
Citation: Cui, C.; Jiang, K.; Liu, Y.;

Shu, S. Fourier Neural Solver for

Large Sparse Linear Algebraic

Systems. Mathematics 2022, 10, 4014.

https://doi.org/10.3390/

math10214014

Academic Editor: Luigi Rodino

Received: 23 September 2022

Accepted: 25 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Fourier Neural Solver for Large Sparse Linear Algebraic Systems
Chen Cui , Kai Jiang *, Yun Liu and Shi Shu *

Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of
Intelligent Computing and Information Processing of Ministry of Education, School of Mathematics and
Computational Science, Xiangtan University, Xiangtan 411105, China
* Correspondence: kaijiang@xtu.edu.cn (K.J.); shushi@xtu.edu.cn (S.S.)

Abstract: Large sparse linear algebraic systems can be found in a variety of scientific and engineering
fields and many scientists strive to solve them in an efficient and robust manner. In this paper, we
propose an interpretable neural solver, the Fourier neural solver (FNS), to address them. FNS is
based on deep learning and a fast Fourier transform. Because the error between the iterative solution
and the ground truth involves a wide range of frequency modes, the FNS combines a stationary
iterative method and frequency space correction to eliminate different components of the error. Local
Fourier analysis shows that the FNS can pick up on the error components in frequency space that
are challenging to eliminate with stationary methods. Numerical experiments on the anisotropic
diffusion equation, convection–diffusion equation, and Helmholtz equation show that the FNS is
more efficient and more robust than the state-of-the-art neural solver.

Keywords: Fourier neural solver; fast Fourier transform; local Fourier analysis; convection–diffusion–
reaction equation

MSC: 65F10; 65N22; 68T07; 35Q68

1. Introduction

Large sparse linear algebraic systems are ubiquitous in scientific and engineering
computation, such as discretization of partial differential equations (PDE) and linearization
of non-linear problems. Designing efficient, robust, and adaptive numerical methods for
solving them is a long-term challenge. Iterative methods are an effective way to resolve
this issue. They can be classified into single-level and multi-level methods. There are
two types of single-level methods: stationary and non-stationary [1]. Due to sluggish
convergence, stationary methods, such as weighted Jacobi, Gauss–Seidel and successive
over-relaxation methods [2] are frequently utilized as smoothers in multi-level approaches
or as preconditioners. Non-stationary methods typically refer to Krylov subspace methods,
such as conjugate gradient (CG) and generalized minimal residual (GMRES) methods [3,4],
whose convergence rate is heavily influenced by certain factors, such as the initial value.
Multi-level methods mainly comprise the geometric multigrid (GMG) method [5–7] and
the algebraic multigrid (AMG) method [8,9]. They are both affected by many factors, such
as smoother and coarse grid correction, which heavily affect convergence. Identifying
these factors for a concrete problem is an art that requires extensive analysis, innovation,
and trial.

In recent years, the technique of automatically picking parameters for Krylov and
multi-level methods and constructing a learnable iterative scheme based on deep learn-
ing has attracted much interest. Many neural solvers have achieved satisfactory re-
sults for second-order elliptic equations with smooth coefficients. Hsieh et al. [10]
utilized a convolutional neural network (CNN) to accelerate convergence of the Jacobi
method. Luna et al. [11] accelerated the convergence of GMRES with a learned initial
value. Zhang et al. [12] combined standard relaxation methods and the DeepONet [13] to

Mathematics 2022, 10, 4014. https://doi.org/10.3390/math10214014 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10214014
https://doi.org/10.3390/math10214014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1735-5014
https://doi.org/10.3390/math10214014
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10214014?type=check_update&version=2

Mathematics 2022, 10, 4014 2 of 16

target distinct regions in the spectrum of eigenmodes. Significant efforts have also been
made in the development of multigrid solvers, such as the learning smoother, the transfer
operator [14,15] and coarse-fine splitting [16].

Huang et al. [17] exploited a CNN to design a more sensible smoother for anisotropy
elliptic equations. The results showed that the magnitude of the learned smoother was
dispersed along the anisotropic direction. Wang et al. [18] introduced a learning-based
local weighted least square method for the AMG interpolation operator and applied it to
random diffusion equations and one-dimensional small wavenumber Helmholtz equations.
Fanaskov [19] produced the learned smoother and transfer operator of GMG in a neural
network form.

When the anisotropic strength is mild (within two orders of magnitude), the studies
referred to evidence considerable acceleration. Chen et al. [20] proposed the Meta-MgNet to
learn a basis vector of Krylov subspace as the smoother of GMG for strong anisotropic cases.
However, the convergence rate was still sensitive to the anisotropic strength. For convection–
diffusion equations, Katrutsa et al. [21] trained the weighted Jacobi smoother and transfer
operator of GMG, which had a positive effect on the upwind discretization system and
was also applied to solve a one-dimensional Helmholtz equation. For second-order elliptic
equations with random diffusion coefficients, Greenfeld et al. [22] employed a residual
network to construct the prolongation operator of AMG for uniform grids. Luz et al. [23]
extended it to non-uniform grids using graph neural networks, which outperformed
classical AMG methods. For jumping coefficient problems, Antonietti et al. [24] presented
a neural network to forecast the strong connection parameter to speed up AMG and used it
as a preconditioner for CG. For the Helmholtz equation, Stanziola et al. [25] constructed a
fully learnable neural solver, the helmnet, which was built on U-net and a recurrent neural
network [26]. Azulay et al. [27] developed a preconditioner based on U-net and shift-
Laplacian MG [28] and applied the flexible GMRES [29] to solve the discrete system. For
solid and fluid mechanics equations, several neural solver methods for associated discrete
systems have been proposed, such as, but not limited to, learning initial values [30,31],
constructing preconditioners [32], learning the search directions of CG [33], and learning
the parameters of GMG [34,35].

