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Abstract: Solving variational image segmentation problems with hidden physics is often expensive
and requires different algorithms and manually tuned model parameters. The deep learning methods
based on the UNet structure have obtained outstanding performances in many different medical
image segmentation tasks, but designing such networks requires many parameters and training
data, which are not always available for practical problems. In this paper, inspired by the traditional
multiphase convexity Mumford–Shah variational model and full approximation scheme (FAS) solving
the nonlinear systems, we propose a novel variational-model-informed network (FAS-UNet), which
exploits the model and algorithm priors to extract the multiscale features. The proposed model-
informed network integrates image data and mathematical models and implements them through
learning a few convolution kernels. Based on the variational theory and FAS algorithm, we first
design a feature extraction sub-network (FAS-Solution module) to solve the model-driven nonlinear
systems, where a skip-connection is employed to fuse the multiscale features. Secondly, we further
design a convolutional block to fuse the extracted features from the previous stage, resulting in the
final segmentation possibility. Experimental results on three different medical image segmentation
tasks show that the proposed FAS-UNet is very competitive with other state-of-the-art methods in the
qualitative, quantitative, and model complexity evaluations. Moreover, it may also be possible to train
specialized network architectures that automatically satisfy some of the mathematical and physical
laws in other image problems for better accuracy, faster training, and improved generalization.

Keywords: model-informed deep learning; interpretable network; variational image segmentation;
full approximation scheme

MSC: 68T05; 68T07; 68U10; 94A08

1. Introduction

Image segmentation is one of the most important problems in computer vision and also
is a difficult problem in the medical imaging community [1–3]. It has been widely used
in many medical image processing fields such as the identification of cardiovascular dis-
eases [4], the measurement of bone and tissue [5], and the extraction of suspicious lesions
to aid radiologists. Therefore, image segmentation has a vital role in promoting medical
image analysis and applications as a powerful image processing tool [5,6].

Deep learning (DL) has achieved great success in the field of medical image segmenta-
tion [5,7,8]. One of the most important reasons is that the convolutional neural networks
(CNNs) can effectively extract image features. Therefore, much work at present involves
design a network architecture with strong feature extraction ability, and many well-known
CNN architectures have been proposed such as UNet [9], V-Net [10], UNet++ [11], 3D
UNet [12], Y-Net [13], Res-UNet [14], KiU-Net [15], DenseUNet [16], and nnU-Net [17].
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More and more studies based on data-driven methods have been reported for medical
image segmentation. Although UNet and its variants have achieved considerably im-
pressive performance in many medical image segmentation datasets, they still suffer two
limitations. One is that most of researchers have introduced more parameters to improve
the performance of medical image segmentation, but have tended to ignore the technical
branch of the model’s memory and computational overhead, which makes it difficult to
popularize the algorithm to industry applications [18]. The other disadvantage is that these
variants only design many suitable architectures through the researcher’s experience or
experiments, but do not focus on the mathematical theoretical guidance of network archi-
tectures such as explainability, generalizability, etc., which limits the application of these
models and the improvement of task-driven medical image segmentation methods [19,20].

Recently, many works on image recognition and image reconstruction have been
focusing on the interpretability of the network architecture. Inspired by some mathematical
viewpoints, many related unroll networks have been designed and successfully applied.
He et al. [21] proposed the deep residual learning framework, which utilizes an identity
map to facilitate training; it is well known that it is very similar to the iterative method
solving ordinary differential equations (ODEs) and also achieves promising performance
on image recognition. G. Larsson et al employed the fractal idea to design a self-similar
FractalNet [22], also discovering that its architecture is similar to the Runge–Kutta (RK)
scheme in numerical calculations. According to the nature of polynomials, Zhang et al.
designed PolyNet [23] by improving ResNet to strengthen the expressive ability of the
network, and Gomez et al. [24] proposed RevNet by using some ideas of the dynamic
system. Chen et al. [25] analyzed the process of solving ODEs, then proposed Neural ODE,
which further shows that mathematics and neural networks have a strong relationship.
Meanwhile, He et al. designed a network architecture for the super-resolution task based on
the forward Euler and RK methods of solving ODEs [18] and achieved good performance.
Sun et al. [26] designed ADMM-Net through the alternating direction method to learn
an image reconstruction problem. Inspired by a multigrid algorithm for solving inverse
problems, He et al. [27] proposed a learnable classification network denoted as MgNet
to extract image features u, which uses a few parameters to achieve good performance
on the CIFAR datasets. Alt et al. [28] analyzed the behavior and mathematical founda-
tions of UNet, and interpreted them as approximations of continuous nonlinear partial
differential equations (PDEs) by using full approximation schemes (FASs). Experimental
evaluations showed that the proposed architectures for the denoising and inpainting tasks
save half of the trainable parameters and can thus outperform standard ones with the same
model complexity.

Unfortunately, only a few studies based on model-driven techniques have been reported
for the segmentation task. In this paper, we mainly focus on the explainable DL framework
combining the advantages of the FAS and UNet for medical image segmentation.

1.1. Problem

H. Helmholtz proposed that the ill-posed problem of producing reliable perception
from fuzzy signals can be solved through the process of “unconscious inference” (the
Helmholtz Hypothesis) [29]. This theory implies that human vision is incomplete and
that details are inferred by the unconscious mind to create a complete image. That is, our
perception system can also integrate the fuzzy evidence received from the senses into the
situation based on its own environmental model.

Let p(u|f ;α) be a probabilistic distribution for feature representations u of the source
image f . The prior probability of u can be modeled as the multivariate normal distribution.
In general, u can be extracted from a given image f by optimizing the maximum a posteriori
(MAP) estimation as

arg max
u

log p(u|f ;α), (1)
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where α is the environmental parameter in classical “unconscious inference” or the inverse
problem, and this problem leads to the nonlinear system defined by

F (u;α) = b, (2)

where the nonlinear operator F (·;α) is employed to generate the image b, e.g., b = ATf is
a deconvoluted image of f in the image deblurring problem with a convolution operatorA.

We consider that image segmentation refers to a composite process of feature ex-
traction (6) and feature fusion segmentation. Here, the fusing process for feature u is
defined by

s = S(u;β), (3)

where S(·;β) denotes a fusing segmentation with a fixed conscious parameter β, and s is
the segmentation results or probability maps.

Such strongly interpretable segmentation models [30–32] are so general that, depend-
ing on the amount of well-predefined sparsity priors of the input image, they have the
advantages of theoretical support and strong convergence. The total flowchart of classical
variational segmentation can be summarized as shown in Figure 1a. However, they usually
require expensive computations, but also have to face the problems of the selection of
suitable regularizers φ(·) and model parameters (α,β). Consequently, some reconstructed
results are unsatisfactory.

It is well known that the solution u usually has the multiscale property, so a natural
idea is to exploit the multi-layer convolution and multigrid architecture, which can de-
scribe multiscale features to learn u. Based on the above facts, we propose a two-stage
segmentation framework for learning feature u in Stage 1 and segmentation s in Stage 2,
which is shown in Figure 1b.

Figure 1. Classical variational image segmentation and model-inspired learning method. (a) The first
stage solves the nonlinear differential equations using the classical iterative method, and then, the
second stage thresholds the smooth solution in the first stage to extract objects. (b) The first stage
learns the solution mapping TK( f ;θ1) by optimizing the convolution kernel θ1 to extract image
features. The second stage learns the feature fusion and segmentation thresholding parameter.

1.2. Contributions

In this work, we focus on analyzing the feature extraction inverse problem (2) and the
feature fusion segmentation (3) to design an explainable deep learning network. It is well
known that the unrolled iterations of the classical solution algorithm can be considered
as the layers of a neural network, so we propose a novel FAS-driven UNet (FAS-UNet),
which integrates image data and a multiscale algorithm for solving the nonlinear inverse
problem (7). The major differences with our approach are that MgNet is not a U-shaped
architecture and is only used for image classification, which leads to the output result not
being able to be converted to the segmentation prediction of the input image. Besides,
the proposed network was inspired by the traditional multiphase convexity Mumford–Shah
variational model [30] and FAS algorithm for solving nonlinear systems [33], which exploits
the model and algorithm priors’ information to extract the image features. Indeed, the goal
of our work is to show that, under some assumptions about the operators, it is possible to
interpret the smoothing operations of the FAS and image geometric extracting operations
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of the variational model as the layers of a CNN, which in turn, provide fairly specialized
network architectures that allow us to solve the standard nonlinear system (7) for a specific
choice of the parameters involved.

Our main contributions are summarized as follows:

1. We propose a novel variational-model-informed two-stage image segmentation net-
work (FAS-UNet), where an explainable and lightweight sub-network for feature
extraction is designed by combining the traditional multiphase convexity Mumford–
Shah variational model and FAS algorithm for solving nonlinear systems. To the best
of our knowledge, it is the first unrolled architecture designed based on model and
algorithm priors in the image segmentation community.

2. The proposed model-informed network integrates image data and mathematical
models, and it provides a helpful viewpoint for designing the image segmentation
network architecture.

3. The proposed architecture can be trained from additional model information obtained
by enforcing some of the mathematical and physical laws for better accuracy, faster
training, and improved generalization. Extensive experimental results show that it
performs better than the other state-of-the-art methods.

The rest of the paper is organized as follows. The novel FAS-UNet framework for
solving nonlinear inverse problems by analyzing variational segmentation theory and the
FAS algorithm is proposed in Section 2. We show experimental results in Section 3. Finally,
we conclude this work in Section 4.

