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Abstract: Background: Atherosclerotic plaque detection is a clinical and technological problem that
has been approached by different studies. Nowadays, intravascular ultrasound (IVUS) is the standard
used to capture images of the coronary walls and to detect plaques. However, IVUS images are diffi-
cult to segment, which complicates obtaining geometric measurements of the plaque. Objective: IVUS,
in combination with new techniques, allows estimation of strains in the coronary section. In this study,
we have proposed the use of estimated strains to develop a methodology for plaque segmentation.
Methods: The process is based on the representation of strain gradients and the combination of the
Watershed and Gradient Vector Flow algorithms. Since it is a theoretical framework, the methodology
was tested with idealized and real IVUS geometries. Results: We achieved measurements of the lipid
area and fibrous cap thickness, which are essential clinical information, with promising results. The
success of the segmentation depends on the plaque geometry and the strain gradient variable (SGV)
that was selected. However, there are some SGV combinations that yield good results regardless
of plaque geometry such as |5εvMises|+ |5εrθ |,

∣∣5εyy
∣∣+ |5εrr| or |5εmin|+ |5εTresca|. These com-

binations of SGVs achieve good segmentations, with an accuracy between 97.10% and 94.39% in
the best pairs. Conclusions: The new methodology provides fast segmentation from different strain
variables, without an optimization step.

Keywords: atherosclerosis; fibrous cap thickness; finite element model; intravascular ultrasound;
segmentation method; strain gradient

MSC: 74S05

1. Introduction

Cardiovascular diseases are the leading cause of death worldwide, with 17.9 million
deaths per year, which represent 31% of the demises [1]. The majority of the coronary events
are related to heart attack or cerebral strokes, which are commonly trigged by atherosclerotic
plaque rupture [2]. The atherosclerotic plaque is the result of lipid deposition in the artery
wall, which creates a lipid core surrounded by fibrotic tissue. The fibrotic tissue that
separates the lipid core from the lumen is called the fibrous cap [3]. The rupture of the
fibrous cap induces a thrombus in the artery that obstructs the blood flow, leading to an
acute coronary event [4]. The vulnerability of the plaque is related to the risk of fibrous
cap rupture and the thrombus formation. There are some geometrical parameters that
are important for the vulnerability characterization. Some studies have suggested that
atherosclerotic plaques with fibrous cap thicknesses (FCT) thinner than 65 µm and lipid
cores with a large area are vulnerable and prone to rupture [3,5]. On the other hand, a
large FCT usually indicates that the plaque is stable. However, the prediction of the plaque
rupture is not only based on geometrical features, but also on the mechanical properties of

Mathematics 2022, 10, 4020. https://doi.org/10.3390/math10214020 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10214020
https://doi.org/10.3390/math10214020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0429-3595
https://orcid.org/0000-0002-8503-9291
https://doi.org/10.3390/math10214020
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10214020?type=check_update&version=1


Mathematics 2022, 10, 4020 2 of 19

the tissues [6,7]. Nowadays, intravascular ultrasound (IVUS) images are the gold standard
for clinical diagnosis of atherosclerotic plaques in coronary arteries. IVUS images show a
cross section of the artery wall in greyscale, and the segmentation usually depends on the
cardiologist’s experience. Each plaque tissue has different echo reflectivity characteristics,
so its appearance within an IVUS image can be distinguished [8]. The segmentation can
be performed manually; nevertheless, it requires clinical expertise, a high amount of time
and, therefore, cost, and it depends on the image quality [9]. In order to solve this problem,
new clinical techniques such as virtual histology intravascular ultrasound (VH-IVUS) have
emerged. VH-IVUS is a clinical method for visualizing color-coded tissue maps, which
provides an automated plaque characterization [10]. However, there are some limitations
to this technique: first, it has a poor recognition of the FCT due to false detection of lipid
core tissue and limitations in the plaque type classification (thin FCT, calcified plaque, or
stable plaque) [11]. Second, only one computation can be performed per cardiac cycle,
which reduces the number of IVUS frames used to characterize the plaque [12]. Third, the
clinics have to be equipped with VH software.

That is why new techniques, mostly based on machine learning, have been devel-
oped to segment or characterize the atherosclerotic plaque tissues from IVUS images [9].
Methods based on Random Forest were used to classify IVUS image pixels into different
tissues (dense calcium, necrotic, fibrotic tissue, and fibrofatty tissue) [12,13]. Although
these strategies have achieved high classification accuracy (70–85%), the validation was
performed with VH-IVUS and the results were unstable [13]. Other techniques, such as
the the Neuro Fuzzy classifier, showed potential results in detecting fibrotic, lipidic and
calcified tissues by classifying different pixels of the IVUS image [14]. Supporting vector
machines have been used with IVUS and VH-IVUS images to classify the vulnerability
of the plaques depending on the FCT (thin FCT vs. normal/stable FCT) [11,15] or to de-
tect calcifications [16,17]. Recently, convolutional neural networks (CNN) have emerged
strongly as a good classifier. CNN has also been used to classify plaque into thin or stable
FCT [18], to detect calcifications in the IVUS frames [19,20], or to segment the lumen and
outer contours [21,22]. Newer studies presented CNNs that detect different tissues of the
atherosclerotic plaque with high accuracy [8,23]. However, the accuracy of the majority of
the machine learning methods does not include the actual measure of the FCT, which plays
a key role in the plaque vulnerability. Although some studies analyzed the FCT, they only
used it as a classifier to characterize the plaque as thin or normal FCT [11,15,18]. The main
limitation of these machine learning techniques arises from on the lack of a large public
database to train and test the models [9]. This entails that, usually, each study proved the
efficiency of their technique with less than 12 patients [8,11–13,15,20] and human plaque
geometries vary greatly in each patient.

