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Abstract: Point processes are important in extreme value theory due to their equivalent formulations
of two popular models in various applications: the block maxima models and the peak-over-threshold
model. Point processes in a metric space provide tools to analyze heavy-tailed phenomena that
appear in the research of extremal behaviors of functional data. To facilitate these applications of point
processes, the equivalence between the weak convergence of point processes and the MO-convergence
is established in the paper.
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1. Introduction

A point process on a space S is a stochastic process composed of a time series of
indications of a specific event, which provides an elegant formulation of extremal behaviors
of a stochastic process. The block maxima model and the peak-over-threshold model as two
important approaches in extreme value theory can be formulated as applications of point
processes. The important role of point processes has been widely discussed in various
monographs such as [1–4], to name a few.

Let (Xt)t∈N be an iid sequence of random variables. Define the partial maxima
Mn = max

{
X1, . . . , Xn

}
. According to the Fisher–Tippett theorem (see for example Theo-

rem 3.2.3 in [2]), if there exist constants an > 0, bn ∈ R and a non-degenerate distribution
H such that

a−1
n (Mn − bn)

d→ H , (1)

then H is of the same type as one of the three distributions: Fréchet, Weibull, or Gumbel.
By introducing the parameter ξ, the generalized extreme value distribution (GEV) has the
distribution function

Gξ(x) = exp
{
−
[
1 + ξ

( x− u
σ

)]−1/ξ}
, (2)

where u and σ are two parameters, and x− and x+ are the lower and upper endpoints of
G, respectively. When ξ > 0, Gξ corresponds to the Fréchet distribution; when ξ = 0, Gξ

corresponds to the Gumbel distribution; and when ξ < 0, Gξ corresponds to the Weibull
distribution. Define the marked point process

Nn =
n

∑
i=1

1(i/n,(Xi−bn)/an) , (3)

where 1x(A) is the indicator function such that

1x(A) =

{
1 , x ∈ A ,
0 , x /∈ A .
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According to Theorem 7.1 in [3], we have

Nn
d→ N , n→ ∞ . (4)

The process N is a Poisson process with intensity measure | · | × µ, where | · | is the
Lebesgue measure on R and µ

(
[x, x+)

)
=
[
1 + ξ(x− u)/σ

]−1/ξ . Moreover, Theorem 5.2.4
in [2] ensures that (4) holds if and only if

nP
(
a−1

n (Xn − bn) ∈ ·
) v→ µ(·) , (5)

where v→ stands for the vague convergence; please refer to [1] for more details on the
vague convergence.

The event {(Mn − bn)/an ≤ x} is equivalent to the event Nn
(
(0, 1]× (x, x+)

)
= 0,

which is the connection to the block maxima model. The peak-over-threshold model
considers the probability of the form

P
(
(Xi − bn)/an > x1 | (Xi − bn)/an > x2

)
, (x1, x2) ∈ R2 ,

which is equivalent to

µ([x1, x+))
µ([x2, x+))

=
(1 + ξ(x1 − u)/σ)−1/ξ

(1 + ξ(x2 − u)/σ)−1/ξ
=
[
1 + ξ

( x1 − x2

σ + ξ(x2 − u)

)]−1/ξ
.

For more details on the connections between the two models and point processes,
please also refer to Section 7.4, [3].

Extreme value theory takes heavy-tailed phenomena as the main objects to study,
and it focuses on events that are bounded away from the origin. The M0-convergence
introduced in [5] considers the convergence of measures on the space without the origin
point, which uses a similar idea to the w#-convergence studied in the monographs [6,7]
on point processes. A gap between the M0-convergence and the weak convergence of
point processes exists, and one goal of this paper is to fill this gap. In the meantime, point
processes provide a tool to analyze functional data, which might not be from a Hilbert
space. As the review paper [8] explains, the Karhunen–Loeve expansion is the main tool
to convert an infinite-dimensional curve into a finite-dimensional vector, which plays an
important role in functional data analysis and requires the curves defined in a Hilbert space.
The objects exhibit heavy-tailed features such as extreme temperature curves, and high-
frequency stock prices, to name a few. They are more reasonable to be viewed as a random
element from a Banach space than from a Hilbert space. Thus, the framework of functional
data analysis described in [8] is not feasible to analyze these objects. Alternatively, point
processes can be used for analyzing heavy-tailed functional data due to their connection to
extreme value theory.