In this paper, we propose a Fourier neural solver (FNS), a deep learning and fast
Fourier transform (FFT)-based [36] neural solver. The FNS is made up of two modules: a
stationary method and a frequency space correction. Since stationary methods, such as the
weighted Jacobi method, have difficulty eliminating low-frequency error, the FNS uses FFT
and CNN to learn these modes in the frequency space. Local Fourier analysis (LFA) [5]
has shown that the FNS can pick up on the error components in frequency space that
are challenging to eradicate using stationary methods. The FNS builds a complementary
relationship with the stationary method and CNN to eliminate error. With the help of
FFT, the single-step iteration of the FNS has a O(N log2 N) computational complexity. All
matrix-vector products are implemented using convolution, which is both storage-efficient
and straightforward to parallelize. We investigated the effectiveness and robustness of
the FNS on three types of convection–diffusion–reaction equations. For anisotropic dif-
fusion equations, numerical experiments showed that the FNS was able to reduce the
number of iterations by nearly 10-times compared to the state-of-the-art Meta-MgNet
when the anisotropic strength was relatively strong. For non-symmetric systems arising
from the convection–diffusion equation discretized by the central difference method, the
FNS can converge, while MG and CG methods diverge. In addition, FNS is faster than
other algorithms, such as GMRES and BiCGSTAB(`) [37]. For indefinite systems arising
from the Helmholtz equation, the FNS outperforms GMRES and BiCGSTAB for medium
wavenumbers. In this paper, we apply the FNS to the above three PDE systems. However,
the principles employed by the FNS indicate that the FNS has the potential to be useful for
a broad range of sparse linear algebraic systems.

The remainder of this paper is organized as follows: Section 2 proposes a general form
of linear convection–diffusion–reaction equation and describes the motivation for designing

Mathematics 2022, 10, 4014 3 of 16

the FNS. Section 3 presents the FNS algorithm. Section 4 examines the performance of the
FNS with respect to anisotropy, convection–diffusion, and the Helmholtz equations. Finally,
Section 5 describes the conclusions and potential future work.

2. Motivation

We consider the general linear convection–diffusion–reaction equation with a Dirichlet
boundary condition{

−ε∇ · (α(x)∇u) +∇ · (β(x)u) + γu = f (x) in Ω
u(x) = g(x) on ∂Ω

(1)

where Ω ⊆ Rd is an open and bounded domain. α(x) is the d × d− order diffusion
coefficient matrix. β(x) is the d× 1 velocity field that the quantity is moving with. γ is the
reaction coefficient. f is the source term.

We can obtain a linear algebraic system once we discretize Equation (13) by the finite
element method (FEM) or finite difference method (FDM)

Au = f, (2)

where A ∈ RN×N , f ∈ RN and N is the spatial discrete degrees of freedom.
Classical stationary iterative methods, such as Gauss–Seidel and weighted Jacobi

methods, have the generic form

uk+1 = uk + B
(

f−Auk
)

, (3)

where B is an easily computed operator, such as the inverse of the diagonal matrix (Jacobi
method) or the inverse of the lower triangle matrix (Gauss–Seidel method). However, the
convergence rate of such methods is relatively low. As an example, we utilize the weighted
Jacobi method to solve a special case of Equation (1) and use LFA to analyze the rationale.

Taking ε = 1, α(x) =

(
1 0
0 1

)
, β(x) =

(
0
0

)
and γ = 0, Equation (1) becomes

the Poisson equation. With a linear FEM discretization, in stencil notation, the resulting
discrete operator reads −1

−1 4 −1
−1

. (4)

In the weighted Jacobi method, B = ωI/4, where ω ∈ (0, 1] and I is the identity
matrix. Equation (3) can be written in the pointwise form

uk+1
ij = uk

ij +
ω

4

(
fij − (4uk

ij − uk
i−1,j − uk

i+1,j − uk
i,j−1 − uk

i,j+1)
)

. (5)

Let uij be the true solution and define error ek
ij = uij − uk

ij. Then, we have

ek+1
ij = ek

ij −
ω

4
(4ek

ij − ek
i−1,j − ek

i+1,j − ek
i,j−1 − ek

i,j+1). (6)

Expanding error in a Fourier series ek
ij = ∑p1,p2

vkei2π(p1xi+p2yj), substituting the

general term vkei2π(p1xi+p2yj), p1, p2 ∈ [−N/2, N/2) into Equation (6), we have

vk+1 = vk
(

1− ω

4

(
4− e−i2πp1h − ei2πp1h − e−i2πp2h − e−i2πp2h

))
= vk

(
1− ω

4
(4− 2 cos(2πp1h)− 2 cos(2πp2h))

)
.

Mathematics 2022, 10, 4014 4 of 16

The convergence factor of the weighted Jacobi method (also known as the smoother
factor in the MG framework [7]) is

µloc :=

∣∣∣∣∣vk+1

vk

∣∣∣∣∣ = ∣∣∣1−ω +
ω

2
(cos(2πp1h) + cos(2πp2h))

∣∣∣. (7)

Figure 1a shows the distribution of the convergence factor µloc of weighted Jacobi
(ω = 2/3) in solving a linear system for the Poisson equation. For a better understanding,
let θ1 = 2πp1h, θ2 = 2πp2h, θ = (θ1, θ2) ∈ [−π, π)2. Define the high and low-frequency
regions

Tlow :=
[
−π

2
,

π

2

)2
,

Thigh := [−π, π)2\
[
−π

2
,

π

2

)2
,

(8)

as shown in Figure 1b. It can be seen that, in the high-frequency region, µloc is approximately
zero, whereas, in the low-frequency region, µloc is close to one. As a result, the weighted
Jacobi method attenuates high-frequency errors quickly but is mostly ineffective for low-
frequency errors.