These machine learning methodologies give morphological information of the com-
position of the atherosclerotic plaque; however, the vulnerability also depends on the
mechanical properties of the tissues. For this reason, another line of research focuses
on segmentation by using mechanical properties such as strain or elasticity maps. For
vulnerability characterizations, elastography is commonly used to obtain the elasticity
map of the arterial wall [24–27]. Therefore, the main objective of many studies was to
segment and characterize the mechanical properties of the different plaque tissues at the
same time [25,28,29]. Different speckle estimators or optical flow methods can be used to
track the pixels’ motion or estimate the strains in IVUS images [27,30]. Then, the segmenta-
tion and mechanical property estimation procedures are linked and usually consist of an
iterative optimization problem. Segmentation results depend on the number of inclusions
evaluated at each iteration [28,29,31]. With this optimization process it is possible to esti-
mate the mechanical properties of the arterial wall and, furthermore, the segmentation of
the plaque geometry. This methodology allows to take measurements of the FCT, lipid area,
and the stiffness of the tissues. These types of processes have been tested in silico with finite
element (FE) models [25,28,32], in vitro with polyvinyl acetate (PVA) phantoms [24], and in
vivo with IVUS images from patients. The main disadvantages of these techniques are the



Mathematics 2022, 10, 4020 3 of 19

high computational cost and the fact that the result depends on the number of inclusions
evaluated.

Our work continues the study of the state-of-the-art of atherosclerotic plaque vulner-
ability by separating the segmentation procedure from the estimation of the mechanical
properties. The main contribution of this paper is the definition of a new intuitive segmen-
tation tool to segment the atherosclerotic plaque tissues without iterative or optimization
steps, thus reducing computational costs. In addition, the method allows segmentation
based on the representation of a large number of variables. By knowing the exact number
of tissues, this technique opens the opportunity to obtain mechanical properties in future
studies. This is a theoretical framework to lay the groundwork for future research; therefore,
the methodology was developed and validated with in silico data. We have simulated the
estimated strains that could be obtained from IVUS images with speckle estimators, with
FE models, and adding some noise to the strain fields. We have defined this process as sim-
ulated IVUS data, as we are recreating the type of data that could be extracted from IVUS
images. Our segmentation process is based on the representation of the modulus of the
strain gradients and Watershed and Gradient Vector Flow (W-GVF) algorithms. The results
are mainly focused on the lipid core segmentation, because of the importance of measuring
the FCT and the lipid area for plaque vulnerability. This methodology was studied by using
different strain variables in the segmentation process with different geometries. We have
modeled three idealized geometries to analyze the FCT influence on the segmentation and
three real IVUS patient geometries. In all of the analyzed cases, the proposed method was
able to segment the lipid core and to measure the lipid area and FCT with enough accuracy.

2. Materials and Methods

The structure of the methodology was divided into five steps and it is schematized in
Figure 1. The first step was to simulate IVUS data by computing different FE models, and
then the FE results were analyzed mimicking two consecutive pictures taken by an IVUS.
In the second step, some noise was added to the FE strains to mimic the intrinsic noise of
the IVUS images. After that, the different strain gradient variables (SGVs) were computed
in order to use them for the lipid segmentation process. Finally, after the segmentation we
analyzed the performance of the results.

Figure 1. Scheme of the five steps that define the methodology.

2.1. Simulating IVUS Data
2.1.1. Geometries

As this was a theoretical study, the IVUS data were simulated by using FE models
with idealized and real patient geometries. The idealized geometries consisted of a 3D
geometry with a 13 mm long atheroma plaque and with a lipid core length of 6.5 mm
and different FCTs [33]. We analyzed three different FCTs, trying to cover the different
geometric possibilities. A FCT of 65 µm was considered to represent a vulnerable case [5],
300 µm represented a stable plaque, and finally, 150 µm was an intermediate value between
the two extremes. The geometry was reconstructed following the Glagov results [34] and
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the Finet law [6]. The model was constructed with symmetric conditions, so only a quarter
of the geometry is shown in Figure 2a. The model had different tissues: adventitia, healthy
media and intima, fibrotic tissue, and lipid core. As one of the aims of this study was to
check the influence of the FCT on the segmentation process, three thicknesses, 65, 150,
and 300 µm, were considered, and they are represented in Figure 2b–d. Despite the use
of a 3D model, we only analyzed the section of maximum stenosis with the plane strain
assumption in order to reproduce the IVUS technique. On the other hand, the real patient
geometries were obtained from three IVUS images of human coronary plaques that were
manually segmented by an expert cardiologist in a previous study [35]. Both IVUS images
and the cardiologist segmentation of the three plaques are shown in Figure 3. When there
was lack of information in the axial direction, in these cases the FE models were 2D. In two
IVUS geometries, only the fibrotic tissue and the lipid core were considered, and on the
third plaque a calcification was also included.

b.
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Figure 2. (a) 3D Idealized geometry; (b) fibrous cap thickness of 65 microns; (c) fibrous cap thickness
of 150 microns; (d) fibrous cap thickness of 300 microns.

P
la

qu
e 

3 
   

   
   

   
   

   
   

  P
la

qu
e 

2 
   

   
   

   
   

   
   

 P
la

qu
e 

1

IVUS
Manual 

Segmentation

Lumen 

Fibrotic Tissue 

Lipid 

Lumen 

Fibrotic Tissue 

Lipid 

Lumen 

Ca 

Fibrotic Tissue 

L
ipid 

Pressurized
FE Model

Zero pressure
FE Model

Final
FE Model

Figure 3. The first column presents IVUS images [35] of the three different plaques; the second
column is the manual segmentation performed by a cardiologist [35]; the third column is the IVUS
reconstruction in Abaqus of the pressurized geometry; the fourth column shows the plaque models
with zero-pressure geometry in Abaqus. These geometries were used to initiate the FE simulations.
The fifth column is the final FE model after applying an internal pressure of 115 mmHg to the previous
geometry.
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2.1.2. Modeling of Tissue Behavior

All tissues were modeled as hyperelastic, non-lineal, and incompressible with the
constitutive model proposed by Gasser et al. [36]. The healthy tissues (adventitia, media,
and intima) were modeled as anisotropic with two families of fibers. Conversely, the
unhealthy tissues (fibrotic tissue and lipid core) were considered as an isotropic behavior
model by the use of parameter κ = 1/3 in the Gasser model. All tissue was assumed to
be fully incompressible (D = 0) in the idealized geometries and quasi-incompressible (D
= 0.49) in the real IVUS geometries. The material parameters of the equation in (1) were
fitted from experimental curves obtained from the bibliography [37,38] using the software
Hyperfit [39]. All the parameters of (1) are reflected in Table 1, where α is the angle of
the fibers with respect to the circumferential direction. The calcification of the third IVUS
plaque was modeled with an isotropic neo-Hookean material model [35].