The paper will be organized as follows. In Section 2, we introduce the space of
measures MO and the corresponding convergence, the MO-convergence. The properties
of point processes are studied in Section 3, in which the equivalence between the weak
convergence of point processes and the MO-convergence is proved. Some interesting
examples of metric spaces allow for the construction of the space MO.

2. The Space of Measures MO and the MO-Convergence

The M0-convergence is a special case of the MO-convergence when the set O is a
singleton. The space MO and the MO-convergence have a natural connection with the
concept of hidden regular variation, and they are introduced and studied in [9]. Here, we
will briefly introduce some key results of the MO-convergence.
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2.1. The Metric Space (S, d,O)

Let (S, d) be a complete and separable metric space, and the Borel σ-field on S is
denoted S , which is generated by open balls Br(x) = {y ∈ S : d(x, y) < r} for x ∈ S. Let
O be a closed subset of S and let C = S \O. We further assume that S is equipped with a
scalar multiplication; see Section 3.1 [9].

Definition 1. A scalar multiplication on S is a map [0, ∞)× S→ S : (λ, x)→ λx satisfying the
following properties:

1. λ1(λ2x) = (λ1λ2)x for all λ1, λ2 ∈ [0, ∞) and x ∈ S;
2. 1x = x for x ∈ S;
3. The map is continuous with respect to the product topology;
4. if x ∈ C and if 0 ≤ λ1 < λ2, then d(λ1x,O) < d(λ2x,O).

The set O is assumed to be a cone, i.e., λO = O for λ ∈ [0,+∞). We shall prove that for
all x ∈ S, the point 0x ∈ O. Trivially, 0x ∈ O for x ∈ O. Choose an arbitrary x ∈ C. We have
λ(0x) = (λ0)x = 0x for λ ≥ 0 and, moreover, d(λ1(0x),O) = d(0x,O) = d(λ2(0x),O),
which leads to a contradiction to (iv) in Definition 1 when 0x ∈ C and λ1 6= λ2. Therefore,
0x ∈ O for all x ∈ S. The underlying space we consider in the paper is the complete and
separable metric space (S, d,O), which is equipped with scalar multiplication and O as a
closed cone. Later in the paper, we will write (S, d) or S instead of (S, d,O) for convenience.

Remark 1. It is possible that 0x 6= 0y when x 6= y and O is not a singleton. Here is an example.
Consider a space (S, d,O) and a real line R. Let S̃ = R× S. Take two elements from S̃, x̃ = (a, x)
and ỹ = (b, y), where a, b ∈ R and x, y ∈ S. Define d̃(x̃, ỹ) = |a− b|+ d(x, y) and λx̃ = (a, λx)
for λ ∈ R. It is easy to verify that (S̃, d̃,R×O) is complete and separately equipped with a scalar
multiplication and R×O as a closed cone . If a 6= b ∈ R, 0x̃ = (a, 0x) 6= (b, 0y) = 0ỹ even when
0x = 0y.

2.2. The Space of Measures on (S, d,O) and Their Convergences

Let SC = {A ∈ S : A ⊂ C} be the σ-algebra, and let CC = CC(S) be a collection of
real-valued, non-negative, bounded continuous functions f on C vanishing on Or = {x ∈
S : d(x,O) = infy∈O d(x, y) < r} for some r > 0. We say a set A ∈ SC is bounded away from
O if A ⊂ S \Or for some r > 0.

Let MO = M(S \O) be the space of Borel measures on SC that are bounded on the
complements of Or, r > 0. As discussed in [9], the space (MO, dMO) is complete and
separable with a proper choice of the metric dMO . For a measure µ ∈ MO, we must have
µ(S \Or) < ∞ for all r > 0, and thus there is, at most, countable r > 0 such that µ(∂Or) > 0.
Here, ∂A stands for the boundary of a set A. Moreover, for any r > 0, we can find r̃ < r
such that µ(∂Or̃) = 0. The set A ∈ SC is said to be µ-smooth if µ(∂A) = 0.