2. Variational Segmentation via the CNN Framework

The goal of image segmentation is to partition a given image f : Ω→ R into r regions
{Ωi}r

i=1 that contain distinct objects and satisfy Ωi ∩Ωj = ∅, j 6= i, and
⋃r

i=1 Ωi = Ω,
where the image domain Ω is a bounded and open subset of R2. Assume that Γ =

⋃
∂Ωi is

the union of boundaries of Ωi, |Γ|, denoting the arc length of curve Γ.

2.1. Multiphase Variational Image Segmentation

As mentioned, various ways of variational image segmentation have been proposed.
Below, we review a few of them.

2.1.1. Variational Image Segmentation

The Mumford–Shah (M-S) model is a well-known variational image segmentation
method proposed by Mumford and Shah [34], which can be defined as follows:

min
u,Γ

{
τ1

∫
Ω
( f − u)2dx+ τ2

∫
Ω−Γ
|∇u|2dx+ |Γ|

}
,

where τ1 and τ2 are the weight parameters. The first term requires that u : Ω → R
approximates f , the second term that u does not vary much on each Ωi, and the third
term that the boundary Γ is as short as possible. This shows that u is a piecewise smooth
approximation of f .

In particular, Chan and Vese considered the special case of the M-S model where
the function u is chosen to be a piecewise constant function; thus, the minimization for
two-phase segmentation is given as

min
Γ,c1,c2

λ1

∫
inside (Γ)

| f − c1|2dx+ λ2

∫
outside (Γ)

| f − c2|2dx+ |Γ|,

where c1 and c2 are the average image intensities inside and outside of boundary Γ, respec-
tively, and λ1 and λ2 are the weight parameters.
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Sometimes, the given image is degraded by noise and problem-related blur operator
A. Therefore, Cai et al. [30] extended the two-stage image segmentation strategy using a
convex variant of the Mumford–Shah model as

min
u∈W1,2(Ω)

∫
Ω

(
κ1( f −Au)2 + κ2|∇u|2 + |∇u|

)
dx, (4)

where κ1 and κ2 are positive parameters, and the existence and uniqueness of u were
analyzed in their work.

We assume the image features u = (u1, . . . ,ud)
T : Ω → Rd, where ui : Ωi → R is a

smooth mapping defined on the tissue or lesion Ωi. In this work, we extend the above
model (4) to the multiphase case, which can deal with d-phase segmentation (multiple
objects), which refers to a two-stage composite process of feature extraction (6) and feature
fusion segmentation (3).

2.1.2. Feature Extraction

The first stage is to extract image features u by maximizing a posterior probabilistic
distribution (6) for feature representations u of a given image f as

arg max
u

p(u| f ;α) = arg max
u

log p(u| f ;α)

= arg max
u

log
p( f |u;α)p(u;α)

p( f )

= arg max
u

log p( f |u;α)p(u;α),

(5)

where α is the environmental parameter in classical “unconscious inference” or the inverse
problem. Especially, the likelihood probability p( f |u;α) and the prior probability p(u;α)
can be modeled as normal distributions, respectively, denoted by

p( f |u;α) ∝ e−
1

2σ2
∫

Ω(Au− f )2dΩ
= e−γ

∫
Ω(Au− f )2dΩ, p(u;α) ∝ e−λ

∫
Ω φ(∇u)dΩ;

thus, the first stage is to find a smooth approximation u by minimizing the multiphase
generalizability (TS-MCMS) of (4), which can be rewritten as

min
u∈W1,2(Ω)

{∫
Ω
( f −Au)2dx+ µ

∫
Ω

φ(∇u)dx
}

, (6)

whereA : Rd → R is a convolutional blur operator, φ(∇u) = ν|∇u|2 + |∇u| is a geometric
prior of u, and µ = λ

γ . Hence, this leads to the nonlinear system as

F (u;α) := ATAu− µ∇ · (φ′(∇u)) = b, (7)

where b = AT f and α = (A,∇, µ, ν).

2.1.3. Feature Fusion Segmentation

Once the features u are obtained, the segmentation is performed by fusing u properly
in the second stage; for example, many novel image segmentation methods [30–32] have
been proposed based on thresholding the smooth solution u. Then, the fusing process for
feature u is finished in (3).

The model-driven methods introduce prior knowledge regarding many desirable
mathematical properties of the underlying anatomical structure, such as phase field theory,
Γ-approximation, smoothness, and sparseness. The informed priors may help to render the
segmentation method more robust and stable. However, these model-inspired methods
generally solve the optimization problem in the image domain, while the numerical mini-
mization method for the feature representations u is very slow because the regularization
of the TV-norm, the high dimensionality of u, as well as the nonlinear relationship between
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the images and the parameters pose significant computational challenges. Furthermore,
it is challenging to introduce priors flexibly under different clinical scenes. These limita-
tions make it hard for purely model-based segmentation to obtain the solutions efficiently
and flexibly.

The goal of this work was to learn powerful solvers of (7) and (3) to aggregate a variety
of mechanisms to address the medical image segmentation problem efficiently.

2.2. Proposed Learnable Framework of TS-MCMS Algorithm

We summarized the two-stage algorithm to formulate medical image segmentation
based on the TS-MCMS model, inspired by the CNN architectures of unrolled iterations,
and we propose a learnable framework with two CNN modules on multiscale feature
spaces, FAS-UNet (see Figure 1b), aimed at learning the nonlinear inverse operators of (7)
and (3) in the context of the variational inverse problem to segment a given image f .

It is already well known that the unrolled iterations of many classical algorithms can
be considered as the layers of a neural network [22–26]. In this part, we are not interested
in designing another approach for inferring the classes in MgNet [27], but rather, we aim at
extracting the features of a given image f .

Inspired by the variational segmentation model (6), one of the key ideas in the pro-
posed architecture is that we split our framework into a solution module TK( f ;θ1) and
a feature fusion module SK(u;θ2), where TK( f ;θ1) is the feature extraction part of the
framework (in the multi-stage case) and SK(·;θ2) is the stage fusion part to be learned.
Therefore, how to design the effective function maps TK for approximately solving (7) and
SK for approximating (3) is an important problem.

This work applies a nonlinear multigrid method to design FAS-UNet for explainable
medical image segmentation by learning the two following modules:{

u = TK( f ;θ1)

s = SK(u;θ2),
(8)

where f is an input image, u is the feature maps, and s is the prediction for the truth
partitions, leading to the overall approximation function as

s = SK(TK( f ;θ1);θ2), (9)

where θ1 and θ2 are parameters to be learned in the proposed explainable FAS-UNet
architecture.

To understand the approximation ability of the proposed modules TK( f ;θ1) and
SK(u;θ2) generated by the FAS-UNet architecture, we refer the readers to D. Zhou’s
work [35], which answers an open question in CNN learning theory about how deep CNN
can be used to approximate any continuous function to an arbitrary accuracy when the
depth of the neural network is large enough.

2.3. FAS-Module for Feature Extraction

In this part, we discuss how the multigrid method can be used to solve nonlinear
problems. The Helmholtz Hypothesis [29] demonstrates that the extracted features can also
be represented by solving the equation:

F (u,α) = b := AT f , (10)

subject to

min
u
‖SK(u;θ2)− y‖,
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where F denotes the transformation of combining feature u with a deblurred image
b = AT f , u is the unknown features, and y is the ground-truth of image f . Our starting
point is the traditional FAS algorithm solving (10).

2.3.1. The Full Approximation Scheme

The multigrid method is usually used to solve nonlinear algebraic systems (10).
For simplicity, the parameterα in F (u,α) is omitted when only the classical FAS algorithm
is involved, i.e.,

F (u) = b. (11)

The multigrid ingredients including the error smoothing and the coarse grid correction
ideas are not restricted to the linear situation, but can be immediately used for the nonlinear
problem itself, which leads to the so-called FAS algorithm. The fundamental idea of the
nonlinear multigrid is the same as in the linear case, and the FAS method can be recursively
defined on the basis of a two-grid method. We start with the description of one fine–coarse
cycle (finer grid layer ` and coarser grid layer `+ 1) of the nonlinear two-grid method for
solving (11). To proceed, let the fine grid equation be written as

F `(u`) = b`.

Firstly, we compute an approximation ū` := u`
m of the fine grid problem by applying

m pre-smoothing steps to u` as follows
u`

0 = u`;
for k = 1 : m do
u`

k = u`
k−1 + (F `)′(b` −F `(u`

k−1)),
end for
ū` = u`

m,
which can be obtained via solving the least-squares problem defined by

min
u

{
E(u) :=

1
2
‖F `(u)− b`‖2

}
.

Secondly, the errors to the solution have to be smoothed such that they can be approxi-
mated on a coarser grid. Then, the defect r` = b` −F `(ū`) is computed, and an analog of
the linear defect equation is transferred to the coarse grid, which is defined by

F `+1(u`+1) = b`+1 := I`+1
` r` +F `+1(I`+1

` ū`). (12)

The coarse grid corrections are interpolated back to the fine grid by

ū` ← ū` + I``+1

[
u`+1 − I`+1

` ū`
]
, (13)

where u`+1 is a solution of the coarse grid equations, then the errors are finally post-
smoothed by
u`

0 = ū`;
for j = 1 : m do
u`

j = u`
j−1 + (F `)′(b` −F `(u`

j−1)),
end for
û` = u`

m.
This means that, once the solution of the fine grid problem is obtained, the coarse grid

correction does not introduce any changes via interpolation. We regard this property as an
essential one, and in our derivation of the coarse grid optimization problem, we make sure
that it is satisfied.
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2.3.2. FAS-Solution Module—A Learnable Architecture for FAS Solution

In this part, we unroll the multiscale correction process of the multigrid method
and design a series of deep FAS-Solution modules to propagate the features of input
image f . Figure 2 demonstrates the cascade of all ingredients at each FAS iteration of our
propagative network.

