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Abstract: There have been various studies conducted on plant images. Machine learning algorithms
are usually used in visible light image-based studies, whereas, in thermal image-based studies,
acquired thermal images tend to be analyzed with a naked eye visual examination. However, visible
light cameras are sensitive to light, and cannot be used in environments with low illumination.
Although thermal cameras are not susceptible to these drawbacks, they are sensitive to atmospheric
temperature and humidity. Moreover, in previous thermal camera-based studies, time-consuming
manual analyses were performed. Therefore, in this study, we conducted a novel study by simultane-
ously using thermal images and corresponding visible light images of plants to solve these problems.
The proposed network extracted features from each thermal image and corresponding visible light
image of plants through residual block-based branch networks, and combined the features to increase
the accuracy of the multiclass classification. Additionally, a new database was built in this study by
acquiring thermal images and corresponding visible light images of various plants.
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MSC: 68T07; 68U10

1. Introduction

Many studies have investigated plant image classification methods and databases [1–21].
However, all these studies utilized visible light cameras, which are sensitive to light
and have the drawback of obtaining low-quality images owing to shadows, illumination
changes, and ambient light and its reflections. In addition, visible light cameras cannot be
used in the absence of light.

To avoid such problems, a thermal camera was used in previous research [22]. How-
ever, there are still very few studies on plant image classification using thermal cameras,
and the acquired thermal images of plants have mostly been analyzed with a naked eye
examination [23,24]. In addition, thermal cameras are sensitive to atmospheric temperature
and humidity; therefore, they have the disadvantage of capturing low-quality images ow-
ing to rainwater and ambient heat from surrounding objects. To solve these problems, Raza
et al. [25] used thermal and visible light cameras simultaneously. However, they conducted
experiments based on manual feature extraction. The extraction of the most suitable fea-
tures from a database is difficult while using the manual feature extraction-based method.
Furthermore, binary classification, which only classifies plant images into two classes,
diseased and healthy, was performed in this previous study. Therefore, we conducted
novel multiclass classification research based on automatic feature extraction using a deep
learning method in this study. In the proposed method, we developed a plant classification
residual (PlantCR) network by using VGG-Net [26] and ResNet [27]. Furthermore, we
used this structure to extract features from thermal and visible light images of plants and
to combine them. Then, the plants were classified into 28 classes. A detailed description
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of our method is described in Section 3. Moreover, we obtained and constructed a novel
nonaligned thermal and visible light plant image database (TherVisDb) [28]. In addition,
we used this constructed database to perform various experiments in the ablation study.
The novelties of our study can be explained in the following four ways:

- Previous studies only dealt with the binary classification of plants based on thermal
and corresponding visible light images. Therefore, this is the first research for the
multiclass classification of plants using thermal and corresponding visible light images.
In addition, previous studies used manual feature extraction, whereas automatic
feature extraction was used in this study to obtain more suitable features.

- We proposed a novel PlantCR network in this study. To design the structure of
PlantCR, we used the same grouped submodules for visible and thermal images,
and the fusion of two feature sets extracted from these two images. By using the
same grouped submodule, we could simplify the system architecture. Each grouped
submodule included a residual block, and the accuracy of the multiclass classification
increased through the fusion of two feature sets.

- We built a new TherVisDb database containing 9440 images of various flowers and
flower leaves for the experiment. This self-constructed database contained both
thermal images and the corresponding visible light images of plants. However, there
was a significant difference between the field of view (FOV) and view of angle (VOA) of
each camera, and, thus, the images were not aligned with each other. Therefore, it was
challenging to conduct the plant image classification. In addition, this database had a
larger number of classes and images than existing thermal plant image databases.

- Our model and database constructed in this study were disclosed via the site GitHub [28]
so that they can be used by other researchers.

Existing related works are explained in Section 2, in which previous plant image-
based studies were divided into visible light image-based, thermal image-based, and
thermal and visible light image-based methods. Sections 2.1–2.3 provide the detailed
descriptions of these methods. A detailed explanation of the proposed method is provided
in Section 3, which is followed by the experimental results and analysis in Section 4. Lastly,
the discussion and conclusion are presented in Sections 5 and 6, respectively.