(a) Distribution of convergence factor µloc (b) High- and low-frequency regions

Figure 1. (a) Distribution of the convergence factor µloc of the weighted Jacobi method (ω = 2/3)
in solving a linear system arising from the Poisson equation; (b) Low-frequency (white) and high-
frequency (gray) regions.

The explanation has two aspects. Firstly, the high-frequency reflects the local oscilla-
tion, while the low-frequency reflects the global pattern. Since A is sparse and the basic
operation Au of the weighted Jacobi method is a local operation, it is challenging to remove
low-frequency global error components. Secondly, A is sparse and A−1 is commonly dense,
which means that the mapping f→ A−1f is non-local, making local operations difficult to
approximate.

Therefore, we should seek the solution in another space to obtain an effective ap-
proximation of the non-local mapping. For example, the Krylov method approximates
the solution in a subspace spanned by a basis set. The MG generates a coarse space to
broaden the receptive field of the local operation. However, as mentioned in Section 1,
these methods require the careful design of various parameters. In this paper, we propose
the FNS, a generic solver that uses FFT to learn solutions in frequency space, with the
parameters obtained automatically in a data-driven manner.

Mathematics 2022, 10, 4014 5 of 16

3. Fourier Neural Solver

Denote stationary iterative methods of (3) in an operator form

vk+1 = Φ(uk), (9)

and the k−th step residual
rk := f−Avk+1, (10)

then the k−th step error ek := u− vk+1 satisfies residual equation

Aek = rk. (11)

As shown in the preceding section, the slow convergence rate of stationary methods is
due to the difficulty of reducing low-frequency errors. Even high-frequency errors might
not be effectively eliminated by Φ in many cases. We employ stationary methods to rapidly
erase some components of the error and use FFT to convert the remaining error components
to frequency space. The resulting solver is the Fourier neural solver.

Figure 2 shows a flowchart of the k−th step for the FNS. The module for solving
the residual equation in frequency space is denoted as H. It consists of three steps:
FFT→Hadamard product→IFFT. The parameter ϑ ofH is the output of the hyper-neural
network (HyperNN). The input η of the HyperNN are the PDE parameters corresponding
to the discrete systems. During training, the only parameter θ of the HyperNN serves as
the optimization parameter.

Figure 2. FNS calculation flowchart.

The three-step operation ofHwas inspired by the fast Poisson solver [38]. Let eigenval-
ues and eigenvectors of A be λ1, . . . , λN and q1, . . . , qN , respectively. Solving Equation (2)
entails three steps:

1. Expand f as a combination f = a1q1 + · · ·+ aNqN of the eigenvectors
2. Divide each ak by λk
3. Recombine eigenvectors into u = (a1/λ1)q1 + · · ·+ (aN/λN)qN .

In particular, when A is the system generated by a five-point stencil (4), its eigenvector
qk is the sine function. The first and third steps above can now be performed with a
computational complexity of O(N log2 N) using fast sine transform (based on the FFT).
The computational complexity of each iteration of the FNS is O(N log2 N).

It is worth noting that, although Φ can smooth some components of the error, the
components that are removed are indeterminate. As a result, instead of filtering high-
frequency modes in frequency space,H learns the error components that Φ cannot easily
eliminate. For Φ with a fixed stencil, we can use LFA to demonstrate that the learnedH is
complementary to Φ.

Mathematics 2022, 10, 4014 6 of 16

The loss function used here for training is the relative residual

L =
Nb

∑
i=1

‖fi −AiuK
i ‖2

‖fi‖2
, (12)

where {Ai, fi} are the training data. Nb is the batch size. K indicates that the K−th step
solution uK is used to calculate the loss. These specific values will be given in the next sec-
tion. The training and testing algorithms of the FNS are summarized in Algorithms 1 and 2,
respectively.

Algorithm 1: FNS offline traning.

Data: PDE parameters {ηi}
Ntrain
i=1 and corresponding discrete systems {Ai, fi}

Ntrain
i=1

Input: Φ, HyperNN(θ), K and Epochs
1 for epoch = 1, . . . , Epochs do serial
2 for i = 1, . . . , Ntrain do parallel
3 ϑi = HyperNN (ηi, θ)

4 u0
i = zeros like fi

5 for k = 0, . . . , K− 1 do serial
6 vk+1

i = Φ(uk
i)

7 rk
i = fi −Aivk+1

i
8 r̂k

i = F (rk
i)

9 êk
i = r̂k

i ◦ ϑi

10 ek
i = F−1(ek

i)

11 uk+1
i = vk+1

i + ek
i

12 end
13 end
14 Compute loss function (12)
15 Apply Adam algorithm [39] to update parameters θ

16 end
17 return learned FNS

Algorithm 2: FNS online testing.
Data: PDE parameter η and corresponding discrete system A, f
Input: Learned FNS, acceptable tolerance tol and maximum number of iteration

steps MaxIterNum
1 Setup: ϑ = HyperNN (η, θ)
2 k = 0
3 u0 = zeros like f

4 res = ‖f−Auk‖2
‖f‖2

5 while res > tol and k < MaxIterNum do
6 vk+1 = Φ(uk)

7 rk = f−Avk+1

8 r̂k = F (rk)

9 êk = r̂k ◦ ϑ

10 ek = F−1(ek)

11 uk+1 = vk+1 + ek

12 res = ‖f−Auk‖2
‖f‖2

13 k = k + 1
14 end
15 return solution of Au = f

Mathematics 2022, 10, 4014 7 of 16

4. Numerical Experiments

We used the anisotropic diffusion equation, the convection–diffusion equation, and
the Helmholtz equation as examples to demonstrate the performance of the FNS. In
all experiments, the matrix-vector products were implemented by CNN based on the
Pytorch [40] platform. All the code can be found at https://github.com/cuichen1996/
FourierNeuralSolver (accessed on 13 September 2022).