We now consider a decomposition of the image representation into partial sums, which
correspond to the multiscale feature sequence, having the following idea in mind. To learn
features that are invariant to noise and uninformative intensity variations, we propose a
generative feature module u = TK( f ;θ1) allowing for a significant reduction of the number
of parameters involved, which involves a learnable FAS update for solving the nonlinear
system (10). Next, we analyze its three key components as follows.

Figure 2. The overall flowchart of the proposed feature extraction module (FAS-Solution module)
with the multigrid architecture. It consists of three major ingredients, i.e., pre-/coarsest-/post-
smoothing blocks (LSB/CSB/RSB), feature downsample block (FDB), and feature correction block
(FCB).

Pre-/coarsest-/post-smoothing block: Error smoothing is one of the two basic princi-
ples of the FAS approach. At each pre-smoothing (or coarsest-processing or post-processing)
step, to establish an efficient error correction and reduce the computational costs, we pro-
pose to generate the error-based iterative scheme. The main motivation of the learnable
pre-/coarsest-/post-smoothing blocks (LSB/CSB/RSB) is to provide another way to ro-
bustly resolve the ambiguity of the feasible solutions. Therefore, we further unroll the
Newton update process for calculating the approximate solution of the feature maps, then
design a series of deep pre-/coarsest-/post-smoothing blocks as

for j = 0 : kq − 1 do
u`

j+1 =u`
j +M(u`

j ;Kq,`,K′q,`,j, b
`)

=u`
j +F `

K′q,j
(b` −F `

Kq
(u`

j )),

end for
ū` = u`

kq
;

where the residual network blockM(u`;K,K′, b`) is a trainable feature correction network;
here, ` = 1, . . . ,L with L-grid cycles. The above deep smoothing series denotes the
pre-smoothing block when q := l, the Lth coarsest-smoothing when q := m, and the
post-smoothing when q := r. F `

K′q,j
(or F `

Kq
, which means that the convolution Kq,` will

share the same weights in the overall pre-/post-precessing smoothing steps of the `th grid
cycle) represents operations consisting of three main components, including convolution
K′q,`,j (or Kq,`) with p filters, ReLU function ϕ(·), and batch normalization ψ(·), such that
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F `
K′q,j

(·) := ψ(ϕ(K′q,`,j(·))). Especially, b0 := K0 f is an initial feature in the finest grid,

which is obtained by learning the convolution K0 with p filters.
Feature downsample block: The choice of restriction and interpolation operators I`+1

`

and I``+1 in the FAS algorithm, for the intergrid transfer of grid functions, is closely related
to the choice of the coarse strategy. Here, we design the learnable convolution for transfer
operators, i.e., the grid transfers between the finer grid ` and the coarser grid `+ 1.

The low-frequency components represent meaningful image features on a coarse grid
`+ 1, whereas the high-frequency components do not because they are not “visible” on
the coarse grid, which means that the frequency information on the coarse grid can be
extracted from the right-side term defined by

b`+1 = K`+1
` (b` −F `

K(ū
`)) +F `+1

K (K`+1
` ū`), (14)

where b` and ū` are the inputs of the downsample block and b`+1 is the output of the
downsampling module in the feature space; here, ` = 1, . . . ,L− 1 with L-grid cycles. Simi-
lar to F `

Kj
, K`+1

` is a learnable downsample operation that would be used to approximate

the restriction function I`+1
` in (12) or (13), such as convolution with a stride of 2 and p

filters. F `
K and F `+1

K are the nonlinear convolutional blocks in the fine and coarse layers,
respectively. In general, F `

K denotes the operator consisting of three main components,
including convolution K` with p filters, ReLU function ϕ(·), and batch normalization
ψ(·), such that F `

K(·) := ψ(ϕ(K`(·))). Note that b` −F `
K(ū

`) is equivalent to the residual
of the images in the fine layer, then F `+1

K (K`+1
` ū`) is added to reduce the loss of image

information compared with directly pooling the image. The feature downsample block
(FDB) architecture is shown in Figure 2b.

Feature correction block: The purpose of the feature correction block (FCB) is to
take the detailed information extracted from the coarser grid into account and help to
compensate the encoded features ū`. The coarse grid corrections are interpolated back to
the fine grid, i.e.,

û` ← ū` +K`
`+1

[
u`+1 −K`+1

` ū`
]
, (15)

where K`
`+1 is a learnable upsampling operation that would be used to approximate the

interpolation function I``+1 in (13), such as the transposed convolution with a stride of 2 and
p filters; here, ` = 1, . . . ,L− 1 with L-grid cycles. Obviously, e`+1 = u`+1 −K`+1

` ū` is the
residual features on the coarse grid. Compared to directly upsampling u`+1, the transposed
convolution K`

`+1e
`+1 of the residual feature maps e`+1 is used as the error corrections to

update the fine grid approximation û`, which will compensate the information of feature
maps ū`. Such a transposed convolution could learn a self-adaptive mapping to restore
features with more detailed information.

Based on these designs for nonlinear operator F `
K and two grid transfer convolutions

K`+1
` and K`

`+1 with p filters, we aimed to approximate the feature solution of (6) by
learning these feature extraction parameters as

θ1 =
{(
K`

`+1,K`+1
` , (Kq,`), (K′q,`,j)

kq
j=1,K`

)L−1

`=1
,K0, (Km,L), (K′m,L,j)

km
j=1

∣∣∣q ∈ {l, r}
}

(16)

in u = TK( f ;θ1), thus further improving image segmentation.

2.4. Learning Feature Fusion Segmentation

It is well known that, in the segmentation task, each pixel is labeled as either 0 or
1 so that organ pixels can be accurately identified within the tight bounding box. In the
second stage of the two-stage multiphase variational image segmentation (6), the traditional
method is that users manually set one or more thresholds according to their professional
prior, with all pixels in the same object sharing the threshold, and then, filter the feature to
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obtain the segmentation result. Another method is to obtain the final segmentation result by
k-means clustering (the number of categories is given artificially, and the initial clustering
center is adjusted continuously during the clustering process) [30]. This approach leads to
a large amount of computation (recalculation of the metrics for each iteration) and unstable
segmentation results (only considering the relationship between pixels and centers, not the
relationship between pixels).

The second key component of our proposed FAS-UNet framework is how to design
the segmentation module SK(u;θ2) to compute segmented mask s. However, the fusion
segmentation module takes a batch of multiscaled features from the FAS module as the
input and outputs the mass segmentation masks. Finally, the pixel segmentation computes
the mapping from smaller-scale possibility predictions to binary masks.

Based on this idea, the feature fusion segmentation module is constructed, which
comprises a convolutional operation and an activation function. Intuitively, the module
TK( f ;θ1) of the feature extraction based on deep learning obtains the multi-channel feature
maps u (much larger than the number of categories) in the first stage. Then, a shallow
convolutional network is constructed to learn the parameters Kp corresponding to the
mapping ρ(Kp(·)) : Rp → Rc from the feature maps u to the segmentation probability
maps through softmax function ρ(·), which improves the traditional practice and has
better generalization.

Based on these designs for channel transfer convolution Kp with c filters (c is the
number of segmentation categories), we aimed to approximate the final multiphase seg-
mentation probability maps S(·;β) of (6) by learning these fusion parameters as

θ2 = {Kp} (17)

in s = SK(u;θ2), thus further refining the segmentation mask.

2.5. Loss Function

The proposed FAS-UNet architecture can be rewritten as

s = SK(TK( f ;θ1);θ2),

which requires the loss function L(θ;Dtrain ) to optimize the model parameters θ :=
{θ1,θ2}. It can measure the error between the prediction and labels, and the gradients of
the weights in the loss function can be back-propagated to the previous layers in order to
update the model weights.

To proceed, we considered the training data Dtrain = {( fi, yi)}n
i=1 from a set of classes

Ctrain = {0, . . . , c− 1}d used for training a pixel classifier, where fi is an image sample,
yi ∈ Ctrain is the corresponding label, c is the number of object categories segmented in
the datasets, d indicates the number of image pixels, and n denotes the number of training
samples. We employed the cross-entropy as the loss function, leading to the optimization
problem as follows:

min
θ

{
L(θ;Dtrain ) :=

n,d

∑
i=1,j=1

(
s̄
(j)
i · log(s(j)

i ) + (1− s̄(j)
i ) · log(1− s(j)

i )
)}

, (18)

where s(j)
i denotes the predicted probabilistic vector of the jth pixel in the ith sample and

s̄
(j)
i corresponds to the one-hot-encoded label of the ground-truth y(j)

i at the jth pixel in the

ith sample. s(j)
i ∈ Rc. Finally, the predicted class of the jth pixel of the ith image would be

given by
y(j)

i = arg max
k
{s(j)

i (1), . . . , s(j)
i (k), . . . , s(j)

i (c)},

where s(j)
i (k) ∈ Ctrain .
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3. Datasets and Experiments

In this section, we first introduce the evaluation metrics for medical image segmen-
tation and also describe the datasets and the experimental settings that we used for 2D
CT image segmentation and 3D medical volumetric segmentation. Next, we analyzed the
sensitivity of 2D FAS-UNet to each hyperparameter configuration by a series of experi-
ments. Finally, we evaluated the effectiveness of the proposed 2D/3D FAS-UNet through
comparative experiments.