Ψ =
1
D
· [J − 1]2 + µ[I1 − 3] +

k1

2k2
∑

i=4,6

(
exp
(

k2[κ[I1 − 3] + [1− 3κ][Ii − 1]]2
)
− 1
)

, (1)

Table 1. Fitted parameters for the hyperelastic model.

Tissue µ [kPa] k1 [kPa] k2 [-] κ[-] α[º]

Adventitia 4.22 547.67 568.01 0.26 ±61.80
Media 0.7 206.16 58.55 0.29 ±28.35
Intima 3.41 109.10 101.04 0.21 ±52.72

Fibrotic 4.79 17,654.91 0.51 1/3 -
Lipid Core 0.025 956.76 70 1/3 -

Calcification 1875 - - - -

2.1.3. FE Models

The FE models were created in the commercial software Abaqus [40], where the
boundary conditions and loads were imposed. In the 3D idealized FE models, not only
were the symmetrical conditions imposed, but also the contact with the heart was mimicked
by avoiding displacement in a contour line on the outside of the adventitia [33]. The blood
pressure imposed inside the artery was 115 mmHg, which is the average pressure in
patients with high normal pressure and grade 1 hypertension [41]. On the other hand,
the FE models of real IVUS geometries were 2D, so they were solved following the plain
strain assumption and the rigid body motion was constrained by two contour points with
zero displacements. Furthermore, the IVUS geometry was previously reconstructed from
pressurized images (third column in Figure 3). Therefore, it was necessary to obtain the
zero-pressure geometry to be used as the initial geometry. For this purpose, we assumed
that IVUS images were taken with an internal blood pressure of 110 mmHg, and the zero-
pressure geometry was recovered using the pull back algorithm defined by Raghavan
et al. [42]. After applying the pull back method, the resulted geometry was extracted as the
initial geometry (fourth column in Figure 3). Finally, it was possible to impose the pressure
of 115 mmHg in the lumen and achieve the final pressurized geometry (fifth column in
Figure 3). In all of the FE models (idealized and real IVUS geometries), the origin of the
coordinate system was located in the center of the lumen in order to simulate the position
of the IVUS catheter.

A sensitivity mesh analysis was performed to assure good precision and low compu-
tational cost. In the 3D idealized geometries, the maximum stenosis section, which was
the most important part of the study, was meshed with small-sized elements. The fibrous
cap between the lipid and the lumen had a smaller size depending on the thickness (e.g.,
0.02 mm in the thickness of 65 microns that is on the order of IVUS technique precision).
The rest of the 3D model had larger-sized elements, because of the lack of importance
in the segmentation process. The element type selected for 3D was the hybrid quadratic
tetrahedral elements with hybrid formulation to avoid numerical problems due to incom-
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pressibility (C3D10H), with at least three elements in the FCT in each case. In the 2D IVUS
models, the element type was the plain strain hybrid three-node linear element (CPE3H)
with additionaly, at least, three elements between the lumen and the lipid core.

2.1.4. Strain Variables

After simulating all of the FE models, the post-processing of the data was performed
in Matlab 2021b [43]. The nodal coordinates (X and Y) and displacements (ux and uy) of the
steps at 110 mmHg and 115 mmHg were collected. Then, the relative node displacements
between both pressure steps were computed, as we can see in the example of Equation (2).
This data processing attempted to simulate the data obtained by speckle estimators on
two consecutive pictures taken by an IVUS in a 5 mmHg pressure increment [24,25,28,31].
Afterwards, the strains were calculated under the infinitesimal strain theory. Despite
having the displacement field through the entire idealized 3D FE models, we analyzed
the maximum stenosis section with the hypothesis of plane strain to obtain results that
are closer to what happens in the IVUS. Different strain variables were computed: strains
referring to Cartesian coordinates (εxx, εyy and εxy); strains in cylindrical coordinates (εrr, εθθ

and εrθ); principal strains (εmax and εmin), and equivalent strains of the von Mises, Tresca,
and Anisotropic index (FA) [44], defined in Equation (3). Some variables, such as principal
strains [45] or equivalent strains, do not depend on the coordinate system. Thus, their
value will be the same regardless of the positions of the IVUS catheter.

ux = u115mmHg
x − u110mmHg

x , (2)

FA =

√
3√
2
·

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

λ2
1 + λ2

2 + λ2
3

,

λ =
λ1 + λ2 + λ3

3
, λi = (εmax or εmed or εmin) + 1,

(3)

Sumi et al. [46] developed a method to obtain a relationship between the vector gradi-
ent of the Young modulus and the strain tensor components for the plane stress approach.
This criterion was adapted by Le Floc’h et al. [28] under the plane strain assumption,
and they developed the elastic gradient of the material (dWsimpli f ied) by neglecting the
shear strains and computing only with the radial strains; Equation (4). This variable was
selected due to the good results when marking the lipid core contour shown in different
studies [28,29].

dWsimpli f ied = − 1
εrr

(
∂εrr

∂r
+

2εrr

r

)
dr− 1

εrr

∂εrr

∂θ
dθ, (4)

In this work, the parameter dW was also calculated without any type of simplification,
and it is developed in Equations (5)–(7). Furthermore, the absolute value of this parameter
was computed for segmentation purposes, and it was represented as |dW|.