4.1. Anisotropic Diffusion Equation

Consider the anisotropic diffusion equation{
−∇ · (C∇u) = f , in Ω,

u = 0, on ∂Ω,
(13)

the diffusion coefficient matrix

C = C(ξ, θ) =

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 ξ

)(
cos θ sin θ
− sin θ cos θ

)
, (14)

0 < ξ < 1 is the anisotropic strength and θ ∈ [0, π] is the anisotropic direction, Ω = (0, 1)2.
We use bilinear FEM to discretize (13) with a uniform n × n quadrilateral mesh. The
associated discrete system is shown in (2), where N = (n− 1)× (n− 1). We performed
experiments for the two cases described below.

4.1.1. Case 1: Generalization Ability of Anisotropic Strength with Fixed Direction

In this case, we use the same training and testing data as [20]. For fixed θ = 0, we
randomly sample 20 distinct parameters ξ from the distribution log10

1
ξ ∼ U[0, 5] and obtain

{Ai}20
i=1 by discretizing (13) using bilinear FEM with n = 256. We randomly select 100 right-

hand functions for each Ai. Each entry of f is sampled from the Gaussian distribution
N(0, 1). Therefore, there are Ntrain = 2000 training data. The hyperparameters used for
training, including batch size, learning rate, K in the loss function, and the concrete network
structure of HyperNN are listed in Appendix A.1.

The FNS can take various kinds of Φ. In this case, we use weighted Jacobi, Chebyshev
semi-iterative (Cheby-semi) and Krylov methods. The weight of the weighted Jacobi
method is 2/3. We use a DenseNet [41] to give the basis vector of the Krylov subspace, then
approximate the solution in this subspace by least squares as in [20]. For the Chebyshev
semi-iterative method, we provide a brief summary here. More details can be obtained
in [42,43].

If we vary the parameter of the Richardson iteration at each step

uk+1 = uk + τk

(
f−Auk

)
, (15)

and the maximum and minimum eigenvalues of A are known, then τk can be determined as

τk =
2

λmax + λmin − (λmin − λmax)xk
, k = 0, . . . , m− 1, (16)

where

xk = cos
π(2k + 1)

2n
, k = 0, . . . , m− 1, (17)

are the roots of an m−order Chebyshev polynomial. Here, λmax is obtained by the power
method [44], but calculating λmin often incurs an expensive computational cost. Therefore,
we use λmax/α to replace λmin. The resulting method is referred to as a Chebyshev semi-
iteration. We take m = 10, α = 3. Figure 3 shows the convergence factor obtained by LFA.
It can be seen that the smooth effect improves as m increases. However, the high-frequency
error along the y direction is also difficult to eliminate. When Φ is the Jacobi method, we

https://github.com/cuichen1996/FourierNeuralSolver
https://github.com/cuichen1996/FourierNeuralSolver

Mathematics 2022, 10, 4014 8 of 16

implement Φ five-times and transform the residual to frequency space to correct errors. This
is because employing the stationary method many times can enhance its smoothing effect.

Figure 3. Distribution of convergence factor for Cheby-semi (m = 10) when ξ = 10−3, θ = 0.

After training, we choose θ = 0, ξ = 10−1, . . . , 10−6 for testing and generate 10 random
right-hand functions for each parameter. The iteration is terminated when the relative
residual is less than 10−6. We use “mean ± std” to show the mean and standard deviation
of the iterations over the test set as in [20].

Table 1 shows the test results of different solvers. The iteration steps of all the solvers
grow as anisotropic strength increases except for MG (line-Jacobi). The growth of FNS
is substantially lower than Meta-MgNet and MG. When the FNS employs the same Φ as
Meta-MgNet, the number of iterations is nearly 10-times lower than that of Meta-MgNet at
ε = 10−5 with the same computational complexity for a single-step iteration. The line-Jacobi
smoother can only be applied to several specific θ, i.e., 0, π/4, π/2, 3π/4, π. However, the
FNS can be available for arbitrary θ.

Table 1. Mean and standard deviation of the number of iterations required to achieve the stopping
criterion over all tests for the anisotropic diffusion equation case 1. “−” means that it cannot converge
within 10,000 steps, and “ ” means that [20] does not provide test results for this parameter.

ξ
FNS

(Cheby-Semi) FNS (Jacobi) FNS (Krylov) Meta-MgNet
(Krylov) [20] MG (Jacobi) MG

(Line-Jacobi)

ξ = 10−1 67.9± 3.81 138.9± 11.18 30.0± 4.58 7.5± 0.50 90.2± 0.98 13.0± 0.00
ξ = 10−2 101.6± 8.72 167.8± 13.81 38.5± 3.83 35.1± 1.04 752.8± 12.23 13.0± 0.00
ξ = 10−3 151.0± 7.24 221.7± 11.56 48.6± 3.26 171.6± 6.34 5600± 119.42 13.0± 0.00
ξ = 10−4 233.2± 5.67 330.1± 9.16 65.5± 2.80 375.2± 5.88 − 11.0± 0.00
ξ = 10−5 340.1± 9.43 466.2± 13.47 80.7± 7.21 797.8± 12.76 − 11.0± 0.00
ξ = 10−6 348.1± 11.15 477.9± 16.10 85.9± 7.52 − 11.0± 0.00

We use ξ = 10−1, 10−6, n = 64 and Cheby-semi (m = 10) as examples to illustrate the
error thatH learned. Figure 4a shows the convergence factor obtained by LFA of Cheby-
semi (m = 10) for solving the system with ξ = 10−1, θ = 0. It can effectively eliminate
the error components except for low-frequency errors. Figure 4b shows the distribution
of errors before correction in frequency space. The result is consistent with the guidance
of LFA, i.e., the error is concentrated in the low-frequency modes. Figure 4c shows the
distribution of errors learned by H in the frequency space at this time. Its distribution
is largely similar to that of Figure 4b. Figure 4d–f show the corresponding situation for

Mathematics 2022, 10, 4014 9 of 16

ξ = 10−6, θ = 0. In this case, Cheby-semi (m = 10) is unable to eliminate the error along
the y direction. However,H is still capable of learning.