3.1. Evaluation Metrics

There are many metrics to quantitatively evaluate segmentation accuracy, each of
which focuses on different aspects. In this work, we employed the average Dice similarity
coefficient (a-DSC), average precision (a-Preci), and average symmetric surface distance
(a-SSD), which are widely used in the segmentation task as evaluation metrics to evaluate
the performance of the model. The a-DSC/a-Preci/a-SSD are calculated by averaging the
DSC/Preci/SSD of each category [36].

The Dice score is the most-used metric in validating medical image segmentation, also
called the DSC score [37], defined by

DSC(S, Y) = 2× |S
⋂

Y|
|S|+ |Y| ,

where S and Y denote the automatically segmentation set of images and the manually
annotated ground-truth, respectively. | · | denotes the measure of a set. The above formulas
compute the overlap between the prediction and the ground-truth, to evaluate the overall
effect of the segmentation results. However, it is fairly insensitive to the precise boundary of
the segmented regions. Precision effectively describes the purity of the prediction relative
to the ground-truth or measures the number of those pixels actually having a matching
ground-truth annotation by calculating

Preci =
TP

TP + FP
,

where a true positive (TP) is observed when a prediction–target mask pair has a score
that exceeds some predefined threshold and a false positive (FP) indicates that a predicted
object mask has no associated ground-truth. The SSD value between two finite point sets S
and Y is defined as follows:

SSD(∂S, ∂Y) =
∑

s∈∂S
d(s, ∂Y) + ∑

y∈∂Y
d(y, ∂S)

|∂S|+ |∂Y| ,

where d(v, X) = minx∈X ‖v− x‖ denotes the minimum Euclidean distance from point v to
all points of X.

3.2. Datasets and Experimental Setup

We evaluated the proposed method and other state-of-the-art methods on the 2D
SegTHOR datasets [38], 3D HVSMR-2016 datasets [39], and 3D CHAOS-CT datasets [40,41],
respectively. We introduce their details and data processing methods as follows.

3.2.1. Data Preparation

For the SegTHOR datasets, in order to reduce the GPU memory cost and reduce the
image noise, we first split the original 3D data into many 2D images along the Z-axis.
Secondly, we used f = I [96 : 400, 172 : 396] as the input image, where I denotes the
original 2D slice. We removed the slices of the pure black ground-truth when it was in
training on the datasets.
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For the 3D HVSMR-2016 datasets, we directly used the sliding window cropping
method with strides of 64× 64× 32 to crop the volumes. In general, before cropping the 3D
whole-volume into several overlapping sub-volumes of size 128× 128× 64, a (32, 32, 16)-
voxel padding with zero filling was first added to each direction of the 3D whole-volume.
Then, after these operations, all remaining sub-volumes whose sizes were smaller than
128× 128× 64 were resized to 128× 128× 64 with zero-filling, and the intensity values of
all patches were in [0, 4808].

For the 3D CHAOS-CT datasets, which were used as for the liver segmentation
experiments, we first cropped the volumes in the x, y directions to obtain an ROI with a
size of 380× 440× z and then used the above sliding window cropping method to crop out
several 3D sub-volumes, where those intensity values were in [−1200, 1096].

Although the noise problem can be improved by data pre-processing, our aim was not
to pursue the best performance of the network on these datasets; we compared the perfor-
mance of each method under fairer conditions. Using some data pre-processing techniques
may be particularly beneficial to some methods, while at the same time, they may degrade
the performance of others, so we did not use more complex data pre-processing techniques.

3.2.2. Experimental Configurations

We used mini-batch stochastic gradient descent (SGD) to optimize the proposed model,
in which the initial learning rate, momentum parameter, and weight decay parameter were
set to 0.01, 0.99, and 10−4, respectively. We set the batch size as 16, 4, and 4 for the 2D
SegTHOR datasets, 3D HVSMR-2016 datasets, and 3D CHAOS-CT datasets, respectively.
The maximum epochs of the three datasets were set to 150, 150, and 300, respectively.
We used also the decay strategy to update the learning rate. The network initialization
method was defined as Kaiming initialization, and the activation function was set as ReLU.
The numbers of grid cycles for 2D and 3D FAS-UNet were L = 5 and L = 4, respectively.
The kernel sizes of the 2D and 3D networks were set to 3× 3 and 3× 3× 3 as the defaults,
respectively. We did not use the weight-sharing scheme for the convolution K′q,`,j (within

the outer-level nonlinear operator F `
K′q,j

) within one smoothing block. Table 1 shows the

details of the 2D FAS-UNet framework, and 3D FAS-UNet has a similar architecture, except
for replacing the 2D convolution with a 3D convolution.

3.2.3. Parameter Complexity

To compute the number of parameters of the proposed model, we first denote the
number of parameters of 2D convolution kernel K2d with the shape p × p × kc × kc
as follows:

η(K2d) = p2N = p2(kc)
2.

Similarly, the number of parameters of 3D convolution K3d with the shape rp× rp× kc ×
kc × kc is defined as

η(K3d) = r2 p2(kc)
3.

Especially if the channel ratio satisfies that r <
√

3
kc

, one has η(K2d) > η(K3d). Thus,
the number of parameters of convolution kernel set θ1 in the proposed FAS-UNet can be
computed by

η(θ1) = cp(kc)
2 +

(
(km + 1) + (L− 1)(kl + kr + 5)

)
η(K)

≈ ((km + 1) + (L− 1)(kl + kr + 5))η(K),

where c is the channel number of the input image and η(K) is the number of parameters of
each 2D or 3D convolution K.

If setting kc = 3, p = 64, {kl , km, kr} = {3, 7, 4} and L = 5, one has η(K2d) = 36,864;
hence, 2D FAS-UNet has approximately η(θ1) = 56η(K2d) = 2,064,384 parameters. In ad-
dition, one also has η(K3d) = 27,648 when kc = 3, p = 32. If setting {kl , km, kr} = {3, 5, 2}
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and L = 4, thus 3D FAS-UNet has approximately η(θ1) = 36η(K3d) = 995,328 parameters.
Here, we did not compute η(θ2), where a small amount of parameters are involved.

Our experiments were implemented on the PyTorch framework and two NVIDIA
Geforce RTX 2080Ti GPUs with 11GB memory. For each quantitative result in the experi-
ments, we repeated the experiment twice and chose the best one to compute the mean/std.
Note that we used the same pipeline for all these experiments of each dataset for a fair
comparison. The networks under comparison were trained from scratch.

Table 1. A standard configuration of the proposed 2D FAS-UNet. p× H ×W denotes the number of
channels and the height and width of the feature maps, respectively. “conv3, s = 1 or 2” indicates the
convolution with a kernel size of 3× 3 and the stride of convolution being 1 or 2, respectively. ReLU
and BN are the ReLU activation function and batch normalization.

Name 2D Operation Output Size Name 2D Operation Output Size

Input f , initialization u1
0 p× H ×W

LSB1


conv3, s = 1
ReLU + BN
conv3, s = 1
ReLU + BN

× kl p× H ×W RSB1


conv3, s = 1
ReLU + BN
conv3, s = 1
ReLU + BN

× kr p× H ×W

FDB1
conv3, s = 2 for f
conv3, s = 2 for u p× H

2
× W

2
FCB1 deconv3, s = 2 p× H ×W

LSB2


conv3, s = 1
ReLU + BN
conv3, s = 1
ReLU + BN

× kl p× H
2
× W

2
RSB2


conv3, s = 1
ReLU + BN
conv3, s = 1
ReLU + BN

× kr p× H
2
× W

2

FDB2
conv3, s = 2 for f
conv3, s = 2 for u p× H

4
× W

4
FCB2 deconv3, s = 2 p× H

2
× W

2

LSB3


conv3, s = 1
ReLU + BN
conv3, s = 1
ReLU + BN

× kl p× H
4
× W

4
RSB3


conv3, s = 1
ReLU + BN
conv3, s = 1
ReLU + BN

× kr p× H
4
× W

4

FDB3
conv3, s = 2 for f
conv3, s = 2 for u p× H

8
× W

8
FCB3 deconv3, s = 2 p× H

4
× W

4

LSB4


conv3, s = 1
ReLU + BN
conv3, s = 1
ReLU + BN

× kl p× H
8
× W

8
RSB4


conv3, s = 1
ReLU + BN
conv3, s = 1
ReLU + BN

× kr p× H
8
× W

8

FDB4
conv3, s = 2 for f
conv3, s = 2 for u p× H

16
× W

16
FCB4 deconv3, s = 2 p× H

8
× W

8

CSB


conv3, s = 1
ReLU + BN
conv3, s = 1
ReLU + BN

× km p× H
16
× W

16

3.3. Ablation Studies

We conducted four groups of ablation studies on the 2D SegTHOR datasets to optimize
the hyperparameter configurations of the proposed framework.

3.3.1. Blocks’ Sensitivity

Firstly, we assessed the effect of smoothing block configurations {kl , km, kr}, where
{kl , km, kr} denote the kl , km, and kr smoothing iterations in the LSB, CSB, and RSB, respec-
tively. Here, we first fixed the channel configuration with p = 32 as the default. Table 2
shows a quantitative results of different block parameter sets, and we observed from the
pre-smoothing experiments (fixing km and kr, varying kl) that 2D FAS-UNet with kl = 3
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iterations achieved the best a-DSC score and precision of 85.60% and 85.99%, respectively.
For the post-smoothing (fixing kl and km, varying kr), we saw that the model with kr = 4
iterations achieved the highest values of a-SSD and precision, the a-DSC score being slightly
lower than the model with the block configuration {3, 7, 5} by 0.04%. To balance the predic-
tion performance and computational costs, we set the block configuration as {3, 7, 4} in all
2D experiments.

