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Abstract: This paper aims to test the structure of interest rates during the period from 1 September
1981 to 28 December 2020 by using Lie algebras and groups. The selected period experienced
substantial events impacting interest rates, such as the economic crisis, the military intervention of the
USA in Iraq, and the COVID-19 pandemic, in which economies were in lockdown. These conditions
caused the interest rate to have a nonlinear structure, chaotic behavior, and outliers. Under these
conditions, an alternative method is proposed to test the random and nonlinear structure of interest
rates to be evolved by a stochastic differential equation captured on a curved state space based on
Lie algebras and group. Then, parameter estimates of this equation were obtained by OLS, NLS,
and GMM estimators (hereafter, LieNLS, LieOLS, and LieGMM, respectively). Therefore, the interest
rates that possess nonlinear structures and/or chaotic behaviors or outliers were tested with LieNLS,
LieOLS, and LieGMM. We compared our LieNLS, LieOLS, and LieGMM results with the traditional OLS,
NLS, and GMM methods, and the results favor the improvement achieved by the proposed LieNLS,
LieOLS, and LieGMM in terms of the RMSE and MAE in the out-of-sample forecasts. Lastly, the Lie
algebras with NLS estimators exhibited the lowest RMSE and MAE followed by the Lie algebras with
GMM, and the Lie algebras with OLS, respectively.

Keywords: interest rate; Lie groups; Lie algebras; stochastic differential equation; OLS; NLS; GMM;
LieNLS; LieOLS; LieGMM

MSC: 22E60; 22E70; 17B45

1. Introduction

Although the interest rate term structure has been discussed by many articles in the
literature, there are only a few articles analyzing this structure by the Lie method which
provide the connection among the symmetry groups and the integrability properties of
differential equations (DEs) [1]. In the recent literature, the Lie methods (Lie algebras
and groups) have had a deep influence on mathematics, mechanics, and robotics science
branches. Modeling the interest rates with differentiable manifold bases was studied by a
few papers in pursuit of [2–6], which provide examples of a short rate model on the circle
S1. Ref. [7] explored the random and nonlinear structure of interest rates on S1 and S2

manifolds using matrix representations.
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Hughston [8] is an important paper that develops a model for arbitrage-free pricing
on general Riemann manifolds. Kusuoka [9] developed high-order discretization schemes
of SDEs by using free Lie algebra. Other studies using the Lie method, including [10], were
aimed at utilizing the partial differential equations (PDEs), and [11] used PDEs in the mul-
tidimensional screening problem, and [12] used PDEs for financial models with non-linear
state spaces. In the context of the financial diffusion models, Morimoto and Sasada [13]
suggested the Lie method on vector fields. Bildirici et al. [14] and Muniz et al. [15] aimed
to solve financial mathematics problems by applying the Lie method. Ref. [15] suggested
time-dependent correlation matrices for solving SDE that evolves in the special orthogo-
nal group.

In this paper, we aim to analyze the short-term interest rate models on the S2 manifold
during the period of 1 September 1981 to 28 December 2020 via matrix representations of
Lie algebras for the US. The analyzed period is important because it encompasses some
significant economic factors, such as economic crises, and non-economic factors, such as
COVID-19, the USA intervention in Iraq, etc. The unexpected movements of oil prices and
locked-down markets throughout the World have driven governments to increase their aid
to stop the downfall of markets. These factors led the interest rates to exhibit a different
structure than the usual, which was the effect of the pandemic and the large-scale fiscal
expansion that occurred in response to it. During the period of COVID-19, the premium
term for US government bonds changed. The difference in yield between US government
bonds with a maturity of 2 to 10 years is the definition of “premium”. Since 1 April, treasury
bonds have been in a downward trend, trading below 0.15% with 1-year maturity. The
interest rate structure and behavior were affected in this process. It exhibited nonlinear
and/or chaotic behavior.

Under this condition, the Ordinary Stochastic Differential Equation for interest rates
was expressed by matrix representations of Lie groups and Lie algebras. Then, parameter
estimation of this equation was obtained by OLS, NLS, and GMM methods. Therefore, the
nonlinear models were defined by the Stochastic Differential Equation via the Lie method.
We also obtained the parameter estimates for this equation using OLS, NLS, and GMM
(hereafter, LieOLS, LieNLS, and LieGMM) methods. Then, we obtained parameter estimates
for the ordinary Stochastic Differential Equation without Lie representations by using OLS,
NLS, and GMM methods (hereafter, the traditional OLS, NLS, and GMM). Additionally, the
forecast results of two methods were compared with each other. Afterwards, the forecast
results of LieOLS, LieNLS, and LieGMM methods are compared with the results derived with
the traditional OLS, NLS, and GMM models.