(a) (b) (c)

(d) (e) (f)

Figure 4. Distribution of convergence factor when ξ = 10−1, 10−6. The first column displays the
convergence factor of Cheby-semi (m = 10). The second column shows the error distribution in the
frequency space before correction. The third column shows the error distribution in the frequency
space learned byH. (a) ξ = 10−1: convergence factor of Φ. (b) ξ = 10−1: ê, before doing corrections.
(c) ξ = 10−1: learned ê. (d) ξ = 10−6: convergence factor of Φ. (e) ξ = 10−6: ê, before doing
corrections. (f) ξ = 10−6: learned ê.

4.1.2. Case 2: Generalization Ability of Anisotropic Direction with Fixed Strength

We randomly sample 20 parameters θ according to the distribution θ ∼ U[0, π] with
fixed ξ = 10−6. The training and testing data are generated in a similar manner as in
Section 4.1.1. Table 2 shows the test results. It can be seen that whether Φ is Jacobi or
Krylov, the FNS can maintain robust performance in all situations, while the line-smoother
is not available for these cases.

Table 2. Mean and standard deviation of the number of iterations required to achieve the stopping
criterion over all tests for Equation (13) case 2.

θ 0.1π 0.2π 0.3π 0.4π 0.6π 0.7π 0.8π 0.9π

FNS (Jacobi) 300.2± 23.95 252.4± 34.81 269.3± 36.70 356.4± 39.69 338.4± 32.07 265.0± 29.96 266.5± 25.07 316.7± 17.26
FNS (Krylov) 58.4± 4.45 46.5± 4.84 45.1± 2.30 64.0± 7.01 54.4± 5.75 41.3± 7.11 43.0± 2.83 60.3± 3.93

Take θ = jπ/10, j = 1, . . . , 4, 6, . . . , 9, ξ = 10−6, n = 64 and Φ is the weighted Jacobi
method with weight 2/3. Figure 5 shows the test results. The first row shows the weighted
Jacobi method convergence factor µloc for each θ which is computed by LFA. The region
of µloc ∼ 1 means that the error is difficult to eliminate. These error components are
distributed along the anisotropic direction. The second row shows the error distribution
in frequency space before correction, which is consistent with the results obtained by the
LFA. The third row shows the distribution of the error learned by H. It can be seen that
H can automatically learn the error components that Φ has difficulty eliminating. The
line-smoother is not feasible for these θ.

Mathematics 2022, 10, 4014 10 of 16

Figure 5. Case 2 of Equation (13) for different anisotropic direction θ. The first row represents the
convergence factor of Φ. The second row represents the error distribution in the frequency space
before correction. The third row represents the learned error byH.

4.2. Convection–Diffusion Equation

Consider the convection–diffusion equation
−ε∆u + ux + uy = 0, Ω = (0, 1)2,
u = 0, x = 0, 0 ≤ y < 1 and y = 0, 0 ≤ x < 1,
u = 1, x = 1, 0 ≤ y < 1 and y = 1, 0 ≤ x ≤ 1,

(18)

We use the central difference method to discretize (18) on a uniform mesh with spatial
size h in both x and y directions, which yields a non-symmetric stencil

1
h2

 h/2− ε
−h/2− ε 4ε h/2− ε

−h/2− ε

. (19)

To meet the stability requirement, the central difference scheme needs to satisfy the
Peclet condition

Pe :=
h
ε

max(|a|, |b|) ≤ 2, (20)

which means that the central difference method cannot approximate the PDE solution when
ε is extremely small. However, here, we only take into account the solver of the linear sys-
tem. Thus, we continue to use this discretization method to demonstrate the performance
of the FNS. In the following experiments, we explore diffusion- and convection-dominant
cases, respectively.

4.2.1. Case 1: ε ∈ (0.01, 1)

We utilize the weighted Jacobi method as Φ in this case. Taking ε = 0.1, h = 1/64 as an
example, Figure 6a illustrates the convergence factor obtained by LFA of the weighted Jacobi
method (ω = 4/5) for solving the system. We use five-times the consecutive weighted
Jacobi method as Φ. Figure 6b–e show that such a Φ is a good smoother. Figure 6f shows
the distribution of error learned by H in the frequency space. It can be seen that this is
essentially complementary to Φ.

Mathematics 2022, 10, 4014 11 of 16

(a) (b) (c)

(d) (e) (f)

Figure 6. Distribution of convergence factor of five-times consecutive weighted Jacobi method. The
last plot shows the distribution of errors learned byH in frequency space. (a) Convergence factor of
one times weighted Jacobi (ω = 4/5). (b) Two times. (c) Three times. (d) Four times. (e) Five times.
(f) Learned ê .

Figure 7 uses ε = 0.5, 0.1, 0.05 as examples to show the relative residual of the FNS and
the weighted Jacobi method. It can be seen that the FNS has acceleration and the weighted
Jacobi method ramps up as ε decreases. This is because when ε declines, the diagonal
element 4ε becomes small, and the weight along the gradient direction increases. However,
the Jacobi and other gradient descent algorithms will diverge as long as ε continues to
decrease unless the weight is drastically reduced.

(a) ε = 0.5 (b) ε = 0.1 (c) ε = 0.05

Figure 7. The relative residual with the FNS and weighted Jacobi method, where Jacobi denotes
five-times the consecutive weighted Jacobi method.