Hr =
−1

ε2
rr + ε2

rθ

·
[

εrr ·
(

∂εrr

∂r
+

1
r
· ∂εrθ

∂θ
+

2 · εrr

r

)
+ εrθ ·

(
∂εrθ

∂r
− 1

r
· ∂εr

∂θ
+

2 · εrθ

r

)]
, (5)

Hθ =
−1

ε2
rr + ε2

rθ

·
[

εrθ ·
(

∂εrr

∂r
+

1
r
· ∂εrθ

∂θ
+

2 · εrr

r

)
− εrr ·

(
∂εrθ

∂rr
− 1

r
· ∂εrr

∂θ
+

2 · εrθ

r

)]
, (6)

dW = ~H · ~dx = [Hr Hθ ] ·
[

dr
r · dθ

]
, (7)
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2.2. Adding Noise

The strain information was obtained from the FE models (clean strains). Nevertheless,
the in vivo IVUS images have some noise and the speckle estimated strains will also contain
that noise. Therefore, to reproduce more realistic strains we added white Gaussian noise to
the different FE strain fields. We used an SNR of 20 dB in the FE strains [24] . However,
the segmentation procedure was studied in all geometries with and without noise so as to
analyze the robustness of the process.

2.3. Computing SGVs

Once all of the strain variables were obtained (with and without noise), the next step
was to obtain the modulus of their gradient. For instance, |5εrr| represents the modulus
of the gradient of the radial strains. These SGVs allowed to highlight the contours of the
different tissues of the plaque. Each SGV marked different parts of the tissue contours;
this is why the segmentation procedure could use one or two combined SGVs to extract
the entire lipid contour. We computed the modulus of the gradient of all strain variables,
except for dW. By definition, dW showed the contours of the areas with different stiffness.
The use of this single variable marked the tissue contours. At the end, there were 14 single
SGVs and 91 possible combinations of two SGVs.

2.4. Segmentation Process

The methodology was based on the representation of two combined SGVs or a single
SGV and image segmentation algorithms. The W-GVF processes were imposed on the
SGVs representation to extract the lipid core. The watershed process used the contour
and the grayscale representation to treat a set of pixels as a topography separating the
lipid core. The W-GVF algorithm allowed to segment different tissues as the lipid core
or the calcifications. In this work, only the results of the lipid core are presented due to
their relevance to FCT measurements and plaque vulnerability. After the segmentation, the
lipid was smoothed in order to reduce the sharp areas of the segmentation. The method
was tested in all geometries (three idealized and three real geometries) with all of the
105 SGVs. A sensitivity analysis of different relevant variables in the segmentation process
was performed. For this analysis only the idealized geometry with 150 µm of FCT was
considered. These variables were related to the plaque morphology or related to the IVUS
technology:

• Plaque-related variables: We analyzed the influence of considering the fibrotic tissue
as fully incompressible or with different degrees of quasi-incompressibility. We have
also considered four different fibrotic tissues (default, stiff, medium, and soft tissues).
Furthermore, some inclusions were added to the FE model, mimicking the presence
of micro calcifications. These inclusions were simplified as spheres with calcification
properties presented in Table 1, and four diameters were studied (10, 50, 150, and 300
µm).

• IVUS-related variables: The influence of the catheter position was studied by changing
the origin and orientation of the coordinate system in the FE models. It was also im-
portant to check if the segmentation methodology was affected by the blood pressure.
In addition, the pressure increment between both steps was also studied.

Although the methodology was mainly focused on the lipid core segmentation, dif-
ferent areas were segmented as well. Lumen was segmented using the W-GVF technique
in each geometry in order to measure the FCT. Large calcifications, such as the one in the
third real IVUS geometry, were segmented by using the same segmentation process. On the
other hand, fibrotic tissue could be easily segmented as the difference of the whole plaque
minus the segmented lipid and lumen. Finally, adventitia and media could be segmented
with the W-GVF technique; however, this segmentation has no clinical application due to
the fact that IVUS images provide little information on the outermost tissues.
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2.5. Geometrical Measures

After the lipid and the lumen were segmented, it was possible to assess the FCT as
the minimum distance between them. The area of the lipid core was also computed. Both
measurements are closely related to the risk of plaque rupture [5]. The indices I1, I2, and
I3 were defined in order to quantify the accuracy of the segmentation for each SGV or
combination of two SGVs. The first index (I1) in Equation (8) is the relative error between the
real and the measured FCT (treal and tmeasure). The second index (I2) in Equation (9) defines
the percentage of the lipid area that was correctly segmented (true positive area). This index
could be represented as the white area in Figure 4. The third index (I3) in Equation (10)
corresponds to the extra lipid area that was segmented (false positive area). It could be
represented as the green area in Figure 4. The second and third indices were defined to
quantify not only the lipid area value, but also the correct segmentation of its shape. In
order to quantify the segmentation using only one index, we defined the Segmentation
Index (SI) as a linear combination of the previous indices. The final SI parameter was
defined in Equation (11) and its value was directly related to the performance of the
segmentation. SGV combinations with an SI ≥ 90% provided measurements of the lipid
area and the fibrous cap thickness with high precision. An SI between 90–85% meant
that the segmentation had trouble with one measure, normally the fibrous cap thickness.
SI values in the range of 85–75% indicated a poor lipid segmentation. Finally, values of
SI ≤ 75% were for those SGVs with a high measurement error or those that could not
segment the lipid.

I1 =

∣∣∣∣ tmeasure − treal
treal

∣∣∣∣ · 100, (8)

I2 =
AreaRealSegmented

AreaReal
· 100, (9)

I3 =
AreaFalseSegmented

AreaReal
· 100, (10)

SI =
(100− I1) + I2 + (100− I3)

3
, (11)

Figure 4. Comparison between the real and the segmented lipid core. The lumen is represented in
gray color, the true positive area in white, the false negative area in green, the actual area that was
not segmented in purple, and the measure of the FCT is the red line.

3. Results

This section presents the results of the lipid segmentation. It is divided into the results
in idealized geometries, results in real IVUS geometries, and an analysis of the best SGVs
after considering all of the geometries.The results were analyzed with the FE strains and
the strains with 20 dB of SNR.