The MO-convergence is characterized by functions in CC. Suppose that there is a
sequence of measures (µn) with µn ∈MO and a measure µ ∈MO. We say that µn → µ in

MO or µn
M→ µ if

∫
f dµn →

∫
f dµ as n → ∞ for all f ∈ CC. A Portmanteau theorem for

the MO-convergence is given as Theorem 2.1 in [9], and we will present useful parts of this
theorem for the paper.

Theorem 1 (Portmanteau theorem). Let µ, µn ∈MO. The following statements are equivalent:

1. µn → µ in MO as n→ ∞.
2.

∫
f dµn →

∫
f dµ for all f ∈ CC.

3. limn→∞ µn(A) = µ(A) for all A ∈ SC with µ(∂A) = 0.

2.3. The Counting Measures NO

Let NO = N(S \O) be the space of all measures N ∈ MO such that N(A \Or) is a
non-negative integer for all A ∈ S and r > 0. A measure N is a counting measure if
N ∈ NO.
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Proposition 1. The space NO is a closed subsect of MO.

Proof. It is enough to show that the limit of a converging sequence in NO is still in NO. Let
(Nn)n∈N be a sequence of counting measures and Nn → N in MO. Let y be an arbitrary point
in C. Since N ∈MO, for all but a countable set of values of r ∈ (0, d(y,O)), N(∂Br(y)) = 0.
We can find a decreasing sequence (rj)j∈N such that limj→∞ rj = 0 and N(∂Brj(y)) = 0,
j ≥ 1. By Portmanteau theorem, we have that for j ≥ 1,

Nn(Brj(y))→ N(Brj(y)) , n→ ∞ .

Since Nn(Brj(y)) are non-negative integers, N(Brj(y)) are also non-negative integers, and
thus N is a counting measure by Lemma A1 in Appendix A.

3. Properties of Point Processes

We are interested in showing the equivalence between the weak convergence of point
processes and the MO-convergence as the equivalence between (4) and (5).

3.1. Random Measures and Point Processes

Definition 2. 1. A random measure ξ with state space C is a measurable mapping from a
probability space (Ω, E , p) into (MO, dMO).

2. A point process on C is a measurable mapping from (Ω, E , p) into (NO, dMO).

A realization of a random measure ξ has the value ξ(A, ω) on the Borel set A ∈
SC. For each fixed A, ξA = ξ(A, ·) is a function mapping (Ω, E , p) into R+ = [0, ∞].
The following theorem provides a convenient way to examine whether a mapping is a
random measure or a process is a point process.

Theorem 2. Let ξ be a mapping from a probability space (Ω, E , p) into MO. Then, ξ is a random
measure if and only if ξA is a random variable taking values from R+ for each A ∈ SC. Similarly,
N is a point process if and only if N(A) is a random variable taking values from non-negative
integers for each A ∈ SC.

Proof. LetMO be the σ-algebra of (MO, dMO). Let U be the σ-algebra of subsets of MO
whose inverse images under ξ are events, and let ΦA denote the mapping taking a measure
µ ∈MO into µ(A). Because ξA(ω) = ξ(A, ω) = ΦA(ξ(·, ω)),

ξ−1(Φ−1
A (B)) = (ξA)

−1(B) , B ∈ B(R+) .

If ξA is a random variable, (ξA)
−1(B) ∈ E and we have Φ−1

A (B) ∈ U by definition.
This implies thatMO ⊂ U and thus ξ is a random measure. Conversely, if ξ is a random
measure, Φ−1

A (B) ∈ MO for B ∈ B(R+) and hence ξ−1(Φ−1
A (B)) ∈ E . This shows that ξA

is a random variable.
Similarly, we can prove the property for N; thus, the details are omitted.

3.2. Laplace Functionals

Let f ∈ CC and let ξ be a random measure. The Laplace functional of ξ is given by

Lξ [ f ] = E
[

exp(−
∫
C

f (x)ξ(dx))
]

.

We are interested in two important properties of Laplace functionals, which are listed
in the two propositions.

Proposition 2. The Laplace functions {Lξ [ f ] : f ∈ CC} uniquely determine the distribution of a
random measure ξ.
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To prove Proposition 2, we need the following lemma, which is derived directly from
Theorem 3.3 [10].