4.2.2. Case 2: ε ∈ [10−6, 10−3]

In this case, since the diagonal elements of the discrete system are notably less than
the off-diagonal elements, the system is non-symmetric. Many methods, such as Jaocbi, CG,
and MG (Jacobi), might diverge. Figure 8 shows the convergence factor of the weighted
Jacobi (ω = 4/5) for solving the system when ε = 10−2, 10−3, 10−6. It can be seen that,
when ε is small, the convergence factor of the weighted Jacobi method for most frequency

Mathematics 2022, 10, 4014 12 of 16

modes is larger than 1, which causes this iterative method to diverge and to be unsuitable
as a smoother.

(a) ε = 10−2 (b) ε = 10−3 (c) ε = 10−6

Figure 8. Distribution of convergence factor for weighted Jacobi method (ω = 4/5) when solving
the system corresponding to ε = 10−2, 10−3, 10−6.

Consequently, we learn the Φ in Equation (3), where B is a two-layer linear CNN
with channels 1→8→1, and the kernel size is 3× 3. The Φ is trained together withH; the
training hyperparameters are listed in Appendix A.2. Figure 9a illustrates how the learned
FNS is able to solve the linear system when ε = 10−3, 10−4, 10−5, 10−6. It is evident that the
FNS converges rapidly. Figure 9b shows the change in the relative residual for the FNS,
GMRES, and BiCGSTAB(`) (` = 15) with ε = 10−6. It is clear that the FNS has the fastest
convergence rate.

(a) different ε (b) ε = 10−6

Figure 9. (a) Change in relative residual with FNS iteration steps for different ε. (b) Comparison of
FNS and GMRES, BiCGSTAB(`) when ε = 10−6.

4.3. Helmholtz Equation

The Helmholtz equation we consider here is

− ∆u(x)− κ2u(x) = g(x), x ∈ Ω, (21)

where Ω = (0, 1)2, κ is the wavenumber. We currently only take into account the zero
Dirichlet boundary condition. We use the second-order FDM to discretize (21) on a uniform
mesh with spatial size h. The corresponding stencil reads

1
h2

 0 −1 0
−1 4− κ2h2 −1
0 −1 0

. (22)

We examine the FNS performance at a low wavenumber (κ = 25) and medium
wavenumber (κ = 125). For κ = 25, we take h = 1/64 and h = 1/256 for κ = 125. Using

Mathematics 2022, 10, 4014 13 of 16

Krylov in [20] as Φ and g(x) = 1; the training hyperparameters are listed in Appendix A.3.
Figure 10 shows how the relative residual decreases with different solvers. For κ = 25, the
FNS performs best for the first 300 steps; however, BiCGSTAB performs better at the end.
For κ = 125, the FNS outperforms BiCGSTAB. The GMRES results were too poor to display
for this case.

(a) κ = 25, h = 1
64 (b) κ = 125, h = 1

256

Figure 10. Change in relative residual for the FNS and other solvers when κ = 25 and κ =

125, respectively.

5. Conclusions And Future Work

This paper proposes an interpretable FNS to solve large sparse linear systems. It is
composed of a stationary method and a frequency correction, which are used to eliminate
errors in different Fourier modes. Numerical experiments undertaken showed that the
FNS was more effective and robust than other solvers in solving the anisotropic diffusion
equation, the convection–diffusion equation and the Helmholtz equation. The core concepts
discussed here are relevant to a broad range of systems.

There is still a great deal of work to do. First, we only considered uniform mesh in
this paper. We intend to generalize the FNS to non-uniform grids by exploiting geometric
deep learning tools, such as graph neural networks and graph Fourier transform. Secondly,
as previously discussed, the stationary method converges slowly or diverges in some
situations, which has prompted researchers to approximate solutions in other transform
space. This is true for almost all advanced iterative methods, including MG, Krylov
subspace methods and the FNS. This specified space, however, may not always be the
best choice. In the future, we will investigate additional potential transforms, such as
Chebyshev, Legendre transforms, and potentially learnable transforms based on data.

Author Contributions: Conceptualization, C.C., K.J. and S.S.; methodology, C.C., K.J. and S.S.;
software, C.C. and Y.L.; validation, C.C. and Y.L.; formal analysis, C.C., K.J. and S.S.; investigation,
C.C.; resources, C.C., K.J. and S.S.; data curation, C.C.; writing—original draft preparation, C.C., K.J.
and S.S.; writing—review and editing, C.C. and K.J.; visualization, C.C.; supervision, K.J. and S.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (12171412,
11971414). K.J. is partially supported by the Natural Science Foundation for Distinguished Young
Scholars of Hunan Province (2021JJ10037). C.C. is supported by the Hunan Provincial Innovation
Foundation For Postgraduates.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Code and data are available at https://github.com/cuichen1996/
FourierNeuralSolver (accessed on 13 September 2022).

Acknowledgments: We would like to thank Chen et al. [20] for sharing data for the anisotropic
diffusion equation and the Krylov method.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/cuichen1996/FourierNeuralSolver
https://github.com/cuichen1996/FourierNeuralSolver

Mathematics 2022, 10, 4014 14 of 16

Abbreviations
The following abbreviations are used in this manuscript:

PDE Partial differential equation
FFT Fast Fourier transform
FNS Fourier neural solver
CG Conjugate gradient
GMRES Generalized minimal residual
GMG Geometric multigrid
AMG Algebraic multigrid
CNN Convolutional neural network
LFA Local Fourier analysis
FEM Finite element method
FDM Finite difference method
HyperNN Hyper-neural network

Appendix A. Training Hyperparameters

Appendix A.1. Anisotropic Diffusion Equation

Table A1. Training hyperparameters for anisotropic diffusion equation.