3.1. Idealized Geometries

The process is summarized in Figure 5, where the idealized geometries with 65, 150,
and 300 µm of fibrous cap thickness are represented. A combination of the SGVs |5εmin|
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and |5FA| was chosen due to its high segmentation performance. Both SGV variables are
shown in each idealized geometry in Figure 5a,b, respectively. The combination of both is
represented in Figure 5c and it was used as an input for the W-GVF process. The final result
is shown in Figure 5d, where every segmented part has a different color. The segmented
lipid core is represented before and after the smooth treatment in Figure 5e, and it is shown
as an overlap between the actual and segmented lipid core. In this representation, the
white area displays the well-segmented area, the purple one is the actual lipid that is
not segmented, and inversely, the green area is the extra area wrongly segmented by the
procedure.

Figure 5. Influence of the FCT on the segmentation procedure analyzed with clean strains. The
rows represent the segmentation process with the geometries of 65, 150, and 300 µm of FCT. The
segmentation process consists of the combination of two SGVs, in these cases |5εmin| and |5FA|
in (a,b), respectively. The combination of both is represented in (c). This representation is the input
for the W-GVF and its results are represented in (d); finally, the overlap between the actual and the
segmented lipid core before and after the smooth treatment is represented in (e), where the true
positive area is in white, the false negative area in green and the actual area that is not segmented in
purple.

In the idealized geometries, the lipid area was similar in all scenarios, so the number
of successful SGV combinations depended only on the fibrous cap thickness. The box-plot
in Figure 6 represents the SI distribution of the 105 SGV combinations in each geometry.
The geometries were segmented using the FE strains (clean strains) and the strains with
20 dB of noise. By analyzing only the influence of the FCT, the results show that the
mean (represented by an asterisk) and the median of the SI value increased with the
FCT. In addition, the interquartile range decreased with greater thicknesses. This fact
can be observed in Figure 6 for the segmentation with or without noise. On the other
hand, the noise addition led to an increase of the outliers and the interquartile range.
The mean and median decreased after considering the noise. Despite having different SI
results in each geometry, there were some combinations of SGVs with proper results for
all thicknesses. This was the case of

∣∣5εyy
∣∣+ |5εθθ |, |5εvMises|+ |5εrθ |, |5FA|+ |5εθθ |

or |5εmax|+ |5εrr|. It was also possible to yield good results with only one variable such
as
∣∣5εyy

∣∣, |5FA|, dW, |5εTresca| and
∣∣5εxy

∣∣. However, there were variables with low SI
values for all cases, such as dWsimpli f ied, |5εrθ |, so they were discarded.
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Figure 6. Box-plots of the SI values of the idealized geometries. From left to right: 65, 150, and 300
µm of fibrous cap thickness. Each geometry was analyzed with clean strains and with 20 dB of SNR.
The median values were represented with a horizontal line. The median values were 93% and 90.14%
for the idealized geometry with 65 µm FCT with and without noise; 94.88% and 93.42% for geometry
of 150 µm FCT; and 95.23% and 94.17% for 300 µm. Mean values are represented with asterisks.
Outliers are represented with circles. Some outliers were below 65% but are not shown.

3.2. Real IVUS Geometries

The proposed methodology was tested with the three real IVUS plaque geometries.
The lipid cores had different shapes, areas (1.65, 5.53, and 1.93 mm2), and FCTs (330, 175,
and 209 µm). Figure 7 is an example of lipid segmentation with the SGV combination of
the invariants |5εmin| and |5FA| for the case of clean strains. The performance of the
segmentation is represented in the box-plot shown in Figure 8, where the segmentation was
not only affected by the FCT, but also by the lipid core area. In all cases, the noise addition
increased the interquartile range and decreased the mean and the median (except in the
first plaque, where the median increased after the 20 dB). A single SGV such as |5εmin| ,
|dW|, |5εrr|, dW, |5εTresca| or combinations such as

∣∣5εyy
∣∣+ |5εrr|,

∣∣5εyy
∣∣+ |5εmin|, or

|5εmin|+ |5εMises| still had promising results for these geometries. As what happened in
the idealized cases, the SGV |5εrθ | did not show any adequate SI for any plaque.
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Figure 7. Segmentation procedure in the IVUS geometries with clean strains. The rows represent the
segmentation process with the plaques 1, 2, and 3; (a) representation of |5εmin|; (b) representation
of |5FA|; (c) the combination of |5εmin|+|5FA|; (d) W-GVF results; and (e) segmented lipid before
and after the smooth treatment, where the true positive area is in white, the false negative area in
green and the actual area that is not segmented in purple.
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Figure 8. Box-plots of the SI values of the real IVUS geometries. The three plaques were analyzed
with clean strains and with 20 dB of SNR. The median values are represented with a horizontal line.
The median values were 92.02% and 93.74% for the first IVUS geometry, with and without noise;
92.60% and 88.82% for the second IVUS geometry; and 94.30% 91.84% for third IVUS geometry,
respectively. Mean values are represented with asterisks. Outliers are represented with circles. Some
outliers were below 65% but are not shown.
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3.3. SGV Candidates

Finally, the mean SI value (S̄I) was computed by considering all of the geometries
together. All of the SGVs from FE strains, alone or in combination with others, were
analyzed, and the best five single SGVs and fifteen SGV combinations were collected
in Table 2. This table shows the SGVs or SGV combinations with better performance in
the segmentation process, allowing to have good accuracy not only in the area, but also
in the FCT. The mean SI value of those combinations with 20 dB of noise was included
( ¯SInoise) to visualize the noise influence. Single SGVs, such as dW or |5εrr|, presented good
segmentation results. Furthermore, |5εvMises| or |5εmin| had good performance as well,
and in these cases they had the advantage of being invariants, so they will be not affected by
the catheter position or coordinate system. However, the invariants have the disadvantage
of needing the entire strain tensor. On the other hand, there were a great number of SGV
combinations with high segmentation accuracy regardless of the analyzed case, such as
|5εvMises|+|5εrθ |, or

∣∣5εyy
∣∣+|5εrr|. Additionally, combination of invariants appeared

to have good results, such as |5εmin|+|5εTresca|. Table 2 shows that SGV combinations
achieved higher SI values than single SGVs.