Table 2. Quantitative assessment with the a-DSC, a-SSD, and a-Preci values of different pre-/coarest-
/post- smoothing iteration numbers {kl , km, kr} using the proposed 2D FAS-UNet framework on the
2D SegTHOR validation datasets with four organs: esophagus, heart, trachea, and aorta. “Mean”
denotes an average score segmenting all organs. The best and second places are highlighted in bold
font and underline, respectively.

Number of Smoothing Steps Fixing km and kr , Varying kl Fixing kl and km, Varying kr

{2, 7, 2} {3, 7, 2} {4, 7, 2} {3, 7, 3} {3, 7, 4} {3, 7, 5}

Params 0.41 M 0.44 M 0.48 M 0.48 M 0.52 M 0.56 M

Esophagus 73.56 ± 9.58 74.55 ± 8.83 71.82 ± 9.42 74.06 ± 9.80 74.24 ± 8.01 73.19 ± 9.79
Heart 93.63 ± 2.22 92.96 ± 3.46 93.21 ± 2.28 92.98 ± 1.55 94.22 ± 1.52 92.64 ± 4.72
Trachea 83.06 ± 4.33 85.78 ± 4.32 84.22 ± 4.04 86.43 ± 4.01 84.47 ± 5.33 84.54 ± 6.81
Aorta 89.78 ± 4.66 89.09 ± 4.9 89.96 ± 5.78 88.27 ± 5.13 89.39 ± 7.26 92.11 ± 1.36

a-DSC (%)

Mean 85.01 85.60 84.80 85.44 85.58 85.62

Esophagus 4.16 ± 1.91 2.67 ± 0.98 3.35 ± 1.34 3.22 ± 1.14 2.67 ± 0.79 2.69 ± 1.06
Heart 4.61 ± 3.97 12.48 ± 16.53 16.54 ± 24.38 2.66 ± 0.94 1.94 ± 0.66 18.5 ± 27.98
Trachea 5.22 ± 2.37 3.18 ± 1.15 6.61 ± 4.57 4.80 ± 4.70 3.01 ± 2.48 6.14 ± 4.48
Aorta 4.14 ± 2.33 5.41 ± 3.32 2.16 ± 1.22 2.26 ± 0.75 2.82 ± 1.33 5.27 ± 4.90

a-SSD (mm)

Mean 4.53 5.94 7.17 3.24 2.61 8.15

Esophagus 79.32 ± 7.98 77.58 ± 6.96 74.22 ± 11.25 76.66 ± 7.94 79.67 ± 6.67 82.10 ± 6.82
Heart 95.73 ± 3.57 92.84 ± 6.13 95.10 ± 4.60 96.34 ± 3.64 96.60 ± 2.27 92.70 ± 8.71
Trachea 77.01 ± 8.83 85.75 ± 6.56 78.43 ± 6.78 84.60 ± 7.82 90.98 ± 6.73 80.29 ± 10.06
Aorta 89.70 ± 3.38 87.79 ± 5.68 90.51 ± 3.84 92.28 ± 2.98 91.76 ± 2.78 90.87 ± 3.10

a-Preci (%)

Mean 85.44 85.99 84.56 87.47 89.75 86.49

3.3.2. The Input Feature Initialization

We also evaluated the initialization configuration of the input feature b0 = K0 f on
the finest cycle ` = 1 to verify its sensitivity. We compared different variants of the
initialization method, such as zero initialization, random normal distribution initialization,
and ψ(K0 f ) initialization with the batch normalization operation ψ(·), where K0 was
obtained by learning the convolutional kernel with a size of p× 3× 3 for 2D segmentation
or p× 3× 3× 3 for 3D segmentation.

Table 3 shows the quantitative comparison of these variants. The model with ψ(K0 f )
initialization achieved a-DSC, a-SSD, and a-Preci values of 85.58% (ranked second), 2.61 mm
(top-ranked), and 89.75% (top-ranked), respectively. Although the model with random
initialization had the highest a-DSC score, the a-SSD and a-Preci scores were significantly
lower than the model with ψ(K0 f ) initialization. To this end, we set the proposed frame-
work with ψ(K0 f ) initialization as the default in this work.

3.3.3. Weight Sharing

To demonstrate the flexibility of the proposed framework, which does not have to be
the different K′q,`,j parameter configurations in different nonlinear F `

K′q,j
(with respect to j)

within the `th pre-smoothing (q = l) or post-smoothing (q = r) block, we conducted several
variants that had different sharing settings among K′q,`,j (with respect to the iteration step j).

We only varied the weight sharing settings to verify the sensitivity of the model. We
compared four variants, and the results are shown in Table 4. From the evaluation metrics,
we see that the model without the weight sharing configuration had moreparameters
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and achieved the best performance on the a-DSC, a-SSD, and a-Preci values, respectively.
The performance of the other three models did not show a significant differences. Therefore,
we adopted the default unshared version in the rest of this paper.

Table 3. Quantitative assessment with the a-DSC, a-SSD, and a-Preci values of different initialization
techniques (zero initialization, random initialization, and feature extraction initialization ψ(K0( f )))
using the proposed 2D FAS-UNet framework on the 2D SegTHOR validation datasets with four
organs: esophagus, heart, trachea, and aorta. “Mean” denotes an average score segmenting all organs.
The best and second places are highlighted in bold font and underlined, respectively.

Feature Initialization Zero Initi Random Initi ψ(K0( f )) Initi

Params 0.52 M 0.52 M 0.52 M

Esophagus 72.56 ± 11.66 75.84 ± 10.02 74.24 ± 8.01
Heart 92.40 ± 4.48 92.37 ± 5.06 94.22 ± 1.52
Trachea 84.21 ± 4.27 85.08 ± 3.38 84.47 ± 5.33
Aorta 91.17 ± 4.49 89.81 ± 4.22 89.39 ± 7.26

a-DSC (%)

Mean 85.08 85.77 85.58

Esophagus 2.39 ± 1.2 2.85 ± 0.87 2.67 ± 0.79
Heart 15.38 ± 21.8 16.82 ± 32.15 1.94 ± 0.66
Trachea 5.67 ± 2.98 4.66 ± 3.59 3.01 ± 2.48
Aorta 2.85 ± 1.97 7.59 ± 8.94 2.82 ± 1.33

a-SSD (mm)

Mean 6.57 7.98 2.61

Esophagus 81.8 ± 6.41 81.3 ± 6.49 79.67 ± 6.67
Heart 92.53 ± 8.43 93.31 ± 8.25 96.6 ± 2.27
Trachea 79.92 ± 8.34 79.0 ± 5.46 90.98 ± 6.73
Aorta 91.92 ± 2.75 88.57 ± 5.28 91.76 ± 2.78

a-Preci (%)

Mean 86.55 85.55 89.75

Table 4. Quantitative assessment with the a-DSC, a-SSD, and a-Preci values of using the proposed
2D FAS-UNet framework with/without weight sharing of pre-/post smoothing steps on the 2D
SegTHOR validation datasets with four organs: esophagus, heart, trachea, and aorta. “Mean” denotes
an average score segmenting all organs. The best and second places are highlighted in bold font and
underlined, respectively.

Block Weight Sharing w/o LSB RSB LSB and RSB

Params 0.52 M 0.45 M 0.41 M 0.34 M

Esophagus 74.24 ± 8.01 72.53 ± 10.17 73.01 ± 9.91 72.53 ± 10.28
Heart 94.22 ± 1.52 90.51 ± 6.98 89.33 ± 5.11 92.00 ± 3.97
Trachea 84.47 ± 5.33 84.14 ± 5.21 84.55 ± 2.60 83.37 ± 4.10
Aorta 89.39 ± 7.26 90.46 ± 2.99 90.17 ± 4.30 90.03 ± 2.40

a-DSC (%)

Mean 85.58 84.41 84.26 84.48

Esophagus 2.67 ± 0.79 3.22 ± 0.97 2.69 ± 0.72 4.26 ± 1.91
Heart 1.94 ± 0.66 22.37 ± 16.99 34.91 ± 31.76 14.51 ± 19.82
Trachea 3.01 ± 2.48 6.30 ± 4.50 5.17 ± 3.36 5.96 ± 3.38
Aorta 2.82 ± 1.33 4.64 ± 3.87 4.61 ± 1.78 8.12 ± 5.49

a-SSD (mm)

Mean 2.61 9.13 11.85 8.21

Esophagus 79.67 ± 6.67 77.94 ± 7.67 77.36 ± 6.60 74.64 ± 8.14
Heart 96.60 ± 2.27 88.05 ± 11.50 88.72 ± 9.14 92.19 ± 7.80
Trachea 90.98 ± 6.73 82.34 ± 9.26 78.14 ± 5.00 77.36 ± 8.26
Aorta 91.76 ± 2.78 88.84 ± 3.57 87.08 ± 6.09 85.82 ± 3.77

a-Preci (%)

Mean 89.75 84.29 82.82 82.50

3.3.4. Effects of Varying the Number of Channels

In this section, we analyze the segmentation performance of the proposed method with
varying the number p of feature channels. In the FAS-Solution module, the pre-smoothing
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and post-smoothing steps (with kl and kr iterations, respectively) had the same update
structure with the coarsest smoothing step, which included km iterations. Therefore, we
set the number of smoothing iterations as {kl , km, kr} = {3, 7, 4} and adopted a series of
channel parameters p = 80, 64, 48, 32, 16, respectively, for comparison. Here, p = 80 means
that, in each convolutional operation of the FAS-Solution module, there were 80 filters with
the same kernel size of 3× 3.

