pcDMDS algorithm, and the



Mathematics 2022, 10, 4059 14 of 16

average accuracy of the data representation obtained by the pcDMDS algorithm is 10.31%
and 7.41% higher than that of the PMDS and the original space, respectively. This also
reflects that the data representation obtained after the DMDS feature learning algorithm can
improve the performance of the subsequent machine learning compared with the PMDS
and the original data representation.

Table 2. Accuracy of clustering with different data representations.

NO. KM AP DP
PMDS
-KM

PMDS
-AP

PMDS
-DP

pcDMDS
-KM

pcDMDS
-AP

pcDMDS
-DP

Avg PMDS
-Avg

pcDMDS
-Avg

01 0.5352 0.6761 0.5318 0.3693 0.4227 0.3897 0.7306 0.6568 0.6568 0.5810 0.3939 0.6814
02 0.5131 0.5011 0.5059 0.5203 0.4340 0.4964 0.5287 0.5647 0.5287 0.5067 0.4836 0.5407
03 0.4204 0.5710 0.4289 0.4096 0.4867 0.4012 0.5204 0.5204 0.5204 0.4734 0.4325 0.5204
04 0.4324 0.5426 0.4099 0.4170 0.5521 0.4206 0.5687 0.5177 0.5177 0.4616 0.4632 0.5347
05 0.4860 0.5954 0.4452 0.5246 0.5557 0.5815 0.6952 0.5633 0.5633 0.5088 0.5539 0.6073
06 0.4505 0.4428 0.4857 0.4142 0.4560 0.5098 0.5593 0.5538 0.4945 0.4596 0.4600 0.5359
07 0.5047 0.4440 0.4428 0.5238 0.4416 0.4059 0.5202 0.5535 0.5202 0.4638 0.4571 0.5313
08 0.3860 0.4376 0.4208 0.3764 0.4460 0.4328 0.5227 0.5215 0.5215 0.4184 0.4184 0.5219
09 0.3883 0.4406 0.4938 0.3860 0.3827 0.4107 0.3928 0.5824 0.5409 0.4409 0.3931 0.5054
10 0.4374 0.6702 0.5799 0.4744 0.5005 0.4124 0.5179 0.6659 0.5201 0.5625 0.4624 0.5680
11 0.4705 0.3904 0.4881 0.4605 0.4881 0.4242 0.5519 0.6020 0.4267 0.4496 0.4576 0.5269
12 0.4055 0.3613 0.4230 0.4032 0.3846 0.4090 0.5384 0.5384 0.5384 0.3966 0.3989 0.5384

Table 3. Purity of clustering with different data representations.

NO. KM AP DP
PMDS
-KM

PMDS
-AP

PMDS
-DP

pcDMDS
-KM

pcDMDS
-AP

pcDMDS
-DP

Avg PMDS
-Avg

pcDMDS
-Avg

01 0.6818 0.6909 0.5806 0.5715 0.5715 0.5715 0.7693 0.7693 0.7693 0.6511 0.5715 0.7693
02 0.5515 0.5023 0.5239 0.5563 0.4988 0.5143 0.5839 0.5647 0.5839 0.5259 0.5231 0.5775
03 0.5759 0.5759 0.5759 0.5759 0.5771 0.5759 0.6337 0.6337 0.6337 0.5759 0.5763 0.6337
04 0.5450 0.5473 0.5450 0.5462 0.5521 0.5450 0.5746 0.5616 0.5616 0.5457 0.5478 0.5659
05 0.6738 0.6083 0.5965 0.6652 0.6040 0.6330 0.7178 0.7178 0.7178 0.6262 0.6341 0.7178
06 0.5362 0.5362 0.5362 0.5362 0.5362 0.5373 0.5736 0.5582 0.5725 0.5362 0.5366 0.5681
07 0.5642 0.4452 0.4476 0.5595 0.4452 0.4476 0.5821 0.5821 0.5821 0.4856 0.4841 0.5821
08 0.4652 0.4700 0.4652 0.4652 0.4700 0.4652 0.5227 0.5215 0.5215 0.4668 0.4668 0.5219
09 0.5476 0.5476 0.5566 0.5476 0.5476 0.5555 0.5476 0.5824 0.5656 0.5506 0.5502 0.5652
10 0.6637 0.6735 0.6637 0.6637 0.6637 0.6637 0.6855 0.6670 0.6659 0.6669 0.6637 0.6728
11 0.6445 0.6320 0.6320 0.6382 0.6408 0.6320 0.6996 0.6495 0.6320 0.6361 0.6370 0.6604
12 0.4860 0.4860 0.4860 0.4860 0.4860 0.4860 0.5384 0.5384 0.5384 0.4860 0.4860 0.5384