Table 2. Summary of the results for the best five single SGVs and fifteen SGV combinations for
the lipid segmentation of all of the 105 possible combinations based on the results of the idealized
and IVUS geometries with FE strains. The SGVs with the SI value in dark green mean a perfect
segmentation; light green stands for good segmentations; yellow for SGV indicates some problems in
segmenting the fibrous cap or the lipid area. S̄I and ¯SInoise represent the mean SI value without and
with noise, respectively.

Segmentation Index (SI)

Idealized Geometry Real IVUS Geometry

65 µm 150 µm 300 µm Plaque 1 Plaque 2 Plaque 3 S̄I ¯SInoise

dW 95.20 97.13 94.31 96.98 92.06 92.50 94.70 90.62
|dW| 92.33 94.55 96.02 93.99 94.66 96.23 94.63 86.04

|OεvMises| 93.49 93.60 97.65 90.74 94.99 97.08 94.59 94.47
|Oεrr| 97.65 94.40 93.07 98.48 86.78 96.32 94.45 92.27

O
ne

SG
V

|Oεmin| 86.07 93.77 97.86 97.73 93.43 97.46 94.39 93.29
|OεvMises|+ |Oεrθ | 95.87 97.63 97.09 98.61 96.14 97.28 97.10 95.22∣∣Oεyy

∣∣+ |Oεrr| 95.74 97.93 94.79 98.53 97.51 96.76 96.88 95.68∣∣Oεyy
∣∣+ |Oεmin| 95.74 98.21 94.23 98.53 95.55 98.28 96.75 94.28

|Oεmin|+ |OεTresca| 96.97 96.32 96.09 97.36 95.98 97.43 96.69 93.67
|Oεmax|+ |Oεrr| 97.73 94.08 98.58 97.76 92.33 98.03 96.42 92.88
|Oεmin|+ |OFA| 97.85 93.01 96.17 97.46 95.24 97.47 96.20 94.76
|Oεmin|+ |OεvMises| 95.17 93.28 96.87 97.43 95.98 98.37 96.18 95.10
|Oεrr|+ |Oεrθ | 92.81 97.49 97.95 98.94 93.13 96.43 96.13 88.68
|OεTresca|+ |Oεrr| 93.30 96.25 95.81 97.34 96.12 97.77 96.10 93.67∣∣Oεyy

∣∣+ |OεTresca| 93.06 97.64 95.17 98.41 93.55 97.94 95.96 93.09
|OFA|+ |Oεrr| 92.87 94.88 96.53 97.51 95.96 97.49 95.87 92.88
|Oεmax|+ |Oεmin| 97.53 94.46 92.74 96.34 95.40 97.96 95.74 93.65
|OFA|+ |Oεrθ | 93.68 97.40 95.04 98.56 90.99 97.53 95.53 92.69
|Oεxx|+ |OFA| 95.93 95.79 95.51 92.44 95.29 98.23 95.53 92.03

C
om

bi
na

ti
on

of
tw

o
SG

V
s

∣∣Oεxy
∣∣+ |OFA| 94.32 94.21 94.84 96.49 95.12 97.16 95.36 93.04

The elastic gradient of the material (dW) was calculated in a simplified way, following
Le Floc’h et al. [29] and with the whole 2D strain tensor. In order to have the lipid contour
marked and to achieve a better combination with other SGVs, the absolute value |dW| was
computed. These variables are shown in Figure 9. The variable dWSimpli f ied had a mean SI
value of 32.13% in the six geometries without noise and 28.48% with noise, whereas dW
without simplifications achieved a mean SI value of 94.70% without noise and 90.62% with
20 dB of noise and |dW| 94.63% and 86.04% without and with noise, respectively.
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Figure 9. Idealized geometry with 150 µm thickness with the different dW represented without noise.
(a) dWsimpli f ied, (b) dW computed with the 2D strain tensor, and (c) |dW|.

3.4. Sensitivity Analysis

Once the SGV candidates were analyzed, we selected the best four SGV combinations
and the best single SGV of Table 2 to evaluate the robustness of the proposed segmentation
methodology. For this purpose, we studied the influence of plaque and IVUS variables in
the segmentation results only within the idealized geometry with 150 µm of FCT. Figure 10
shows all of the results of the sensitivity study. Each SGV had seven variables to analyze
(incompressibility, different material behavior of fibrotic tissues, addition of inclusions,
different catheter positions, total pressures and pressure increments, and noise addition),
and all are color-coded in Figure 10. The SI values obtained with the FE strains were taken
as a reference. In this reference case, the model was analyzed as fully incompressible, with
a stiffer tissue, the catheter placed in the center of the lumen, with a pressure analysis of
110–115 mmHg and without noise. The SI values achieved with that model are represented
in Figure 10 with a horizontal dotted line.