Learning Rate Batch Size K Xavier Init Grad Clip

FNS
(Cheby-semi) 10−4 100 10 10−2 false

FNS (Jacobi) 10−4 100 10 10−2 false
FNS (Krylov) 10−4 100 10 10−2 false

Table A2. HyperNN architecture parameters for anisotropic diffusion equation. Notations in Con-
vTranspose2d are: i: in channels; o: out channels; k: kernel size; s: stride; p: padding.

ConvTranspose2d(i = 1,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()

ConvTranspose2d(i = 4,o = 2,k = 3,s = 2,p = 2)
AdaptiveAvgPool2d(n)

Appendix A.2. Convection–Diffusion Equation

Table A3. Training hyperparameters for convection–diffusion equation.

Learning Rate Batch Size K Xavier Init Grad Clip

FNS(Jacobi) 10−4 100 10 10−2 false
FNS(Conv) 10−4 100 1∼100 10−2 1.0

Table A4. HyperNN architecture parameters for convection–diffusion equation. Notations in Con-
vTranspose2d are: i: in channels; o: out channels; k: kernel size; s: stride; p: padding.

Φ Hyper NN

Conv(i = 1,o = 8, k = 3, s = 2, p = 1) ConvTranspose2d(i = 1,o = 4,k = 3,s = 2,p = 1) + Relu()
Conv(i = 8,o = 1, k = 3, s = 2, p = 1) ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()

ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()

ConvTranspose2d(i = 4,o = 2,k = 3,s = 2,p = 2)

Mathematics 2022, 10, 4014 15 of 16

Appendix A.3. Helmholtz Equation

Table A5. Training hyperparameters for Helmholtz equation.

Learning Rate Batch Size K Xavier Init Grad Clip

FNS(Krylov) 10−4 100 1∼100 10−2 1.0

Table A6. HyperNN architecture parameters for Helmholtz equation. Notations in ConvTranspose2d
are: i: in channels; o: out channels; k: kernel size; s: stride; p: padding.

ConvTranspose2d(i = 1,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()
ConvTranspose2d(i = 4,o = 4,k = 3,s = 2,p = 1) + Relu()

ConvTranspose2d(i = 4,o = 2,k = 3,s = 2,p = 2)
AdaptiveAvgPool2d(n)

References
1. Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van der Vorst, H. Templates

for the Solution of Linear Systems: Building Blocks for Iterative Methods; SIAM: Singapore, 1994.
2. Saad, Y. Iterative Methods for Sparse Linear Systems; SIAM: Singapore, 2003.
3. Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving. J. Res. Natl. Bur. Stand. 1952, 49, 409. [CrossRef]
4. Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci.

Stat. Comput. 1986, 7, 856–869. [CrossRef]
5. Brandt, A. Multi-level adaptive solutions to boundary-value problems. Math. Comput. 1977, 31, 333–390. [CrossRef]
6. Briggs, W.L.; Henson, V.E.; McCormick, S.F. A Multigrid Tutorial; SIAM: Singapore, 2000.
7. Trottenberg, U.; Oosterlee, C.W.; Schuller, A. Multigrid; Elsevier: Amsterdam, The Netherlands, 2000.
8. Falgout, R.D. An Introduction to Algebraic Multigrid; Technical Report; Lawrence Livermore National Lab. (LLNL): Livermore, CA,

USA, 2006.
9. Xu, J.; Zikatanov, L. Algebraic multigrid methods. Acta Numer. 2017, 26, 591–721. [CrossRef]
10. Hsieh, J.T.; Zhao, S.; Eismann, S.; Mirabella, L.; Ermon, S. Learning neural PDE solvers with convergence guarantees. arXiv 2019,

arXiv:1906.01200.
11. Luna, K.; Klymko, K.; Blaschke, J.P. Accelerating gmres with deep learning in real-time. arXiv 2021, arXiv:2103.10975.
12. Zhang, E.; Kahana, A.; Turkel, E.; Ranade, R.; Pathak, J.; Karniadakis, G.E. A Hybrid Iterative Numerical Transferable Solver

(HINTS) for PDEs Based on Deep Operator Network and Relaxation Methods. arXiv 2022, arXiv:2208.13273.
13. Lu, L.; Jin, P.; Pang, G.; Zhang, Z.; Karniadakis, G.E. Learning nonlinear operators via DeepONet based on the universal

approximation theorem of operators. Nat. Mach. Intell. 2021, 3, 218–229. [CrossRef]
14. Weymouth, G.D. Data-Driven Multi-grid Solver for Accelerated Pressure Projection. arXiv 2021, arXiv:2110.11029.
15. Tomasi, C.; Krause, R. Construction of Grid Operators for Multilevel Solvers: A Neural Network Approach. arXiv 2021,

arXiv:2109.05873.
16. Taghibakhshi, A.; MacLachlan, S.; Olson, L.; West, M. Optimization-based algebraic multigrid coarsening using reinforcement

learning. Adv. Neural Inf. Process. Syst. 2021, 34, 12129–12140.
17. Huang, R.; Li, R.; Xi, Y. Learning optimal multigrid smoothers via neural networks. arXiv 2021, arXiv:2102.12071.
18. Wang, F.; Gu, X.; Sun, J.; Xu, Z. Learning-Based Local Weighted Least Squares for Algebraic Multigrid Method. Available online:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4110904 (accessed on 16 May 2022).
19. Fanaskov, V. Neural Multigrid Architectures. In Proceedings of the 2021 International Joint Conference on Neural Networks

(IJCNN), IEEE, Shenzhen, China, 18–22 July 2021; pp. 1–8.
20. Chen, Y.; Dong, B.; Xu, J. Meta-mgnet: Meta multigrid networks for solving parameterized partial differential equations. J.