Lemma 1. The distribution of a random measure is completely determined by the fidi distributions

p
(
ξ(A1) ≤ x1 , . . . , ξ(Ak) ≤ xk

)
,

for all finite families {A1, . . . , Ak} of disjoint sets generating SO.

A point process N is a random measure, and if Proposition 2 holds, {LN( f ) : f ∈ CC}
uniquely determines the distribution of N.

Proof of Proposition 2. For k ≥ 1 and Borel sets A1, . . . , Ak ∈ SO bounded away from C
and λi > 0, i = 1 . . . , k, the function f : O→ [0, ∞) is given by

f (x) =
k

∑
i=1

λi1Ai (x) , x ∈ O .

Then for each realization ω ∈ Ω,

ξ(ω, f ) =
∫
S

f (x)ξ(ω, dx) =
k

∑
i=1

λiξ(ω, Ai) ,

and

Lξ [ f ] = E exp
(
−

k

∑
i=1

λiξ(Ai)
)

,

which is the joint Laplace transform of the random vector (ξ(Ai))i=1,...,k. The uniqueness
of Laplace transform for random vectors yields that Lξ uniquely determines the law of
(ξ(Ai))i=1,...,k and Lemma 1 completes the proof.

The following proposition shows that the convergence of Laplace functionals is equiv-
alent to the convergence of random measures, which will be useful in the proofs.

Proposition 3. Let (ξn) and ξ be random measures defined in Definition 2. The Laplace functional

Lξn [ f ]→ Lξ [ f ] as n→ ∞ for all f ∈ CC if and only if ξn
d→ ξ as n→ ∞.

Proof. Think of the simple functions of the form f = ∑k
i=1 ci1Ai , where k is a finite positive

integer, ∑i |ci| < ∞ and (Ai)i≥1 are a family of Borel sets with Ai ∈ SC. The convergence
of distributions of the integrals

∫
C f dξ is equivalent to the finite-dimensional convergence

for every finite k. Following a classical argument, we can find h+l , h−l ∈ CC satisfying
that 0 < h−l (x) ↑ f (x) and h+l (x) ↓ f (x) holds uniformly for every x ∈ S as l → ∞.
Proposition A1 implies finite-dimensional convergence and hence weak convergence.

Since point processes (Nn) and N are also random measures, the convergence of

Nn
d→ N as n → ∞ is equivalent to the convergence LNn [ f ] → LN [ f ] as n → ∞ for all

f ∈ CC.

3.3. Poisson Processes and Marked Point Processes

As an important example of point processes, we shall give a definition of Poisson processes.

Definition 3. Given a random measure µ ∈ MO, a point process N is called a Poisson process or
Poisson random measure (PRM) with mean measure µ if it satisfies the following conditions:
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1. For A ∈ SC and a non-negative integer k,

P
(

N(A) = k
)
=

{
exp

(
µ(A)

)
(µ(A))k/k! , µ(A) < ∞ ,

0 , µ(A) = ∞ .

2. For k ≥ 1, if A1, . . . , Ak are mutually disjoint Borel sets in SC, then N(Ai), i = 1, . . . , k are
independent random variables.

We will write a Poisson process with mean measure µ as PRM(µ).

Proposition 4. For a measure µ ∈ MO, PRM(µ) exists and its law is determined by two conditions
in Definition 3. Moreover, the Laplace functional of PRM(µ) is given by

L[ f ] = exp
(
−
∫
C
(1− e− f (x))µ(dx)

)
, f ∈ CC , (6)

and conversely, a point process N with Laplace functional of the form (6) must be PRM(µ).

Proof. Following the lines in the proof of Proposition 3.6, [1] and choosing f = c1A for
c > 0 and A ∈ SC, the Laplace functional LN [ f ] has the form (6). Let

f =
k

∑
i=1

ci1Ai , (7)

where k > 0, ci ≥ 0 and A1, . . . , Ak are disjoint sets bounded away from O. Similarly, it
can be shown that the Laplace function LN [ f ] has the form (6). Then, for any f ∈ CC, there
are simple functions fn of the form (7) such that fn ↑ f with supx∈C | fn(x)− f (x)| → 0 as
n→ ∞. By Proposition 3.6 in [1], we have that the Laplace function LN [ f ] has the form (6).
Moreover, it is easy to prove by following the lines in the proof of Proposition 3.6 [1].