2. Related Works
2.1. Visible Light Image-Based Methods

In the crop disease classification [1] method, experiments were previously performed
using the PlantDoc database and proposed AAR network. In the fruit recognition method [2],
classification experiments were conducted using AlexNet and CNN. This previous study
compared the performance of the methods based on the Fruit-360 database. In the fruit
variety classification [3] method, a CNN and the Fruit-360 database were used. In addition,
regions of interest were created from apple images by using the YOLO network [29]. In
the crop disease classification [4] method, experiments were conducted using the PlantDoc
database and proposed DenseNet-121 model. In the fruit image classification [5] method,
classification experiments were conducted using Inception V3 [30] and VGG16 [26]. This
previous study compared the performance of methods based on the Fruit-360 database.
In the grape variety recognition [6] method, the ExtResnet model was proposed, but the
experiment was performed using the wine grape instance segmentation database [31]. In
the fruit classification [7] method, DCNN and the Fruit-360 database were used. In the fruits
recognition method [8], various experiments were conducted using the Fruits-360 image
database. In addition, various feature extractions and machine-learning-based methods
were used to perform experiments, after which the results were compared. The fruit classi-
fication [9] method used a CNN and the Fruit-360 database. In another fruit classification
method, [10] proposed a multiclass CNN model. In this previous study, the experiment
was performed on the FIDS30 database [32] and on the Fruits-360 database. In the fruit
and vegetable classification [11] method, FruitVegCNN and MPSoC were proposed, but
the Fruit-360 database was used for the experiment. The fruit classification [12] method
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proposed multiple deep learning models. In this previous study, the experiment was
performed on the following databases: a supermarket produce and self-collected databases.
Siddiqi [13] proposed FruitNet as a fruit image classification method and compared four-
teen deep learning methods and compared the performance on the Fruit-360 database. In
the fruit recognition method [14], experiments were conducted using EfficientNet-B0 and
Fruit-360. In the crop disease classification [15] method, experiments were performed using
the PlantDoc database and proposed OMNCNN. In the fruit classification [16] method,
classification experiments were conducted using a histogram of oriented gradients. In the
fruit image classification [17] method, the Fruit-360 database and ShuffleNet were used.
Another fruit image-based classification method [18] proposed a deep learning method and
used a model trained on ImageNet. In the crop and crop disease classification [19] method,
experiments were performed using the PlantDoc database and five deep learning meth-
ods (MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and Xception). Another
crop and crop disease classification [20] method proposed a trilinear convolutional neural
network model. Various experiments were conducted using the PlantVillage [33] and Plant-
Doc [34] databases and a pretrained model with ImageNet. In the apple classification [21]
method, a CNN and the Fruit-360 database were used.

However, all these studies used visible light cameras. As explained in Section 1,
visible light cameras are sensitive to light. Hence, they have the drawback of capturing
low-quality images owing to shadows, illumination changes, and ambient light and its
reflections. Moreover, visible light cameras cannot be used in the absence of light. To solve
these problems, studies were conducted using thermal plant image-based methods, which
were explained in Section 2.2.

2.2. Thermal Image-Based Method

Zhu et al. [23] studied plant image diagnosis and conducted experiments using a
self-collected database. They proposed a method for diagnosing diseased plants. Lydia
et al. [24] studied plant image identification and conducted experiments using a self-
collected database. They proposed a data-gathering approach for the identification of
diseased plants. In the plant image-based detection [22] method, experiments were con-
ducted using thermal images for the detection of diseased areas in plant images based on
the if–then rule. However, the previous thermal image-based studies typically analyzed
thermal images with a naked eye examination, which is a time-consuming task. Moreover,
very few studies on plant thermal images have been executed, and methods based on com-
puter devices and algorithms have not been sufficiently developed. In addition, thermal
cameras are sensitive to atmospheric temperature and humidity; therefore, they have the
drawback of capturing low-quality images owing to rainwater and heat from surrounding
objects. However, the studies described in Section 2.3 considered the drawbacks of thermal
and visible light cameras and used them simultaneously.