Table 5 shows the quantitative comparison of different p-configurations. It reveals
that, as the number of channels increased, the parameter of our model squarely increased.
Additionally, the networks with the numbers of 64 and 16 achieved a-DSC scores of 86.83%
(ranking first) and 84.88% (ranking lowest), respectively. When the number of channels
was less than 64, increasing the number of channels could improve the a-DSC value, and
one can see from Table 5 that the number of channels had a significant impact on the
performance of the model. Based on this observation, the configuration with 64 channels
is a preferable setting to balance the segmentation performance and computational costs,
and we fixed p = 64 throughout all the 2D experiments.

Table 5. Quantitative assessment with the a-DSC, a-SSD, and a-Preci values of different channel
numbers p using the proposed 2D FAS-UNet framework on the 2D SegTHOR validation datasets
with four organs: esophagus, heart, trachea, and aorta. “Mean” denotes an average score segmenting
all organs. The best and second places are highlighted in bold font and underlined, respectively.

Number of Channels 80 64 48 32 16

Params 3.24 M 2.08 M 1.17 M 0.52 M 0.13 M

Esophagus 75.20 ± 11.53 75.34 ± 12.59 74.50 ± 11.62 74.24 ± 8.01 70.30 ± 11.04
Heart 94.19 ± 1.95 93.79 ± 1.79 92.04 ± 5.66 94.22 ± 1.52 93.17 ± 2.41
Trachea 84.77 ± 4.08 86.97 ± 5.05 87.29 ± 3.65 84.47 ± 5.33 85.86 ± 3.62
Aorta 91.46 ± 5.14 91.20 ± 3.45 90.20 ± 6.76 89.39 ± 7.26 90.17 ± 5.29

a-DSC (%)

Mean 86.41 86.83 86.01 85.58 84.88

Esophagus 2.72 ± 0.98 2.49 ± 1.22 2.37 ± 1.26 2.67 ± 0.79 3.18 ± 1.71
Heart 8.33 ± 12.2 8.45 ± 16.54 12.79 ± 26.80 1.94 ± 0.66 12.11 ± 18.35
Trachea 7.52 ± 4.88 4.61 ± 3.50 3.66 ± 2.63 3.01 ± 2.48 3.20 ± 1.95
Aorta 1.99 ± 1.02 5.20 ± 4.92 2.80 ± 1.73 2.82 ± 1.33 2.38 ± 1.33

a-SSD (mm)

Mean 5.14 5.19 5.40 2.61 5.22

Esophagus 81.02 ± 6.21 81.19±10.70 80.33 ± 8.23 79.67 ± 6.67 77.39 ± 8.61
Heart 95.84 ± 3.90 95.85 ± 3.45 91.52 ± 8.89 96.60 ± 2.27 94.31 ± 2.92
Trachea 80.30 ± 8.44 84.64 ± 9.50 86.50 ± 8.41 90.98 ± 6.73 85.14 ± 9.38
Aorta 93.04 ± 2.36 91.17 ± 3.81 91.93 ± 3.61 91.76 ± 2.78 89.85 ± 3.56

a-Preci (%)

Mean 87.55 88.21 87.57 89.75 86.67

To provide insights into the model hyperparameter configurations of the proposed
3D FAS-UNet version on the 3D HVSMR-2016 datasets and 3D CHAOS-CT datasets,
we also carried out a series of ablation experiments to investigate the influence of two
key design variables, the number of channels and the number of convolutional blocks.
The evaluation indicated that the network performed better with the configurations p = 32,
{kl , km, kr} = {3, 6, 2} for the 3D HVSMR-2016 datasets and {3, 5, 2} for the 3D CHAOS-CT
datasets as the default. Here, we do not detail these comparisons.

Finally, we illustrate the hyperparameter configurations of the proposed FAS-UNet on
each dataset throughout all experiments, as shown in Table 6.
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Table 6. The hyperparameter configurations of the proposed FAS-UNet framework on differ-
ent datasets.

Datasets Layer
Number L

Feature
Number p {kl , km, kr}

Weight Sharing
on K′

q,`,j

Feature
Initialization Params

2D SegTHOR 5 64 {3, 7, 4} No ψ(K0( f ))) 2.08 M
3D HVSMR 2016 4 32 {3, 6, 2} No ψ(K0( f ))) 1.01 M
3D CHAOS CT 4 32 {3, 5, 2} No ψ(K0( f ))) 1.00 M

3.4. The 2D FAS-UNet for the SegTHOR Datasets

We evaluated the proposed network on the 2D SegTHOR datasets and compared
the visualizations and quantitative metrics with the existing state-of-the-art segmentation
methods, including 2D UNet [9], CA-Net [20], CE-Net [42], CPFNet [43], ERFNet [44],
UNet++ [11], and LinkNet [45].

In Table 7, we show the quantitative results of each organ’s segmentation com-
pared with the other seven models. We can see that the segmentation performance of
the heart was the best among all organs, and its a-DSC score was more than 92% for
each method, followed by the aorta, and the worst was the esophagus. The main rea-
son for the good performance in extracting the heart was that the heart region is the
largest, and its inner pixel value changes little, while its boundary is more obvious (see
Figure 3), while the esophageal region is the smallest among all organs, which increased the
segmentation difficulty.

Table 7. Performance comparisons between the proposed 2D FAS-UNet and the popular networks
using the a-DSC, a-SSD, and a-Preci values on the 2D SegTHOR validation datasets with four organs:
esophagus, heart, trachea, and aorta. “Mean” denotes an average score segmenting all organs.
The best and second places are highlighted in bold font and underlined, respectively.

Method 2D UNet CA-Net CE-Net CPFNet ERFNet UNet++ LinkNet 2D FAS-UNet
[9] [20] [42] [43] [44] [11] [45]

Params 17.26 M 2.78 M 29.00 M 30.65 M 2.06 M 9.05 M 21.79 M 2.08 M

Esophagus 73.77 ± 13.23 76.26 ± 8.72 64.17 ± 10.78 66.58 ± 10.02 69.68 ± 5.93 69.63 ± 9.28 65.19 ± 9.18 75.34 ± 12.59
Heart 93.42 ± 3.270 93.61 ± 2.45 94.01 ± 1.17 92.05 ± 4.39 92.59 ± 5.29 93.46 ± 2.36 93.19 ± 9.18 93.79 ± 1.79
Trachea 86.71 ± 2.69 85.58 ± 4.38 85.12 ± 4.37 87.41 ± 2.84 79.10 ± 5.79 85.63 ± 5.78 86.16 ± 4.35 86.97 ± 5.05
Aorta 90.42 ± 3.45 91.2 ± 1.59 88.38 ± 3.95 88.92 ± 4.98 90.08 ± 4.06 90.61 ± 2.66 88.94 ± 3.61 91.2 ± 3.45

a-DSC (%)

Mean 86.08 86.66 82.92 83.74 82.86 84.83 83.37 86.83

Esophagus 2.78 ± 1.36 4.14 ± 1.46 2.54 ± 0.92 2.57 ± 0.79 3.92 ± 0.93 4.77 ± 1.33 2.88 ± 1.22 2.49 ± 1.22
Heart 14.37 ± 22.78 4.87 ± 7.09 4.57 ± 5.31 16.02 ± 22.26 7.76 ± 15.63 9.99 ± 11.17 8.42 ± 17.02 8.45 ± 16.54
Trachea 6.05 ± 6.14 6.85 ± 4.87 3.81 ± 2.05 4.46 ± 3.91 8.62 ± 4.26 5.84 ± 5.38 2.57 ± 1.35 4.61 ± 3.50
Aorta 6.36 ± 6.51 3.64 ± 1.68 5.42 ± 1.62 7.51 ± 5.53 3.36 ± 2.31 4.41 ± 2.29 5.85 ± 4.02 5.2 ± 4.92

a-SSD (mm)

Mean 7.39 4.88 4.08 7.64 5.92 6.25 4.93 5.19

Esophagus 82.82 ± 4.69 82.67 ± 5.46 79.14 ± 7.39 73.92 ± 7.29 68.78 ± 7.88 79.83 ± 7.72 74.1 ± 7.32 81.19 ± 10.70
Heart 93.47 ± 5.39 94.91 ± 3.79 95.26 ± 2.66 91.85 ± 8.39 92.61 ± 9.62 94.27 ± 4.58 95.00 ± 4.71 95.85 ± 3.45
Trachea 85.21 ± 5.91 81.72 ± 7.29 84.81 ± 9.74 84.48 ± 6.90 72.46 ± 9.71 87.59 ± 9.05 83.88 ± 9.26 84.64 ± 9.50
Aorta 90.01 ± 2.81 88.84 ± 4.04 86.10 ± 4.73 88.84 ± 2.92 88.07 ± 3.35 90.39 ± 3.57 88.91 ± 5.28 91.17 ± 3.81

a-Preci (%)

Mean 87.88 87.03 86.33 84.77 80.48 88.02 85.47 88.21

The proposed method achieved an a-DSC value of 86.83% (ranked first) and an a-Preci
value of 88.21% (ranked first) with only 2.08 M parameters. Compared with the state-of-
the-art models CA-Net (second-ranked in the a-DSC score) and UNet++ (ranked second
in the a-Preci value), the proposed 2D FAS-UNet obtained a 0.17% improvement of the
a-DSC score with only 75% as many parameters as CA-Net and a 0.19% improvement of the
a-Preci value with only 22% as many parameters as UNet++. Our method also had a higher
a-DSC score than the third-ranked UNet by 0.75%, but had far fewer parameters than the



Mathematics 2022, 10, 4055 18 of 26

17.26 M of UNet. Compared with ERFNet, which achieved a-DSC and a-Preci values of
82.86% and 80.48% with the fewest parameters, respectively, FAS-UNet was higher in the
overall a-DSC rankings. The a-DSC score of ERFNet ranked last, so we think it may fall
into an under-fitting situation. This shows that ERFNet reduces the performance of the
network while saving the parameters. CA-Net obtained a good a-DSC value because the
attention mechanism may improve the segmentation results of small organs.