The proof of the existence of PRM(µ) is through construction. We will use the same
trick as in the proof of Lemma A1 to divide C into countable disjoint subspaces C(rj),
j = 1, 2, . . .. Then, let µj(·) = µ(· ∩C(rj)) for µ ∈MO. Using the arguments in the proof of
Proposition 3.6, [1], it is easy to construct PRM(µi) for i ≥ 1, named Ni. Let N = ∑∞

i=1 Ni.
For f ∈ CC,

LN [ f ] = E exp(−
∞

∑
i=1

Ni( f )) = lim
n→∞

E exp
(
−

n

∑
i=1

Ni( f )
)

= lim
n→∞

n

∏
i=1

E exp(−Ni( f ))

= lim
n→∞

n

∏
i=1

E exp
(
−
∫
C
(1− e− f (x))µi(dx)

)
= exp

(
−
∫
C
(1− e− f (x))

∞

∑
i=1

µi(dx)
)

= exp
(
−
∫
C
(1− e− f (x))µ(dx)

)
.

This shows that PRM(µ) exists.

As discussed before, the block maxima and peak-over-threshold models have close
relations to marked point processes.
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Theorem 3. Let (Xn,i) be iid copies of a random variable X taking values from (S, d) and a measure
µ ∈MO. Suppose (Nn) is a sequence of point processes

Nn =
n

∑
i=1

1(n−1i,Xn,i)
(8)

with state space [0, ∞)×C and N is PRM(| · | × µ). Then,

Nn
d→ N , n→ ∞ , (9)

in N
(
[0, ∞)×C

)
if and only if

nP(Xn,1 ∈ ·)
M→ µ(·) , n→ ∞ , (10)

holds.

The proof is technical and is in Appendix B.

4. Examples

According to Theorem 3, the applications of marked point processes to the block max-
ima and peak-over-threshold models require that the underlying metric space is complete,
separable, and equipped with scalar multiplication. In this section, we will provide some
interesting examples.

4.1. The Space C[0, 1] as a Complete and Separable Space

The space C = C[0, 1] consists of continuous functions on the unit interval [0, 1], and
the distance between x, y ∈ C[0, 1] is given by

d(x, y) = sup
t∈[0,1]

|x(t)− y(t)| .

We choose the zero function x = 0 as 0C. As shown in Chapter 2, [11], the space
(C, d) is complete and separable. Moreover, with natural scalar multiplication, the space
(C, d, {0C}) satisfies the conditions in Section 2. Therefore, the results in Section 3 are
applicable to the space (C, d, {0C}).

In Chapter 9 of [12], extreme value theory in C[0, 1] is studied. Some of the results
therein can be easily shown by an application of Theorem 3. We take Theorem 9.3.1 of
[12], for example. Given that x, x1, . . . , xn are iid stochastic processes in C+[0, 1], where
C+[0, 1] = { f ∈ C[0, 1] : f > 0 , ‖ f ‖∞ = 1}. Theorem 9.3.1 of [12] states that if

1
n

n∨
i=1

xi
d→ y , in C+[0, 1] , (11)

then

vn
v→ v , (12)

with vn(A) = nP(n−1x ∈ A). Define the marked point process as Nn = ∑n
i=1 1(n−1i,xi)

.
The event {n−1 ∨n

i=1 xi ∈ A} is equivalent to the event {Nn
(
(0, 1)× Ac) = 0} with Ac as

the complement of the set A. According to Theorem 3, the weak convergence Nn
d→ N leads

to vn
M→ v. In this example, the MO-convergence is equivalent to the vague convergence,

i.e, vn
v→ v. Furthermore, two convergences (11) and (12) are equivalent due to Theorem 3,

which extend the results in [12].
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4.2. The Space of Sequences in (S, d)

The M0-convergence is a special case of the MO-convergence when O is a singleton
with exactly the zero point, which has been used to study the regular variation of sequences.
Suppose that (S, d, {0S}) is the underlying space satisfying the conditions in Section 2. Let
SZ be the space of all sequences x = (xt)t∈Z with elements in S, and the corresponding
metric dZ is given by

dZ(x, y) = ∑
t∈Z

2−|t|
d(xt, yt)

1 + d(xt, yt)
, x, y ∈ SZ .