2.3. Thermal and Visible Light Image-Based Method

A previous plant image classification [25] study considered the problems of ther-
mal and visible light cameras and proposed a method based on computer devices and
algorithms. Their method used thermal images and corresponding visible light images
to perform the binary classification. Furthermore, in the study, thermal images and the
corresponding multiple visible light images were obtained through three camera sensors, a
thermal camera and two visible light cameras (left and right). By combining these three
types of images, an improvement in the accuracy of the classification for dividing images
into healthy and diseased plant images was possible. Moreover, the binary classification
(healthy or diseased) was performed by using the analysis of variance [35] and support
vector machine [36], and the features extracted through manual feature extraction methods.

However, this method increased the computation time and complexity of the system
because of the simultaneous use of the three cameras. In addition, this method used manual
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feature extraction methods, which cannot extract suitable features. Moreover, since this
method only performed a binary classification, it could not recognize various plant images.

Therefore, to solve these problems, a multiclass classification was performed in this
study using plant images acquired using two camera sensors, thermal and visible light
cameras. In addition, a deep learning-based automatic feature extraction method was used
to extract more suitable features from the images.

In addition, Table 1 summarizes the existing methods explained in the Section 2 for
ease of understanding. In Table 1, previous methods and the proposed method are also
compared based on images, feature extractions, and methods. Moreover, the methods are
compared by advantages and disadvantages of using such images and methods. As shown
in Table 1, the proposed method was the first study on plant multiclass classification using
thermal and visible light images.

Table 1. Summary and comparison of our and previous methods.

Categories Methods Advantages Disadvantages

Visible light
image-based

Based on
automatic feature
extraction

Binary and
multiclass
classification
[1–21]

- Provides high-resolution and
high-quality images in day or high
illumination environments

- Provides color information
- Extracts features automatically

based on big database

- Provides dark images in night or
low illumination environments

- Provides low-quality images in
day or high illumination
environments owing to shadows,
illumination changes, and ambient
light and its reflections

Thermal
image-based

Based on manual
feature extraction

Diagnosis [23],
identification [24]

- Provides thermal information

- Sensitive to atmospheric
temperature and humidity, and
captures low-quality images
owing to rainwater and heat from
surrounding objects

- Very difficult to extract suitable features

Based on
automatic feature
extraction

Detection method [22]
- Provides thermal information
- Automatically extracts features

based on big database

- Sensitive to atmospheric
temperature and humidity, and
captures low-quality images
owing to rainwater and heat from
surrounding objects

Thermal and
visible light
image-based

Based on manual
feature extraction

Binary
classification [25]

- Provides high-resolution and
high-quality images in day or high
illumination environments

- Provides color and thermal
information

- Very difficult to extract suitable
features

- Does not consider multiclass
problems

- Computationally expensive owing
to three camera sensors

Based on
automatic feature
extraction

Multiclass
classification
(proposed
method)

- Provides high-resolution and
high-quality image in day or high
illumination environments

- Provides color and thermal
information

- Extracts features automatically
based on big database

- Considers multiclass problems

- Computationally expensive owing
to two camera sensors

3. Proposed Method
3.1. Overall Explanation of the Proposed Method

This section thoroughly describes PlantCR. A simplified flowchart of PlantCR con-
structed in this study is presented in Figure 1. The proposed PlantCR network was con-
structed using the concepts of VGG-Net and ResNet. As presented in Figure 1, the proposed
method used thermal images and corresponding visible light images of plants as its input
and combined the extracted features to classify the images into 28 classes. The tables and
figures in Section 3.2 describe the details of the structure. In addition, Section 3.2 extensively
explains the input images, size of the outputs, and parameters used in the structure.
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Figure 1. Overview of the PlantCR network for plant image classification.

3.2. Detailed Structure of the PlantCR Network

As presented in Figure 1, a visible light plant image (200 × 200 × 3 pixels) and a thermal
plant image (200 × 200 × 1 pixels) were inputted into the PlantCR network proposed in this
study. The details of the PlantCR structure are listed in Tables 2–4 and presented in Figure 2.
The main structure of the PlantCR network is presented in Table 2, and it consisted of input
layers (input layers one and two), group layers (group_1–3), the concatenate layer (concat),
fully connected layer (FC), and global average pooling layer (GAP); the output (class#) of the
FC layer was 28. The “Times” columns in Tables 2 and 3 represent the number of repetitions
of each layer. Each layer in the column of parameters shows a sum of the parameters of
only that layer. Table 3 summarizes a group of layers and residual blocks, consisting of an
input layer, convolution layers (conv2d), a max pooling layer (max_pool), and residual blocks
(res_block). Table 4 summarizes the residual block, consisting of an input layer, convolution
layers, a parametric rectified linear unit (prelu), and an additional operation layer (add). In
Tables 2–4, the filter size and stride were (3 × 3) and (1 × 1), respectively; the padding of the
conv2d layers of the residual block was (1 × 1), and that of the remaining conv2d layers was
(0 × 0). “#” indicates “number of” in all contents.