The overall performance of the model is then evaluated based on the Friedman
statistic. Based on the last three columns of Table 2, the ranking values for the performance
of different data representations in each dataset can be first derived. The average ranking
values of 2.4583, 2.5416 and 1 for Avg, PMDS-Avg and pcDMDS-Avg on the 12 datasets can
be calculated, respectively. Since there are 12 datasets with three types of averages, FF obeys
a degree of freedom of 3− 1 = 2 and (12− 1)(3− 1) = 22 for the F distribution. From
the F(2, 22) distribution, the p-value can be calculated as 2.2082× 10−7, so the original
hypothesis is rejected at a high significance level, and the comprehensive evaluation of the
pcDMDS algorithm outperforms the PMDS algorithm. The data representation obtained
by the pcDMDS algorithm is more discriminative than the data representation obtained by
PMDS and the original data representation.

Table 3 lists the purity of the clustering results on the different data representations. It
can be seen that the 12 highest purity are on the data representation of pcDMDS. Overall,
the clustering performance on pcDMDS is better than PMDS and raw space. Also, the
average purity of the data representation obtained by the pcDMDS algorithm is 8.31% and
9.18% higher than that of the PMDS and the original space, respectively.

Similarly, the Friedman statistic is used to evaluate the overall performance of the
model. According to the last three columns of Table 3, the average ranking values of
Avg, PMDS-Avg and pcDMDS-Avg can be obtained as 2.5, 2.5 and 1, respectively. The
Friedman statistic can be calculated as X2

F = 13.0833, and then the Iman-Davenport as
FF = 13.1832. The p-value can be calculated from the F(2, 22) distribution as 1.7245× 104,
so the original hypothesis is rejected at a higher significance level, and the combined
evaluation of pcDMDS algorithm is better than PMDS and the original space.
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In terms of accuracy and purity, it can be seen that the data representation obtained by
pcDMDS has a better performance for subsequent clustering algorithms than the original
data representation and the data representation obtained by PMDS, which can learn more
discriminative features. For big datasets, pcDMDS can enhance the discriminativeness by
considering both the topology of samples in the original space and the cluster structure
in the new space, and also incorporating the extended pairwise constraint information in
the samples.

6. Conclusions

In this paper, a feature learning algorithm named pcDMDS is proposed and the
discriminability is enhanced in two aspects. Firstly, the ability to automatically discover
clusters in samples by fuzzy k-means, so that new data representations corresponding to
samples in the same cluster are close to the cluster center during feature learning. Then
the pairwise constraint information between more samples, noted as extended pairwise
constraint information, is obtained by a constraint transferring algorithm based on the
pairwise constraint information between a given part of samples. In the whole process of
feature learning, the ability of the original model to obtain discriminative features is further
improved. Because pcDMDS not only considers the topological structure of the sample
in the original space and the cluster structure in the new space, but also incorporates the
extended pairwise constraint information in the sample. However, the effect of different
values of parameter λ on the clustering performance of pcDMDS was analyzed in pcDMDS,
but the values are fixed, so the effect of β and λ can be considered jointly in the future.
Plus, the model does not use incremental learning, and it can be put into research in the
future work.
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