The space (SZ, dZ) is complete and separable. By choosing O = {(0S, . . . , 0S, . . .)},
scalar multiplication is defined componentwise.

Let B be a Banach space with a countable base (bi)i∈Z. For x ∈ B, we have x = ∑∞
i=1 xibi

with (xi)i∈Z ∈ RZ. We further assume that 0B = 0x for x ∈ B. Assume that the norm in B,
‖ · ‖ is a Hilbert-Schimdt norm

‖x‖2 =
∞

∑
i=1

2−ix2
i .

Then, the space (B, ‖ · ‖, {0B}) is the underlying space satisfying the conditions in
Section 2. It allows for the study of functional data from a Banach space instead of a
Hilbert space by using point processes, which might be of interest in the context of extreme
value theory.

5. Discussion

There were some efforts to study functional data in the context of extreme value
theory—take [13] for example. It remains challenging to work with functional data
with heavy-tailed features, for which a more natural assumption is that data are from a
Banach space instead of a Hilbert space. Point processes provide useful tools to study
the extremal behaviors of functional data, especially from a Banach space. In the future,
a lot of work needs to be done to construct a framework to analyze functional data with
heavy-tailed features.

Funding: Yuwei Zhao’s research is partly supported by the NSFC grants No. 11971115 and No. 11801086.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Preliminaries on Random Measures and Laplace Functionals

Appendix A.1. Necessary and Sufficient Conditions of the Counting Measures

We say that the measure N ∈ NO is a counting measure. For x ∈ C and µ ∈MO, we
say that the measure µ has an atom x if µ({x}) > 0. A measure with only atoms is purely
atomic, while a diffuse measure has no atom. The following lemma shows the necessary and
sufficient conditions of a counting measure in MO.

Lemma A1. Assume that the measure µ ∈MO.

1. The measure µ is uniquely decomposable as µ = µa + µd, where

µa =
∞

∑
i=1

κi1xi (A1)

is a purely atomic measure, uniquely determined by a countable set {(xi, κi)} ⊂ O× (0, ∞),
and µd ia a diffuse measure.

2. A measure N ∈MO is a counting measure if and only if (1) its diffuse component is null; (2)
all κi in (A1) are positive integers; and (3) the set {xi} defined in (A1) is a countable set with,
at most, many finite xi in any set A ∈ S \Or with r > 0 .
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Proof. Let rj = 1/j, j = 1, 2, . . .. Let C(1) = S \Or1 and C(j+1) = Orj \Orj+1 , j = 1, 2, . . ..

Then, C = ∪∞
j=1C

(j). By definiton of MO, if µ ∈ MO, the measure µj(·) = µ(· ∩O(rj))

and hence µ is σ-finite. Part (i) is a property of σ-finite measures; see Appendix A1.6 [6]
for details.

Since µj is finite, Proposition 9.1.III in [7] implies that µj is a counting measure if and
only if all the three conditions in (ii) are satisfied. Moreover, if µj is a counting measure, all

of its atoms must lie in C(rj). Because C(rj) are disjoint sets and µ = ∑∞
j=1 µj, the measure µ

is a counting measure if and only if all the three conditions in (ii) are satisfied.

Appendix A.2. Convergence of Laplace Functionals

The first property of Laplace functional is that the uniform convergence of functions
in CC implies the convergence of Laplace functionals.

Proposition A1. Let ξ be a random measure. For a sequence of functions ( fn)n∈N with fn ∈ CC
and a function f ∈ CC, the convergence Lξ [ fn]→ Lξ [ f ] as supx∈C | fn(x)− f (x)| → 0 if one of
three conditions holds: (i) ξ(C) < ∞; (ii) the pointwise convergence fn → f is monotonic; and (iii)
there exists r > 0 such that for each n ≥ 1, fn vanishes on Or.

Proof. If condition (i) holds,

|Lξ [ fn]− Lξ [ f ]| ≤ ξ(C) sup
x∈C
| fn(x)− f (x)| → 0 .

If condition (iii) holds, since ξ(S \Cr) < ∞,

|Lξ [ fn]− Lξ [ f ]| ≤ ξ(S \Or) sup
x∈C
| fn(x)− f (x)| → 0 .