Comput. Phys. 2022, 455, 110996. [CrossRef]
21. Katrutsa, A.; Daulbaev, T.; Oseledets, I. Black-box learning of multigrid parameters. J. Comput. Appl. Math. 2020, 368, 112524.

[CrossRef]
22. Greenfeld, D.; Galun, M.; Basri, R.; Yavneh, I.; Kimmel, R. Learning to optimize multigrid PDE solvers. In Proceedings of the

International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 10–15 June 2019; pp. 2415–2423.
23. Luz, I.; Galun, M.; Maron, H.; Basri, R.; Yavneh, I. Learning algebraic multigrid using graph neural networks. In Proceedings of

the International Conference on Machine Learning, PMLR, Online, 26–28 August 2020; pp. 6489–6499.
24. Antonietti, P.F.; Caldana, M.; Dede, L. Accelerating Algebraic Multigrid Methods via Artificial Neural Networks. arXiv 2021,

arXiv:2111.01629.

http://doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1090/S0025-5718-1977-0431719-X
http://dx.doi.org/10.1017/S0962492917000083
http://dx.doi.org/10.1038/s42256-021-00302-5
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4110904
http://dx.doi.org/10.1016/j.jcp.2022.110996
http://dx.doi.org/10.1016/j.cam.2019.112524

Mathematics 2022, 10, 4014 16 of 16

25. Stanziola, A.; Arridge, S.R.; Cox, B.T.; Treeby, B.E. A Helmholtz equation solver using unsupervised learning: Application to
transcranial ultrasound. J. Comput. Phys. 2021, 441, 110430. [CrossRef]

26. Kapturowski, S.; Ostrovski, G.; Quan, J.; Munos, R.; Dabney, W. Recurrent experience replay in distributed reinforcement learning.
In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2018.

27. Azulay, Y.; Treister, E. Multigrid-Augmented Deep Learning Preconditioners for the Helmholtz Equation. arXiv 2022,
arXiv:2203.11025.

28. Erlangga, Y.A.; Oosterlee, C.W.; Vuik, C. A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J.
Sci. Comput. 2006, 27, 1471–1492. [CrossRef]

29. Calandra, H.; Gratton, S.; Langou, J.; Pinel, X.; Vasseur, X. Flexible variants of block restarted GMRES methods with application
to geophysics. SIAM J. Sci. Comput. 2012, 34, A714–A736. [CrossRef]

30. Um, K.; Brand, R.; Fei, Y.R.; Holl, P.; Thuerey, N. Solver-in-the-loop: Learning from differentiable physics to interact with iterative
pde-solvers. Adv. Neural Inf. Process. Syst. 2020, 33, 6111–6122.

31. Nikolopoulos, S.; Kalogeris, I.; Papadopoulos, V.; Stavroulakis, G. AI-enhanced iterative solvers for accelerating the solution of
large scale parametrized linear systems of equations. arXiv 2022, arXiv:2207.02543.

32. Stanaityte, R. ILU and Machine Learning Based Preconditioning for the Discretized Incompressible Navier-Stokes Equations.
Ph.D. Thesis, University of Houston, Houston, TX, USA, 2020.

33. Kaneda, A.; Akar, O.; Chen, J.; Kala, V.; Hyde, D.; Teran, J. A Deep Gradient Correction Method for Iteratively Solving Linear
Systems. arXiv 2022, arXiv:2205.10763.

34. Margenberg, N.; Hartmann, D.; Lessig, C.; Richter, T. A neural network multigrid solver for the Navier-Stokes equations. J.
Comput. Phys. 2022, 460, 110983. [CrossRef]

35. Margenberg, N.; Jendersie, R.; Richter, T.; Lessig, C. Deep neural networks for geometric multigrid methods. arXiv 2021,
arXiv:2106.07687.

36. Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301.
[CrossRef]

37. Sleijpen, G.L.; Fokkema, D.R. BiCGstab (ell) for linear equations involving unsymmetric matrices with complex spectrum.
Electron. Trans. Numer. Anal. 1993, 1, 11–32.

38. Swarztrauber, P.N. The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s
equation on a rectangle. SIAM Rev. 1977, 19, 490–501. [CrossRef]

39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
40. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.
41. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
42. Golub, G.H.; Varga, R.S. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order

Richardson iterative methods. Numer. Math. 1961, 3, 157–168. [CrossRef]
43. Adams, M.; Brezina, M.; Hu, J.; Tuminaro, R. Parallel multigrid smoothing: Polynomial versus Gauss–Seidel. J. Comput. Phys.

2003, 188, 593–610. [CrossRef]
44. Mises, R.; Pollaczek-Geiringer, H. Praktische Verfahren der Gleichungsauflösung. Zamm-J. Appl. Math. Mech. FÜR Angew. Math.

Mech. 1929, 9, 58–77. [CrossRef]

http://dx.doi.org/10.1016/j.jcp.2021.110430
http://dx.doi.org/10.1137/040615195
http://dx.doi.org/10.1137/10082364X
http://dx.doi.org/10.1016/j.jcp.2022.110983
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1137/1019071
http://dx.doi.org/10.1007/BF01386014
http://dx.doi.org/10.1016/S0021-9991(03)00194-3
http://dx.doi.org/10.1002/zamm.19290090105

	Introduction
	Motivation
	Fourier Neural Solver
	Numerical Experiments
	Anisotropic Diffusion Equation
	Case 1: Generalization Ability of Anisotropic Strength with Fixed Direction
	Case 2: Generalization Ability of Anisotropic Direction with Fixed Strength

	Convection–Diffusion Equation
	Case 1: (0.01, 1)
	Case 2: [10-6, 10-3]

	Helmholtz Equation

	Conclusions And Future Work
	Training Hyperparameters
	Anisotropic Diffusion Equation
	Convection–Diffusion Equation
	Helmholtz Equation

	References