Table 2. Structure of the PlantCR network.

Layer# Times Layer Type Filter# Parameter# Layer Connection

1 1 input layer_1 and 2 0 0 input
2 2 group_1 64/128 1,735,872 input layer_1
3 2 group_2 64/128 1,735,872 input layer_2
4 1 concat 0 0 group_1 and group_2
5 2 group_3 128 3,100,160 concat
6 1 GAP 28 0 group_3
7 1 FC (softmax) class# 3612 GAP

Total number of parameters: 6,575,516

Table 3. Structure of a group layer.

Times Layer Type Layer Connection

1 input layer input
2 conv2d input layer
1 max_pool conv2d
4 res_block max_pool
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Table 4. Structure of a residual block.

Layer Type Layer Connection

input layer input
conv2d_1 input layer

prelu conv2d_1
conv2d_2 prelu

add conv2d_2 and input layer
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3.3. Details of Database and Experimental Setup

Experiments were conducted using TherVisDb [28], consisting of various rose and rose
leaf images. The Tau® 2 FLIR thermal camera (Tau® 2) and Logitech C270 HD camera [37]
were used to capture thermal images and corresponding visible light images. During
the capturing of the images, the atmospheric humidity, temperature, wind speed, fine
dust, ultrafine dust, and UV index were 91%, 30 ◦C, 3 m/s, 24 µg/m3, 22 µg/m3, and 8,
respectively. Here, one UV index unit is equal to 25 milliWatts/m2. The database was
constructed in July 2022. The size and depth of the images captured using the thermal
and visible light cameras were 640 × 512 × 1 pixels and 14 bits, respectively. Moreover,
the depth and size of the images acquired using the visible light camera were 24 and
640 × 512 × 3, respectively. In this study, the size of the images in the database, prepared
using the cropping operation, was 8 bits and 300 × 300 × 1 pixels for the thermal images
and 24 bits and 300 × 300 × 3 pixels for the visible light images. The size of the depth of the
images was 24 bits. The images used in this study had 24 bits. In detail, a single pixel in an
image represented up to 256 numbers (or intensity), which could be represented by 8 bits in
the binary number. Because we had RGB (three-channel) color images, the size of the depth
of the images could be 24 bits (8 bits × 3 channels). Moreover, all the images had ‘.png’
as the image file extension. In addition, all images of 300 × 300 pixels were downsized
to 200 × 200 pixels when being inputted into the proposed model in this study. The total
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number of thermal and visible light plant images was 4720 and 4720, respectively. In
addition, the training, test, and validation sets had 3314, 954, and 452 images, respectively.
The training set images were augmented from 3314 images to 26,512 images through the
use of augmentation methods (rotating three times by 90 degrees and flipping horizontally).
The total number of classes in this database was 28, and Figure 3 shows example images.
Table 5 lists the number of all images and names of plants for each class in the TherVisDb
database. As presented in Figure 3, the thermal images and corresponding visible light
images were not aligned, owing to the FOV and VOA of the cameras.

Table 5. Description of TherVisDb.

Class Index Class Names Thermal Image # Visible Light Image # Train Set Test Set Validation Set

1 Alexandra 120 120 168 48 24
2 Belvedere 48 48 68 20 8
3 Blue river 136 136 192 56 24
4 Charm of Paris 136 136 192 56 24
5 Cleopatra 152 152 214 62 28
6 Cocktail 112 112 158 46 20
7 Duftrausch 176 176 248 72 32
8 Echinacea sunset 64 64 90 26 12
9 Eleanor 144 144 202 58 28