The contribution of the paper is in two ways. In the context of applied mathematics, the
paper contributes by the simultaneous utilization of the LieOLS, LieNLS, and LieGMM models
to obtain parameter estimations. In the context of financial mathematics, Park et al. [7],
Goard [16], Bildirici et al. [14], and Ucan and Bildirici [17] used only the OLS estimation
method. This paper used three different methods: OLS, NLS, and GMM. Therefore, a
second contribution of the paper is to improvement the efficiency of government policies
with the policy recommendations derived following the proposed methods.

The paper is organized as follows. In Section 2, the methodology of the Lie groups
SO(3) model is explained. In Section 3, the data and results are discussed, and in the last
section, the conclusions are given.

2. Methodology: Lie Groups and Algebras

Lie groups, their algebras, and the relation of stochastic dynamics between these
groups are presented [7,12,16]. Let G and g be a matrix Lie group with n dimensional and
its algebra [18]. The orthogonal matrix is denoted by O(n), and is defined as:

O(n) =
{

R ∈ GL(n) : RT R = I
}

(1)
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Hence, the orthogonal matrix groups are denoted by SO(n), and defined as follows:

SO(n) =
{

R ∈ GL(n) : RT R = I and detR = 1
}

. (2)

For these special orthogonal matrix groups, in the case of n = 2, R =

[
cosθ −sinθ
sinθ cosθ

]
,

the typical element of the group SO(2) is a rotation matrix. The manifold of this group
is identified with the unit circle, S1 =

{
(x1, x2) : x2

1 + x2
2 = 1

}
, with parametrization,

x1 = cosθ, x2 = sinθ.

In the case of n = 3, R =

 cθ −sθsϕ −sθcϕ
−s∅sθ c∅cϕ− s∅cθsϕ −c∅sϕ− s∅cθcϕ
c∅sθ s∅cϕ + c∅cθsϕ −sϕs∅+ cθc∅cϕ

, the typical

element of the group SO(3) is a rotation matrix. The manifold of this group is identified with
the unit sphere, S2 =

{
(x1, x2, x3) : x1

2 + x2
2 + x2

3 = 1
}

, with parametrization, x1 = cosθ,
x2 = sinθ sinϕ, x3 = sinθ cosϕ.

Similarly, the manifold of the Lie group SO(n) is given as Sn−1 .
The Lie algebras of these groups are denoted by so(n). It is provided as BT = −B for

B ∈ so(n). The relation between the group and this algebra is given by:

exp : so(3)→ SO(3)
expB = R ∈ SO(3)

(3)

2.1. Proposition

If the state equation and the quadratic function are defined, respectively, as fol-
lows: dR = RBdt + RdW, where R ∈ G, B, dW ∈ g, R is a constant, and dW is the
diffusion process,

f (R) =
1
2

Tr
(

RTQRN
)

where Q, N ∈ Rn∗n

is a symmetric matrix, then the dynamics for f are given in Equation (4):

d f = Tr
[

RTQR
(

BNdt + dWN +
1
2

dWNdWT +
1
2

dWdWN
)]

(4)

where dt.dt = dwidt = dtdwi = 0, dwidwj = ρijdt , and ρij is the correlation coefficient be-
tween wi and wj, where wi, wj ∈ dW (that is, wi, wj are components of the diffusion process).