The evaluation results were also measured in terms of the a-SSD value for segmen-
tation predictions of the eight methods. The proposed method achieved an a-SSD value
of 5.19 mm (ranked fourth); CE-Net ranked first, which achieved an a-SSD value of
4.08 mm; ERFNet with the fewest parameters ranked fifth with 5.92 mm. CA-Net and
Link-net ranked second and third, which had 2.78 M and 21.79 M parameters, respectively.
The good results of CA-Net in terms of the a-SSD metric may be due to the use of multiple
attention mechanisms, which enables the network to suppress the background region,
and the network has a stronger ability to recognize the object region. The a-SSD score of
UNet++ was much higher than that of 2D FAS-UNet, which shows that the over-segmented
pixels were less than the under-segmented pixels. Meanwhile, we observed that the a-
SSD value of our method was close to that of LinkNet in three organs; only the tracheal
region was significantly worse than it, which makes it better than our method in the mean
a-SSD score.

Figure 3 evaluates the visualizations of the segmented predictions obtained by the
popular methods. One can observe that all methods except CA-Net (with an obvious
over-segmentation) can accurately segment the aortic region (red). The reason may be
that, during the imaging process, the aortic organ may be assigned to the very same image
pixel, which leads to a small difference of the internal pixel value; in particular, the network
can accurately learn its features. Almost all methods can also approximately segment the
trachea organ shape (green); only the organ boundary is not clearly visible. This may be
a common problem in small object segmentation because the hard-to-detect small-scale
feature will be degraded rapidly with convolution and pooling. All methods were able
to extract the heart location (magenta), while the visual quality of the proposed method
was significantly better than the state-of-the-art methods. Our approach achieved the least
missing pixelsat the organ boundary, which resulted in substantially better performance
than the existing results; the visualization remained comparable. It should also be empha-
sized that only a few methods performed well on the left boundary because the left side of
the heart’s boundary is very blurry. For example, UNet++ presented over-segmentation,
and CA-Net on the left boundary was significantly different from the ground-truth, while
the results of ERFNet and LinkNet had significant differences compared with the ground-
truth in the shape aspect. This also shows that our method is robust to the heavy occlusion
of illumination and large background clutters.

For the esophagus organ (blue) in Figure 3, the segmented results of CE-Net, CPFNet,
and UNet had significantly differences compared with the ground-truth in the shape
aspect. The results of ERFNet and UNet++ had some trachea pixels within the esophagus,
and LinkNet’s prediction had some aortic pixels, all of which were clearly error-segmented.
The predictions of CA-Net and FAS-UNet were similar to manual segmentation, but the
result of CA-Net had a small aorta patch in the background region, while our method
obviously performed better. The reasons for the esophagus’s bad results were the fuzzy
boundary and the small pixel value difference; in particular, the esophagus and aorta
almost overlap in the second slice. Therefore, the proposed method is more robust, and it is
more difficult for it to be affected by noise. This further shows that our method is effective
in medical image segmentation.

3.5. The 3D FAS-UNet for the HVSMR-2016 Datasets

We also conducted the segmentation experiments of our 3D FAS-UNet on the HVSMR-
2016 datasets. We compared our predictions with seven baseline models including 3D
UNet [46], AnatomyNet [47], DMFNet [48], HDC-Net [49], RSANet [50], Bui-Net [51], and
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VoxResNet [52]. Table 8 shows the segmentation results of different methods. Clearly,
our method with fewer parameters ranked second in both the a-DSC and a-SSD values
and obtained the top rank in mean precision.

Figure 3. Comparison with the other state-of-the-art networks on the validation set of the 2D SegTHOR datasets.
The blue, pink, green, and red regions represent the esophagus, heart, trachea, and aorta, respectively. Form left
to right in the first and third rows: the original images, ground-truth, and segmentation results of CANet, CE-Net,
and CPFNet, respectively. Form left to right in the second and fourth rows: the segmentation results of ERFNet,
LinkNet, 2D UNet, UNet++, and 2D FAS-UNet, respectively.

Table 8. Performance comparisons of the proposed 3D FAS-UNet and the popular networks using
the a-DSC, a-SSD, and a-Preci values on the 3D HVSMR-2016 validation datasets with both organs:
myocardium and blood pool. “MY” and “BP” denote myocardium and blood pool, respectively,
“Mean” denotes an average score segmenting all organs. The best and second places are highlighted
in bold font and underlined, respectively.

Method 3D UNet AnatomyNet DMFNet HDC-Net RSANet Bui-Net VoxResNet 3D FAS-UNet
[46] [47] [48] [49] [50] [51] [52]

Params 8.16 M 0.73 M 3.87 M 0.30 M 24.55 M 2.53 M 1.70 M 1.01 M

MY 76.42 ± 3.32 69.50 ± 4.69 70.30 ± 1.03 69.77 ± 5.10 71.94 ± 0.69 69.84 ± 0.47 65.79 ± 6.00 76.42 ± 4.38
BP 89.21 ± 1.61 86.01 ± 1.51 89.45 ± 0.18 88.03 ± 2.24 84.71 ± 0.93 89.4 ± 0.46 84.66 ± 1.67 89.01 ± 0.18a-DSC (%)
Mean 82.82 77.76 79.88 78.90 78.33 79.62 75.23 82.72

MY 2.06 ± 0.73 4.03 ± 0.31 2.74 ± 0.20 3.36 ± 0.32 2.31 ± 0.30 2.56 ± 0.22 2.52 ± 1.06 2.32 ± 0.27
BP 3.05 ± 1.53 2.98 ± 1.21 2.07 ± 0.48 2.65 ± 0.02 4.01 ± 0.55 2.58 ± 0.51 3.47 ± 0.04 2.57 ± 1.15a-SSD (mm)
Mean 2.56 3.50 2.40 3.00 3.16 2.57 2.99 2.44

MY 81.02 ± 9.13 71.25 ± 6.22 80.27 ± 4.22 67.41 ± 12.94 76.76 ± 9.00 83.94 ± 6.73 77.94 ± 10.40 84.61 ± 7.14
BP 87.44 ± 2.62 89.73 ± 4.61 91.78 ± 0.54 87.84 ± 2.09 82.86 ± 6.08 89.66 ± 0.56 84.29 ± 1.13 91.18 ± 2.36a-Preci (%)
Mean 84.23 80.49 86.03 77.62 79.81 86.80 81.11 87.90

The proposed method achieved an a-DSC value of 82.75% (ranked second) with only
1.01 M parameters and followed the first-ranked 3D UNet by 0.1% in the a-DSC score with
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only 15% as many parameters as 3D UNet. Meanwhile, our method outperformed the
third-ranked DMFNet by 2.84%. Although the numbers of parameters of HDC-Net and
AnatomyNet were lower than that of our method, the a-DSC score of 3D FAS-UNet was
3.82% and 4.96% higher than theirs, respectively. One may notice that a black-box (unex-
plainable) network with a small number of parameters has low segmentation performance,
which may be due to under-fitting. However, the number of parameters in RSANet is a
bit large, and the effect was also not good enough. This may be due to too little training
data, so the model appears to be over-fitting. Our method also obtained an a-SSD value of
2.44 mm (2nd rank), which was lower than DMFNet’s 2.40 mm (1st rank) by 0.12 mm, and it
slightly improved compared with 3D UNet, whose a-SSD value was 2.56 mm (3rd ranked).
Although 3D FAS-UNet had a slightly lower a-SSD than DMFNet, it had 2.86 M fewer pa-
rameters. Compared with HDC-Net and AnatomyNet with fewer parameters, our method
performed better on the a-SSD metric for myocardium and blood pool. The result of the
a-SSD value shows that our method has good performance in segmenting object bound-
aries. The proposed method obtained the best a-Preci score of 87.90%, which was higher
than the second-ranked Bui-Net by 1.10%. Although 3D FAS-UNet ranked third in the
number of parameters, all three metrics were better than HDC-Net and AnatomyNet with
fewer parameters. Therefore, our method achieves a good balance between the number of
parameters and performance. Experiments on these datasets showed that the proposed
FAS-driven explainable model can be robustly applied to 3D medical segmentation tasks.

Figure 4 visualizes the segmentation results of different methods on two slices of the
HVSMR-2016 datasets, and it can be clearly observed that the proposed model highlighted
less over-segmented regions outside the ground-truth compared with other methods.
Meanwhile, it also can show that it was hard for our method to be affected by the voxels
in the background region, where it did not predict the voxels of the background region as
blood pools or myocardium, but most other methods predicted more background voxels
as the object. The results showed that these methods are easily affected by noise in the
background region.