10 Elvis 224 224 314 90 44
11 Fellowship 208 208 292 84 40
12 Goldeise 144 144 202 58 28
13 Goldfassade 184 184 258 74 36
14 Grand classe 264 264 370 106 52
15 Just Joey 72 72 102 30 12
16 Kerria japonica 104 104 146 42 20
17 Margaret 112 112 158 46 20
18 Oklahoma 312 312 438 126 60
19 Pink perfume 120 120 168 48 24
20 Queen Elizabeth 120 120 168 48 24
21 Rose gaujard 312 312 438 126 60
22 Rosenau 304 304 426 122 60
23 Roseraie du chatelet 352 352 494 142 68
24 Spiraea salicifolia l 64 64 90 26 12
25 Stella de oro 48 48 68 20 8
26 Twist 288 288 404 116 56
27 Ulrich brunner fils 120 120 168 48 24
28 White symphonie 280 280 392 112 56

Total 4720 4720 6628 1908 904

The image classification algorithm was processed using a computer device with an
NVIDIA GeForce GTX TITAN X GPU [38], a Core i7-6700 CPU@3.40 GHz CPU, and a
32 GB RAM. The model and source code were built by using libraries of OpenCV (version
4.3.0) [39], Python (version 3.5.4) [40], and the Keras API (version 2.1.6-tf) [41].
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4. Experimental Results
4.1. Training Setup and Hyperparameters

The training setup of the proposed PlantCR was as follows: An adaptive moment
estimation (Adam [42]) and a categorical cross-entropy loss [43] were used as the optimizer
and the loss, respectively. The training loss curves and validation accuracy curves of the
PlantCR are presented in Figure 4. Figure 4a,b present the loss curves and accuracy curves
of the PlantCR according to the epoch number, respectively. As shown in Figure 4, the
network constructed in this study was sufficiently trained without being overfitted by the
training data. In detail, in machine learning, overfitting can be checked by validating the
trained model using a validation dataset at each epoch in the training phase. For example,
overfitting does not occur if validation accuracy increases with stabilization when the
training loss decreases with stabilization. Therefore, as shown in Figure 4, the validation
accuracy increased with stabilization (Figure 4b) when the training loss decreased with
stabilization (Figure 4a). Therefore, we could confirm that the model was sufficiently
trained without being overfitted. In addition, Table 6 lists the hyperparameters, and
presents the selected values from the search spaces for the network.

Table 6. Selected values from search spaces of hyperparameters.

Parameters Epochs Learning Rate Decay
(for SGD) Batch Size Learning Rate Momentum

(for SGD) Optimizer

Search Space (1~300) (0.000001, 0.00001,
0.0001) (1,4,8,16) (0.0001, 0.001,

0.01, 0.1) (0.9, 0.8, 0.7) (“SGD,”
“Adam”)

Selected Value 260 0.00001 8 0.00001 0.9 “Adam”
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4.2. Ablation Study

This section explains and compares the testing accuracies. The performance of the
plant classification methods was calculated by using metrics given by Equations (1)–(4),
positive predictive values (PPVs, also named precisions), the presenting true positive rate
(TPR, also named the sensitivity and recall), F1-score (the harmonic mean of the precision
and recall) [44], and accuracy (ACC) [45], respectively. In the equations, the numbers of
true positive (#TP), false positive (#FP), false negative (#FN), and true negative (#TN) were
given to calculate the accuracies.

PPV = (#TP)/(#TP + #FP) (1)

TPR = (#TP)/(#TP + #FN) (2)

F1-score = 2(PPV·TPR)/(PPV + TPR) (3)

ACC = (#TP + #TN)/(#TP + #TN + #FP + #FN) (4)

As shown in Table 7 and Figure 5, the experiment was conducted using seven methods.
Methods (Figure 5) using only the thermal images, only the visible light images, and a
combination of the two types of images in various ways were compared.
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Table 7. Accuracies obtained by using the proposed PlantCR network and variants of PlantCR.