2.2. Short Rate on the Lie Group SO(3)

The Lie group SO(3) is a differentiable manifold, and can be identified with the unit
sphere, S2. In this manifold, the short rate and state equation are given as follows:

s(R) =
1
2

Tr
(

QRNRT
)

,

where R ∈ SO(3).
dR = RBdt + RdW and dW ∈ so(3),

where Q, N ∈ R3×3 are positive symmetric matrices. In the case, the dynamics for function
s are given with Equation (5):

ds = Tr
[

RTQR
(
(B− I)Ndt + dWN +

1
2

dWNdWT
)]

(5)

where:

B =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 and dW =

 0 −dw3 dw2
dw3 0 −dw1
−dw2 dw1 0

∈ so(3)
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Q =

q11 q12 q13
q12 q22 q23
q13 q23 q33

, N =

n11 n12 n13
n12 n22 n23
n13 n23 n33

, and we can use one of the following

forms for the matrix element of SO(3):

exp

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 = I3 + sinθ B(b1, b2, b3) + (1− cosθ) B(b1, b2, b3)
2

= R ε SO(3)

Since the dynamics on S2 are (s, θ, ϕ), their stochastic equations are derived from
Equation (5). Then, the equation for each dynamic is solved. Therefore, the short rate, s, is
obtained as follows:

s(R) = 1
2 [c11n11 + c22n22 + c33n33 + (c12 + c21)n12 + (c13 + c31)n13

+(c23 + c32)n23]

where:
c11 = b11r11 + b12r21 + b13r31, c22 = b22r11 + b22r22 + b23r32
c33 = b31r13 + b32r23 + b33r33, c12 = b11r12 + b12r22 + b13r32
c21 = b21r11 + b22r21 + b23r31, c13 = b11r13 + b12r23 + b13r33
c31 = b31r11 + b32r21 + b33r31, c23 = b21r13 + b22r23 + b23r33
c32 = b31r12 + b32r22 + b33r32

and
b11 = r11q11 + r21q21 + r31q31, b12 = r11q12 + r21q + r31q32
b21 = r12q11 + r22q21 + r32q31, b22 = r12q12 + r22q22 + r23q32
b31 = r13q11 + r23q21 + r33q31, b32 = r13q12 + r23q22 + r33q32
b13 = r11q13 + r21q23 + r31q33, b23 = r12q13 + r22q23 + r32q33
b33 = r13q13 + r23q23 + r33q33

where rij ∈ R.

3. Data and Results

The data are historical daily US Treasury interest rates covering the 1 November
1981–28 December 2020 period with various maturities: 3 and 6 months; and, 1, 5, 10, 20,
and 30 years. Data were taken from FRED (https://fred.stlouisfed.org (5 May 2021)). The
interest rate variables with the above-mentioned maturities are shown in Figure 1. As the
figure shows, the movement of variables follows a similar path.
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Figure 1. Interest rates for the various maturities. Source: FRED.
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As mentioned in Section 2, the state equation is given as:

dR = RBdt + RdW (6)

where the Wiener process is dW ∈ so(3), Q, N ∈ R3×3.
For the three-factor short rate model on SO(3), the following equation is used:

s(R) =
1
2

Tr
(

QRNRT
)

where R ∈ SO(3). (7)

where both Q, N are symmetric positive–definite, thereby ensuring that s always remains
positive. The stochastic differential equation for s can be derived from Equation (7).

The model parameters are B ∈ so(3) in the underlying state equations; the sym-
metric positive definite matrices, Q, R, N, are used to define the short rate; and the
3 × 3 covariance matrix, W, is associated with the Wiener process. The published interest
rates, R(t, t + τ), are the spot rates. The spot rates can be obtained via the expectation
as follows: R(t, t + τ) = E

[
1
τ

(∫ t+τ
t s(r)dr

)]
. It is interest rate at time, t, for the length of

maturity, τ.
The Monte Carlo simulation was employed to directly evaluate the above expectation.

The ordinary least-squares (OLS), nonlinear least-squares (NLS), and generalized method
of moments (GMM) estimation procedures were used for parameter estimation in a three-
factor short rate model on SO(3). Choose an initial set of parameters, B ∈ so(3). The
covariance matrix for the Wiener process is assumed to be W. Generate a sufficient number
of sample paths for the short rate, and determine the time series for all the spot rates; denote
the estimated spot rate data by R̂(t, t + τ) (see [7,14,17] for similar app.). Determine if the
choice of model parameters is an optimizer for the objective function:

P(B, Q, N, W) =

√
(R̂(t, t + τ)− R(t, t + τ))2

R(t, t + τ)’s are historical time series data of spot rates for the following maturities:
3 months(M), 6 M, 1 year(Y), 2Y, 3Y, 5Y, 7Y, 10Y, 20Y, and 30Y.