Suppose that condition (ii) holds. If fn(x) ↓ f (x) for each x ∈ C, this implies that r > 0
exists such that fn vanishes on Or because f1 ∈ CC and condition (iii) is satisfied. If fn(x) ↑
f (x) for each x ∈ C, the dominated convergence theorem ensures that Lξ [ fn]→ Lξ [ f ].

Appendix B. Proof of Theorem 3

The proof of Theorem 3 follows the general idea of the proof of Proposition 3.21, [1],
which needs the properties of the Laplace functionals. Let S̃ = [0, ∞) × S and Õ =

[0, ∞)×O. Define d̃((t1, x1), (t2, x2)) = |t1 − t2|+ d(x1, x2) for (ti, xi) ∈ S̃. By defining
λ(t, x) = (t, λx) for (t, x) ∈ S̃ as scalar multiplication, the metric space (S̃, d̃) is complete
and separable, and the set Õ is a cone. Now, we can define the corresponding MO-
convergence as above.

Assume that CC̃ is a collection of real-valued, non-negative, bounded continuous
functions f on C̃ vanishing on the set Õr =

{
(t, x) ∈ S̃ : d̃((t, x), Õ) < r

}
for some r > 0.

The Laplace functional of f is given by

LNn [ f ] = E[exp(−Nn( f ))] = E exp
{
−

n

∑
i=1

f (n−1i, Xn,i)
}

=
n

∏
i=1

(
1−

∫
C
(1− e− f (n−1i,x)P(Xn,1 ∈ dx)

)
.

Equivalently, LNn [ f ]→ LN [ f ] if and only if

− log LNn [ f ] = −
n

∑
i=1

log
(

1−
∫
C
(1− e− f (n−1i,x))P(Xn,1 ∈ dx)

)
→ − log LN [ f ] .
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Moreover, according to Proposition 2, LNn [ f ] → LN [ f ] for all f ∈ CC̃ if and only if

Nn
d→ N as n→ ∞.
Suppose that (10) holds. Let λn([t1, t2)× A) = |t1 − t2|p(Xn,1 ∈ A) with 0 ≤ t1 < t2

and A ∈ SC satisfying µ(∂A) = 0. The limit (10) implies that

lim
n→∞

λn([t1, t2)× A) = |t1 − t2|µ(A) .

Therefore, we have

n

∑
i=1

∫
C
(1− e− f (n−1i,x))P(Xn,1 ∈ dx)

=
∫ ∫

[0,∞)×C
(1− e− f (s,x))dλn(s, x)

→
∫ ∫

(1− e− f (s,x))dsµ(dx) , n→ ∞ .

Suppose that f vanishes on [0, ∞)× Õr for a real number r > 0 and µ(∂Or) = 0. Then,
we have

sup
i≥1

∫
C
(1− e− f (n−1i,x))P(Xn,1 ∈ dx) ≤ P(Xn,1 ∈ Or)→ 0 , n→ ∞ , (A2)

by (10). Notice that log(1 + y) = y− y2/2 + o(y2). We have∣∣∣− log LNn [ f ]−
n

∑
i=1

∫
C
(1− e− f (n−1i,x))P(Xn,1 ∈ dx)

∣∣∣
≤

n

∑
i=1

( ∫
C
(1− e− f (n−1i,x))P(Xn,1 ∈ dx)

)2

≤
(

sup
i≥1

∫
Or
(1− e− f (n−1i,x))P(Xn,1 ∈ dx)

) ∞

∑
i=1

∫
Or
(1− e− f (n−1i,x))P(Xn,1 ∈ dx)

→ 0 , n→ ∞ .

This shows that (10) implies that LNn [ f ]→ LN [ f ].
Suppose that LNn [ f ] → LN [ f ] as n → ∞ for f ∈ CC̃. Take f (s, x) = 1[0,1](s)g(x) with

g ∈ CC. Then,

LNn [ f ] = E exp
(
−

n

∑
i=1

g(Xn,i)
)
=
(
E exp(−g(Xn,1))

)n

=
(

1−
∫
C(1− e−g(x))nP(Xn,1 ∈ dx)

n

)n

→ exp
(
−
∫
C
(1− g(x))µ(dx)

)
, n→ ∞ ,

which is the Laplace functional of PRM(µ). This relation implies that (9) holds.
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