Methods TPR PPV F1-Score ACC

Method 1 (thermal image) 80.4 81.69 80.28 98.58
Method 2 (visible light image) 81.65 78.79 79.32 98.52
Method 3 (combined) 84.5 83.47 83.17 98.69
Method 4 (combined) 86.97 86.11 86.32 99.04
Method 5 (combined) (proposed
PlantCR) 90.26 90.42 90.05 99.28

Method 6 (combined) 87.58 86.63 86.68 99.08
Method 7 (combined) 86.67 83.99 84.7 98.87
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As shown in Figure 5a–g, variants of the classification network were presented.
Method 1 (Figure 5a) used a single thermal image as the input, whereas Method 2 (Figure 5b)
used a single visible light image. Method 3 (Figure 5c) combined the thermal and visible
light images by using a concatenate layer (Layer# 4 in Table 2) and obtained a single im-
age with four channels, which was used as the input image. Methods 4–7 (Figure 5d–g)
extracted features from each image using the branch networks and combined the features
to classify the plant images. As shown in Figure 5d–g, features were extracted by using
different numbers of groups (as in Layer# 2 and 3 in Tables 2 and 3) and combined at
different points. The accuracies obtained using these methods were compared in Table 7.
As shown in Table 7, Method 5 exhibited the highest accuracy. Therefore, we proposed
Method 5 in this study.

Figures 6–8 and Table 8 show the accuracies obtained for each class using Methods 1,
2, and 5 (proposed PlantCR). In Figures 6–8, the darker colors represent the higher values.

In this study, training and validation accuracies in Figure 4b were different metrics from
the ACC in Table 7. For the training and validation in the training phase, we used “accuracy”
as the metric. Here, “accuracy” calculated how often predictions equaled labels. This metric
created two local variables, such as the total number of training or validation images N and
the count of correct predictions TP. Shortly, it was an operation that simply divided the TP by
N (accuracy = TP/N). In another words, the training and validation accuracies were a ratio of
the number of correct predictions and the number of the total data of the training or validation
set. However, in the case of the ACC in Table 7, we used Equation (4), in which a sum of TP
and TN was divided by the total number of testing images (#TP + #TN + #FP + #FN). The
ACC results mostly had a higher accuracy compared to the other metrics, such as the TPR
and PPV. This was because the number of TNs was much greater than others (TP, FP, and FN),
and the number of TNs increased more if the class number increased. In the case of Method 5
in Table 7, the total number of TNs was 25,662 when the total number of the FP, FN, and TP
was 96, 96, and 858, respectively. Because we had 28 classes, we had a much greater number
of TNs than others (TP, FP, and FN).
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Table 8. Detailed accuracy of each class using Methods 1, 2, and PlantCR (using thermal image (Ther),
visible light image (Vis), and both images (Th&V), respectively).