90

91

92

93

94

95

96

97

98

99

S
I 

V
al

ue
 [

%
]

dW

Fibrotic TissueIncompressibility
D=0.0005 | D=0.001 | D=0.005 | D=0.01 Stiff | Medium | Soft

Catheter Position Pressure
Centred&Rotated | Off-Centre Away from lipid | Off-Centre Near Lipid | Random Position 75-80 | 95-100 | 115-120 | 135-140 [mmHg] 

Pressure Increment

Noise

3 mmHg | 8 mmHg | 11 mmHg| 14 mmHg

SNR=20dB

Inclusions
Ø=10μm | Ø=50μm | Ø=150μm | Ø=300μm

|∇𝜀 |+|∇𝜀 |Mises 𝑟𝜃 |∇𝜀 |+|∇𝜀 |yy 𝑟𝑟 |∇𝜀 |+|∇𝜀 |yy min |∇𝜀 |+|∇𝜀 |min Tresca

Figure 10. Graphic summary of the influence of incompressibility, changing fibrotic tissues, addition
of inclusions, different catheter positions, different pressures and pressure increments, and noise
addition on the segmentation process. The considered SGVs are |5εMises|+|5εrθ | ,

∣∣5εyy
∣∣+|5εrr| ,∣∣5εyy

∣∣+|5εmin| , |5εmin|+|5εTresca|, and dW. Each SGV has different variables to analyze, divided
by colors. Each plaque- or IVUS-related variable had different cases that were differentiated by shape
markers.
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4. Discussion

The clinical detection and segmentation of the atherosclerotic plaque is still a chal-
lenging step for an early diagnosis. Machine learning techniques are mainly focused
either on the segmentation of the lumen and outer contours [21] or on the detection of
calcifications [16,17] or vulnerable FCT [15]. However, it is difficult to find a quantitative
study of FCT or the lipid area. Other techniques based on IVUS allow to estimate the 2D
strain field in the arterial wall [27,30]. From the strain map, with iterative optimization
tools, it is possible to estimate the mechanical properties and the segmentation of the
plaque [28,29,31]. However, these cases had high computational cost and depended on the
inclusions evaluated. The most difficult issue was to obtain an accurate segmentation of the
plaque that could provide good estimations of the FCT. In this paper, we have presented the
theoretical basis to segment the tissues of the atherosclerotic plaque from the representation
of different strain variables without any iteration or the need for a large database to train
the methodology. The segmentation procedure was based on the Watershed and Gradient
Vector Flow algorithms that extract the tissues. In this article, we focused on the lipid core
segmentation due to its role in plaque vulnerability [5]. The accuracy of the results depends
on the represented SGVs. This approach allowed us to obtain measurements of the lipid
area and FCT and it achieved promising results with many different SGV combinations.
The methodology was developed and validated with computational models designed
from idealized and real IVUS geometries. The aim was to check if the strain map method
was able to segment the lipid and also to know which are the best SGVs to achieve it.
Furthermore, the process was performed with different morphological and IVUS technical
variations to prove the versatility of the proposed method.

4.1. Segmentation Analysis
4.1.1. Idealized Geometries

Using idealized geometries, the results show that as the FCT was smaller, there were
less SGVs available to obtain a proper segmentation. The box-plot of Figure 6 shows
that the variability of SI values decreases with larger thicknesses, while the segmentation
performance increases. The explanation is that the amount of data available on the fibrous
cap is lower and the SGVs in low thicknesses; it marked the lipid contour close to the
lumen and it was more difficult for the segmentation process to track the lipid. Therefore,
the measure of the FCT presents higher errors. Consequently, the precision of the IVUS
technology will delimit the amount of strain information in the fibrous cap and thus the
segmentation performance. After analyzing the 105 possible SGV combinations in each
geometry with clean FE strains, the median SI value was always above 93% in all cases.
That highlights the strong segmentation capacity of the proposed methodology. Previous
studies also showed a decrease in the FCT segmentation at lower thicknesses, increasing the
relative error of the segmented FCT [28,31]. However, this proposed methodology opened
the possibility of using a large number of SGVs for segmentation. Some combinations
of SGV, such as dW, |5εvMises|+ |5εrθ | or

∣∣5εyy
∣∣+ |5εrr|, had errors close to zero and

with negligible variation between thicknesses. After adding a 20 dB SNR to the FE strains,
the SGVs were not as smooth as in the previous cases; however, the median SI of each
group decreased by most 3%, but all of them were above 90%. Hence, the segmentation
method proved that there were large amounts of SGVs that allowed to extract the lipid core
regardless of the FCT or the noise addition. Furthermore, the areas of the lumen and the
complete plaque were automatically segmented with the proposed method. This provided
results similar to those obtained with machine learning [21,22] but without the need to
train a neural network.

4.1.2. IVUS Geometries

The IVUS geometries allowed testing the segmentation procedure on real human
atherosclerotic coronary plaque geometries with distinct lipid core areas and FCT. The
results showed that the W-GVF process relied not only on the fibrous cap thickness, but
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also on the lipid area and stenosis degree, showing a strong dependency on the real IVUS
plaques. The segmentation performance varied greatly in each geometry due to their
differences. In all cases the median of the SI value was above 88% (with or without noise).
The noise addition slightly reduced the segmentation except for the first IVUS plaque,
where noisy strains improved the median SI value by 1.87%. The noise addition also
increases the variability of the performance. The third IVUS plaque had a calcification
that was segmented using the W-GVF technique with a relative error smaller than a 5%.
Nevertheless, the study showed that the segmentation procedure was able to track lipids
with different areas and morphologies. Since these geometries were analyzed in other
studies [28,32], it was possible to compare the segmentation results with those of previous
studies. Previous work reached a relative FCT error of between 1.4 and 15.5% depending
on the geometry [28]. Other methodologies obtained a mean error above 16% by measuring
the FCT on other real geometries [31,47]. In this work, the FCT measure depended on the
chosen SGV. For the SGVs analyzed in Figure 2, the mean relative error was 3.11% in the
IVUS geometries.

4.2. SGV Candidates

Different studies rate the segmentation performance with a qualitative index, such as
thin vs. stable FCT [11,15,18], or by detecting the calcified plaques [16,17]. Those studies
that used quantitative values only considered the error of the segmented FCT and lipid
area [28,31,47]. Our SI included values to consider the relative error of the FCT, the value
of the segmented lipid and its shape, which facilitates the comparison of segmentations
between geometries. Studies that used a strain variable for segmenting only used a single
strain variable (commonly the modified Sumi’s transformation (dWSimpli f ied) [28,46,47] or
von Mises strains [31]). On the contrary, this methodology made it possible to use 105
different strain variables (single SGVs or combinations of SGVs).