In general, one can observe that AnatomyNet, VoxResNet, and 3D UNet showed obvi-
ous segmentation noise (over-segmented region). The reason is that the network collects
much noise information in the interactions from input data of the network due to a too
simple data pre-processing method, which affects the feature extraction. Several methods
presented over-segmentation in the myocardial zoom-in, because the pixel value of this
organ is very close to the background. The myocardium is structurally distorted, which
makes the shape of the myocardium completely different compared to normal/healthy my-
ocardium. Although VoxResNet did not have this phenomenon, it divided the middle part
of the myocardial region into blood pools, which was also an obvious error segmentation.
Only 3D UNet and our method performed better; especially, our method was closer to the
ground-truth in shape. Further, all methods had poor segmentation results in the upper
myocardial region; the intensity homogeneity between this organ and the upper back-
ground indicates that this region is very difficult to segment. We can see from the zoom-in
results that many methods have obvious over-segmentation or under-segmentation for
the myocardium and blood pool. Compared with Bui-Net and RSANet, we observed that
the proposed learnable specialized FAS-UNet network still had obvious advantages in this
region, and the results were very close to the ground-truth in the myocardial region (red)
with respect to the shape and size. For the blood pool region (blue), our results did not
show significant differences with other methods.

The proposed network integrates medical image data and the variational convexity
MS model and algorithm (FAS scheme), and implements them through convolution-based
deep learning, so it may be possible to design specialized modules that automatically
satisfy some of the physical invariants for better accuracy and robustness. Qualitative and
quantitative experimental results demonstrated the effectiveness and superiority of our
method. It can not only correctly locate the position of the myocardium, but also segment
the myocardium and blood pool in the complex marginal region. Moreover, the integrity
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and continuity of our method in the object were well preserved. Overall, it performed
better than the existing state-of-the-art methods in 3D medical image segmentation.

Figure 4. Visualizations of different methods for cardiovascular MR segmentation of different
slices. From left to right in the first and third rows: the original images, the ground-truth, and the
segmentation results of AnatomyNet, Skip-connected 3D DenseNet, and DMFNet, respectively. From
left to right in the second and fourth rows: the segmentation results of HDC-Net, RSANet, 3D
UNet, VoxResNet, and 3D FAS-UNet, respectively. The blue and red colors represent blood pool and
myocardium, respectively.

3.6. The 3D FAS-UNet for the CHAOS-CT Datasets

In this part, the proposed 3D FAS-UNet was compared with seven baseline models
on the 3D CHAOS-CT datasets, including 3D UNet [46], Bui-Net [51], DMFNet [48], 3D
ESPNet [53], RSANet [50], RatLesNetV2 [54], and HDC-Net [49].

Firstly, we used a post-processing technique to improve the prediction results, where
small undesirable clusters of voxels separated from the largest connection component may
be over-segmented or the “holes” inside the liver may also be under-segmented. Table 9
shows the prediction results of different methods. Before post-processing, the proposed
method achieved an a-DSC of 96.69% (top-ranked) with only 1.00 M parameters, which is
slightly higher than the second-ranked RSANet by 0.08% in the mean a-DSC score with
only about 4% as many parameters as RSANet, and further outperformed the third-ranked
DMFNet by 0.28%. Our method also obtained an a-SSD value of 4.04mm (ranked second),
which is the same as RSANet (top-ranked). Although 3D FAS-UNet had a lower mean
a-Preci value than 3D ESPNet by 1.54%, it had 2.57 M fewer parameters.

The a-DSC scores of all methods were significantly improved by post-processing tech-
niques. The 3D FAS-UNet achieved an a-DSC score of 97.11% (ranked second) and followed
the first-ranked 3D UNet by 0.05% in the mean a-DSC with only 15% as many parameters
as 3D UNet. Our method also obtained an a-SSD value of 1.16 mm (top-ranked), and it
was better than 3D UNet (ranked 2nd) and RSANet (ranked 3rd) by 0.07 mm and 0.10 mm,
respectively. The 3D FAS-UNet achieved an a-Preci of 96.73%, which is lower than 3D
ESPNet and RatLesNetV2. Although 3D FAS-UNet ranked third in the parameter evalua-
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tion, all five metrics were better than HDC-Net and RatLesNetV2 with fewer parameters;
only the a-Preci value with post-processing was lower than that of RatLesNetV2. Thus,
our method achieves a good balance between the number of parameters and segmentation
performance.

Table 9. Performance comparisons of liver segmentation between the different 3D networks
with/without post-processing using the a-DSC, a-SSD, and a-Preci values on the 3D CHAOS-CT vali-
dation datasets. The best and second places are highlighted in bold font and underlined, respectively.

Method Params
Without Post-Processing With Post-Processing

a-DSC (%) a-SSD (mm) a-Preci (%) a-DSC (%) a-SSD (mm) a-Preci (%)

3D UNet [46] 8.16 M 96.18 ± 1.72 5.65 ± 5.15 94.87 ± 4.12 97.16 ± 0.54 1.23 ± 0.28 96.71 ± 2.01
Bui-Net [51] 2.24 M 89.41 ± 4.86 11.54 ± 4.52 85.90 ± 8.20 92.50 ± 4.02 4.42 ± 3.60 91.85 ± 7.92
DMFNet [48] 3.87 M 96.41 ± 0.99 4.45 ± 2.98 95.34 ± 3.28 96.93 ± 0.47 1.29 ± 0.11 96.31 ± 2.42
3D ESPNet [53] 3.57 M 95.72 ± 0.81 4.32 ± 1.74 97.46 ± 2.15 96.15 ± 0.80 1.68 ± 0.67 98.33 ± 1.31
RSANet [50] 24.54 M 96.61 ± 1.00 4.04 ± 2.30 95.23 ± 2.70 97.08 ± 0.67 1.26 ± 0.33 96.11 ± 1.95
RatLesNetV2 [54] 0.83 M 95.73 ± 1.22 7.04 ± 3.12 95.13 ± 3.40 96.82 ± 0.69 1.27 ± 0.26 97.23 ± 2.12
HDC-Net [49] 0.29 M 95.30 ± 1.64 7.50 ± 4.92 93.77 ± 4.23 96.42 ± 0.67 1.30 ± 0.17 95.87 ± 2.51
3D FAS-UNet 1.00 M 96.69 ± 0.76 4.04 ± 3.11 95.92 ± 2.78 97.11 ± 0.32 1.16 ± 0.13 96.73 ± 2.08

Figure 5 visualizes the prediction results of different networks on two slices of the
CHAOS-CT datasets, and it can be clearly observed that the other networks highlighted
more over-segmented regions outside the ground-truth compared with our network.
Further, we can observe that the results for Bui-Net, DMFNet, HDC-Net, RatLesNetv2,
and RSANet showed obvious segmentation noise in the background region. Although 3D
ESP-Net did not present this phenomenon, the result showed an obvious “hole” inside of
the liver, which was an obvious error-segmentation. However, our approach did not show
these evident inaccurate results. In addition, most methods showed over-segmentation or
under-segmentation on the boundaries of liver because it is very blurred in the CT image.
From the zoom-in results of the first two rows of Figure 5, we can see that all mentioned
methods had obvious under-segmentation except HDC-Net and our method, but our
method had less noise in the background region. From the zoom-in results of the last two
rows in Figure 5, we observe that many methods showed obvious over-segmentation on
the liver boundaries. Only our method and 3D ESPNet achieved a good performance in
this region, but 3D ESPNet extracted a “hole” in the liver region. In summary, compared
to other methods, the boundary results obtained by our method were smoother, and the
shape of the liver was more similar to the ground-truth.

We show visual comparisons before and after post-processing in Figure 6. The results
demonstrated that the “hole” (the first row in Figure 6) was effectively filled, and the
“island” (the second row in Figure 6) in the background was removed by post-processing.
The experiments indicated that our model-driven approach with post-processing was
more effective.

Qualitative and quantitative results demonstrated the effectiveness and advantages of
the proposed method. Our method achieved a robust and accurate performance compared
with the existing state-of-the-art methods in the 3D liver segmentation task, which can be
applied to 3D medical image segmentation.
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Figure 5. Visualizations (without post-processing) of different methods for liver CT segmentation
of two slices. From left to right in the first and third rows: the original images, ground-truth,
the segmentation results of skip-connected 3D DenseNet, DMFNet, and HDC-Net, respectively. From
left to right in the second and fourth rows: the segmentation results of 3D ESPNet, RatLesNetv2,
RSANet, 3D UNet, and 3D FAS-UNet, respectively.

Figure 6. The segmentation results with post-processing. From left to right: the selected scans of the
validation set (first column), ground-truths (second column), segmentation results of 3D FAS-UNet
without post-processing (third column), and results with post-processing (fourth column).
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4. Conclusions

In this work, we proposed a novel deep learning framework, FAS-UNet, for 2D and
3D medical image segmentation by enforcing some of the mathematical and physical laws
(e.g., the convexity Mumford–Shah model and FAS algorithm), which focuses on learning
the multiscale image features to generate the segmentation results.

Compared with other existing works that analyzed the connection between the multi-
grid and CNN, FAS-UNet integrates medical image data and mathematical models and en-
hances the connection between data-driven and traditional variational model methodolo-
gies; it provides a helpful viewpoint for designing image segmentation network architec-
tures. Compared with UNet, the proposed FAS-UNet introduces the concept of the data
space, which exploits the model prior information to extract the features. Specifically, the
feature extraction task leads to solving nonlinear equations, and an iterative scheme of
numerical algorithms was designed to learn the features. Our experimental results showed
that the proposed method is able to improve medical image segmentation in different tasks,
including the segmentation of thoracic organs at risk, the whole-heart and great vessel,
and liver segmentation. It is believed that the approach is a general one and can be applied
to other image processing tasks, such as image denoising and image reconstruction. In
addition, we found that the topological interaction module proposed by [55] can effectively
improve the performance of many segmentation methods. Therefore, we will use this
module in FAS-UNet to improve its performance in the future work.
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