# Class Names
TPR PPV F1-Score ACC

Ther Vis Th&V Ther Vis Th&V Ther Vis Th&V Ther Vis Th&V

1 Alexandra 86.36 93.33 100 79.17 58.33 91.67 82.61 71.79 95.65 99.16 98.85 99.79
2 Belvedere 57.14 100 83.33 80 60 100 66.67 75 90.91 99.16 99.58 99.79
3 Blue river 100 85.19 83.87 64.29 82.14 92.86 78.26 83.64 88.14 98.95 99.06 99.27
4 Charm of Paris 69.57 80 85.19 57.14 57.14 82.14 62.75 66.67 83.64 98.01 98.32 99.06
5 Cleopatra 72.41 70.83 94.74 67.74 54.84 58.06 70 61.82 72 98.11 97.8 98.53
6 Cocktail 85 100 91.3 73.91 56.52 91.30 79.07 72.22 91.3 99.06 98.95 99.58
7 Duftrausch 82.05 66.67 97.14 88.89 83.33 94.44 85.33 74.07 95.77 98.85 97.8 99.69
8 Echinacea sunset 100 76.47 92.31 92.31 100 92.31 96 86.67 92.31 99.9 99.58 99.79
9 Eleanor 100 84.85 100 89.66 96.55 100 94.55 90.32 100 99.69 99.37 100
10 Elvis 87.23 76.6 85.71 91.11 80 93.33 89.13 78.26 89.36 98.95 97.9 98.95
11 Fellowship 74.47 71.74 86.36 83.33 78.57 90.48 78.65 75 88.37 98.01 97.69 98.95
12 Goldeise 64.71 69.44 81.82 75.86 86.21 93.10 69.84 76.92 87.1 98.01 98.43 99.16
13 Goldfassade 87.18 84.21 87.18 91.89 86.49 91.89 89.47 85.33 89.47 99.16 98.85 99.16
14 Grand classe 73.58 61.67 86 73.58 69.81 81.13 73.58 65.49 83.5 97.06 95.91 98.22
15 Just Joey 70.59 78.57 76.47 80 73.33 86.67 75 75.86 81.25 99.16 99.27 99.37
16 Kerria japonica 74.07 95 100 95.24 90.48 100 83.33 92.68 100 99.16 99.69 100
17 Margaret 86.36 82.61 86.36 82.61 82.61 82.61 84.44 82.61 84.44 99.27 99.16 99.27
18 Oklahoma 85.45 81.97 86.57 74.60 79.37 92.06 79.66 80.65 89.23 97.48 97.48 98.53
19 Pink perfume 57.89 78.26 90.91 91.67 75 83.33 70.97 76.6 86.96 98.11 98.85 99.37
20 Queen Elizabeth 67.65 86.36 95.83 95.83 79.17 95.83 79.31 82.61 95.83 98.74 99.16 99.79
21 Rose gaujard 83.93 76.92 85.29 74.60 95.24 92.06 78.99 85.11 88.55 97.38 97.8 98.43
22 Rosenau 86.76 84.62 91.04 96.72 90.16 100 91.47 87.3 95.31 98.85 98.32 99.37
23 Roseraie du chatelet 91.84 72.13 95.16 63.38 61.97 83.1 75.00 66.67 88.72 96.86 95.39 98.43
24 Spiraea salicifolia L. 85.71 80 100 92.31 92.31 100 88.89 85.71 100 99.69 99.58 100
25 Stella de oro 90 90 90.91 90 90 100 90 90 95.24 99.79 99.79 99.9
26 Twist 88 84.21 94.64 75.86 82.76 91.38 81.48 83.48 92.98 97.9 98.01 99.16
27 Ulrich brunner fils 68.97 85.00 86.36 83.33 70.83 79.17 75.47 77.27 82.61 98.64 98.95 99.16
28 White symphonie 74.19 89.66 92.86 82.14 92.86 92.86 77.97 91.23 92.86 97.27 98.95 99.16

Average 80.40 81.65 90.26 81.69 78.79 90.42 80.28 79.32 90.05 98.58 98.52 99.28

4.3. Comparisons with Existing Methods

This section describes the comparative experiments conducted using the latest existing
methods. Tables 9–11 compare the previously proposed methods [6,7,21] and proposed
PlantCR method. Tables 9–11 list the experimental results using a thermal, visible light,
and thermal and visible light image databases, respectively. As could be observed, the
proposed method obtained the highest accuracies in all cases.

Table 9. Comparison between previous methods and Method 1 (Ther).

Methods TPR PPV F1 ACC

Rhamadiyanti et al., 2021 [21] 79.65 80.22 79.93 96.73

Hussain et al., 2020 [7] 80.16 81.57 80.26 97.08

Franczyk et al., 2020 [6] 79.12 80.44 79.77 97.16

Method 1 80.40 81.69 80.28 98.58

Table 10. Comparison between previous methods and Method 2 (Vis).

Methods TPR PPV F1 ACC

Rhamadiyanti et al., 2021 [21] 81.50 78.42 79.23 98.09

Hussain et al., 2020 [7] 81.46 78.37 79.28 97.97

Franczyk et al., 2020 [6] 80.80 78.30 79.24 97.66

Method 2 81.65 78.79 79.32 98.52
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Table 11. Comparison between previous methods and proposed PlantCR (Th&V).

Methods TPR PPV F1 ACC

Rhamadiyanti et al., 2021 [21] 88.67 90.30 89.47 98.26

Hussain et al., 2020 [7] 89.52 89.67 89.59 98.42

Franczyk et al., 2020 [6] 88.33 90.28 89.29 98.29

PlantCR 90.26 90.42 90.05 99.28

4.4. Processing Time

The processing time of Methods 1 and 2 and PlantCR on variants of the database in
the testing phase was compared in Table 12, and it was measured based on the computer
specifications described in Section 3.3 (the last paragraph). As presented in Table 12,
the frame rate of the method using the thermal images was 19.28 frames per second (fps)
(1000/(51.85)), and that of the method using visible light images was 19.24 fps (1000/(51.97)).
Moreover, the frame rate of the method using both thermal and visible light images
(PlantCR) was 18.09 fps (1000/(55.25)).