The combination of idealized and real IVUS results showed that the segmentation
results depended mainly on the FCT and the lipid core area. Nevertheless, there were
some variables with a high SI by itself regardless of the geometry case. That was the case
of SGVs such as dW, |5εmin| or |5εrr|, which obtained an overall SI value of more than
90% with or without noise. By the combination of different SGV, some variables with low
accuracy increased the results. That was the case of |5εrθ |, which had a mean SI value of
67.24% and in combination with |5εvMises| was the best pair, achieving a mean SI of 97.1%
(95.22% with noise). SGV combinations reached higher precision than single SGVs. Some
examples were

∣∣5εyy
∣∣+|5εrr| or |5εmin|+|5εTresca| with SI mean values of 96.88–95.68%

and 96.69–93.67%, respectively (with clean strains–with 20 dB of SNR, repsectively). All of
the SGV combinations presented in Figure 2 allowed for a very precise segmentation of the
lipid in all scenarios with different SGV options.

On the other hand, after analyzing the elastic gradient of the material (dW), all dW
SGVs had a similar representation; however, the dWsimpli f ied proposed by Le Floc’h et al. [28]
had more trouble marking the shoulder of the lipid core and obtained worse segmentation
results than dW and |dW|. The variable dW marked the whole lipid contour, and alone
proved to be the best SGV for the lipid segmentation. Its absolute value, |dW|, was
computed in order to obtain better results in combination with the others SGVs; however,
it showed similar SI values to dW and it was the second-best single SGV option.

4.3. Sensitivity analysis

The best single SGVs and SGV combinations were analyzed in a sensitivity analysis
to study the influence of different variables (plaque- and IVUS-related variables). We
concluded that the incompressibility of the materials did not affect the segmentation
performance in the five selected SGVs. By changing the material behavior of the fibrotic
tissue, the SI values remained above 92%, except in one case for dW. This parameter was
related to the different stiffness between tissues, and it would fail if the lipid and fibrotic
tissue had similar stiffness. The addition of inclusions could affect the lipid segmentation
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if they were placed close to the lipid contour. Nonetheless, the methodology appeared to
obtain similar results. Principal strains are widely used because of their non-dependence on
the coordinate system [45]; however, the catheter position seemed to have no influence on
the process, since the worst SI value obtained was 93.23%. Finally, the pressure and pressure
increments did not affect the method due to the fact that the tool is based on gradients of the
strains, and they had a similar representation regardless of the modification of pressures.
Overall, the results suggest that the proposed methodology had no dependency on the
analyzed cases, showing a strong robustness.

4.4. Relevance for Clinical Applications

The new developed technology is an intuitive segmentation tool that could provide
morphological information on the atherosclerotic plaque. It could help to reduce segmen-
tation human errors and it could assist clinicians with a new accurate diagnosis support.
From IVUS images and the use of a strain estimator, we can use the representation of
different moduli of the gradient of variables to detect the lipid or inclusions contours in
a fast way. After that, with the W-GVF segmentation procedure it is possible to extract
the lipid core or other tissues and take measurements, which are directly involved with
plaque vulnerability. The results show that the performance of certain SGV combinations
depended on plaque morphology; however, the SGV combination between |5εmin| and
|5εvMises| presented good segmentation performances for the lipid core, regardless of the
plaque geometry. Additionally, other combinations showed in Table 2 appear to be accurate
enough for good clinical diagnosis. Single SGVs such as |5εrr| or dW provided accurate
segmentations. In addition, εrr is the strain variable that can be extracted from IVUS with
the highest accuracy, so it will be one of the main candidates for clinical application.

The highlights of this work are presented in the following list in order to summarize
the results of the research.

i. A segmentation process based on strain representation was presented to extract
the different tissues of an atherosclerotic plaque. This methodology achieved high
accuracy in measuring FCT and the lipid core area. These measurements play a key
role in the vulnerability of the plaque.

ii. Unlike other segmentation processes, this method does not require a database to be
trained or an optimization process, as it relies on image processing rather than machine
learning or analysis of the mechanical properties of the tissues. In addition, it could
be performed with many different strain variables instead of a single one [27,28,31,47].
Thus, there are different possibilities to obtain the segmentation using only one
variable or combining different SGVs.

iii. The results show that the performance of the segmentation was linked to the plaque
geometry and the selected SGVs. However, there were some SGVs with good results
regardless of the geometry. The method also showed good robustness in sensitivity
analysis, providing accurate results with different catheter positions, pressures, and
noise addition.

4.5. Limitations

This study has two main limitations that have to be mentioned:

• Since this work was a theoretical framework, the methodology was only tested with
computational models of in silico data. Therefore, the next step would be to prove the
segmentation methodology with in vitro and in vivo IVUS data from patients with
coronary atherosclerotic plaques. After analyzing the methodology with noise, which
simulates the intrinsic noise of IVUS data, the results for segmentation are expected to
be valid on real IVUS data.

• In the finite element analysis we only have considered the load of the blood pressure.
We have disregarded the residual stress and the influence of heart motion. As the
methodology is based on gradients and not on absolute strain/stress values, we could
expect a minimum influence of the residual stress on this segmentation methodology.
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5. Conclusions

In this paper we have proposed a new method to segment the atheroma plaque based
on strain measurements with low computational and time costs. This work is a theoretical
framework and has been developed and tested with FE models with idealized and real IVUS
geometries. The representation of the SGVs opens the possibility of segmenting the lipid
core with different strain variables. This representation is used in the W-GVF segmentation
to extract the tissues and measure the FCT and lipid area for the clinical diagnosis. We made
an extensive study of the strain variables used for the W-GVF segmentation and selected
only those who detect the lipid core and other tissues. The method had good results in all
scenarios, showing an SI value higher than 94% (with noise). There are strain variables
such as |5εvMises| in combination with |5εrθ | or

∣∣5εyy
∣∣ + |5εrr| that achieved accurate

results regardless of the geometry, morphological changes, or noise addition. Furthermore,
single SGVs such as dW or |5εmin| could provide the lipid segmentation. Although the
methodology has to be tested with in vivo data, it has promising preliminary results.
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