Table 12. Processing time per image.

Methods Processing Time

Method 1 (Ther) 51.85 ms
Method 2 (Vis) 51.97 ms

PlantCR (Th&V) 55.25 ms

5. Discussion

In this study, we investigated various classifications using thermal images and corre-
sponding visible light images of plants. By combining the thermal image and corresponding
visible light image, the proposed method (PlantCR) performed better than the methods us-
ing either thermal or visible light images on their own, as summarized in Tables 7 and 8. In
addition, the proposed method was verified to perform better than the methods proposed
in previous studies, as per the data listed in Tables 9–11.

In addition, there have been very few existing open databases of plant thermal images.
Moreover, open databases of plant thermal and visible light images have never been
available to the public. Therefore, in this study, we constructed a thermal and visible light
plant image open database. This database had more images and a greater number of classes
than existing thermal plant image open databases. The constructed database was called
TherVisDb, and is publicly available for other researchers to use [28].

Figure 9 shows the error cases of PlantCR. Classification errors occurred due to the
plant labels in the images as presented in Figure 9.

As shown in Table 5, each class had a different number of images. Moreover, some
classes had low-quality images as shown in Figure 10. Therefore, the number of images of
each class and the low-quality images comprised the differences of the model performances
in the different classes. In detail, as shown in Figure 10, the image of duftrausch became
dark due to rainwater on the plant and on the ground. Moreover, the image of the rose
gaujard became blurry due to high humidity. Moreover, the image of rosenau became
bright due to the hot temperature of the environment.

In addition, in the field of agriculture, machine-learning-based solutions are very
helpful to human work. For example, such techniques increase the speed of human work
in the analysis, disease detection, and crop classification in automated conveyor systems.

Similarly, machine-learning-based plant classification systems are very helpful for
classifying plants (medicinal plants, medicinal herbs, and foods) in gardens and factories.
For example, there are many medicinal plant factories, where processing is performed
by humans by hand [46], whereas some factories use automated systems [47] based on
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machine learning algorithms such as the proposed method. Moreover, there are many wild
plants that can be used as a food source [48]. The proposed method could also be used as a
smartphone application; therefore, a person can check if a wild plant in front of them can
be used as a food source or if it is a medicinal plant [49].
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In our research, the thermal images were not aligned with the corresponding visible
light images. For the alignment, an additional calibration process of the thermal and visible
light cameras was required. Even with the calibration, the thermal and visible light images
could not be aligned due to the different distances between the cameras and the objects.
Therefore, we proposed the plant classification method, which could be operated without
the alignment method.

6. Conclusions

We developed a plant classification method in this study, based on thermal and
visible light images and conducted various experiments using the TherVisDb database,
containing various rose and rose leaf images. The experimental results obtained using the
TherVisDb database showed a higher accuracy of the proposed method (F1-score = 90.05%,
ACC = 99.28%) than the latest methods.

Through this study, we confirmed that the classification accuracy could be increased
by simultaneously using thermal images and corresponding visible light images of plants.
Moreover, although the thermal images and corresponding visible light plant images used in
this study exhibited large differences in the FOV and VOA, the increase in the accuracy was
verified when two types of images were simultaneously used, compared to using only one
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image type. In addition, as shown in Figure 5 and Table 7, we confirmed that extracting features
using different numbers of groups (Tables 2 and 3) resulted in different accuracies, and using
two groups for each image showed a higher accuracy than using more or less groups.

There have been many machine-learning-based studies conducted in the field of
agriculture. However, as explained in related works, mostly crop disease datasets and fruit
datasets were used in various studies, namely, detection, classification, segmentation, etc.
Furthermore, there have been very few plant image dataset-based studies. Therefore, we
referenced previous agriculture and machine-learning-based studies in the Section 2.

To reduce the occurrence of classification errors in future work, as mentioned in
Figure 9, we plan to conduct a classification study to increase the accuracy of PlantCR
by considering various deep learning methods. Additionally, we plan to perform a plant
segmentation by using the self-constructed thermal and visible light images database and
increasing the corresponding classification performance. Moreover, we plan to count plants
by using drones and machine learning algorithms [50] in our future works.
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