The results will be obtained with the following five steps. (1). Descriptive statistics
and unit root tests will be applied. By the unit root test, the stationarity of the variables
will be investigated. (2). Lyapunov and Tsay tests are applied to determine the evidence
of chaotic and nonlinear behavior of the interest rates. (3). The Lie methods with OLS,
NLS, and GMM estimators, namely, LieOLS, LieNLS, and LieGMM, are applied. The results
are compared with those obtained from the traditional OLS, NLS, and GMM models.
(4). For in-sample, the forecasts results obtained from the Lie method are compared with
the forecast results of the traditional models. Further, the out-of-sample forecast results
will be obtained for 10, 20, and 30 working days ahead. (5). The Diebold–Mariano test is
applied (assuming the forecast error criteria as the RMSE to evaluate the performance of
the proposed Lie-based methods.

4. Results

Firstly, the descriptive statistics of the spot rates of all maturities were obtained.
Table 1 shows the results of the descriptive statistics. The main problem is not much excess
skewness, but excess kurtosis.

Table 1. Descriptive statistics.

3MN * 6MN 1Y ** 5Y 10Y 20Y 30Y

Volatility 0.80 0.81 2.67 3.83 4.54 4.69 4.78
Kurtosis 5.78 6.07 5.89 5.88 6.12 6.19 5.98

Skewness 0.98 1.19 0.89 1.46 1.42 1.38 1.48
JB 780.15 810.06 852.31 876.1 987.5 927.2 1036.10

* MN shows months, and ** Y shows years.
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Since the Tsay NL test determined the nonlinearities of the variables, the ADF test and
the KSS test, as important tests in the evidence of nonlinear variables, were employed to
explore the stationary. ADF and KSS unit root tests determined the stationary at the level
for the variables in Table 2.

Table 2. Unit root tests.

3M 6M 1Y 5Y 10Y 20Y 30Y

ADF Unit Root Test
−4.256 −3.994 −3.87 −3.02 −3.97 −3.99 −3.36

KSS Unit Root Test
−4.36 −4.01 −3.91 −3.001 −3.99 −4.01 −3.37

The results of the Tsay and Lyapunov tests in Table 3 are presented. The Tsay nonlin-
earity test suggests that the linearity is misspecified for the variables.

Table 3. Lyapunov * and Tsay Tests.

3MN 6MN 1Y 5Y 10Y 20Y 30Y

Tsay’s Nonlinearity Test Results
197.85 187.55 167.74 177.28 201.47 202.64 211.25

Maximum Lyapunov (λ) Results
0.05 0.22 0.36 0.42 0.38 0.303 0.296

* Only a dimension is exhibited. Decision is chaotic behavior. The estimation of the chaotic parameters can be
influenced by the existence of noise, the delay time, and the size of the sample [19,20].

The maximum Lyapunov (λ) results found a chaotic structure with values between
0 < λ < 1, since the positive values of the Lyapunov test showed evidence of chaos [21].
In the state that the variables have a chaotic and nonlinear structure, LieOLS, LieNLS, and
LieGMM models allow us to analyze models that are difficult to analyze.

4.1. Lie Method Results

The results of the Lie method are presented in Table 4. We considered a three-factor
short rate model on SO(3). The short rate, s, is always positive and is obtained from
Equation (5).

Table 4. Estimations of Lie parameters with OLS, NLS, and GMM methods *.

Estimations of LieOLS Estimations of LieNLS Estimations of LieGMM

For 9 January 1981–28 December 2020 period

B =

 0 −0.653 0.914
0.653 0 −0.44
−0.914 0.44 0


S =

1.011 0 0
0 0.276 0
0 0 1.018


Q =

1.203 1.22 0.952
1.22 2.053 1.033
0.952 1.033 1.403


N =

0.841 1.152 0.827
1.152 1.015 0.933
0.827 0.933 0.823



B =

 0 −0.187 0.028
0.187 0 −0.023
−0.028 0.023 0


S =

0.888 0 0
0 0.387 0
0 0 0.728


Q =

 0.345 0.524 0.252
0.524 0.971 0.695
0.2527 0.6956 0.489


N =

 0.562 0.6043 0.460
0.6043 0.845 0.533
0.460 0.533 0.389



B =

 0 −0.5045 0.8490
0.5045 0 −0.701
−0.8490 0.701 0


S =

0.926 0 0
0 0.290 0
0 0 0.991


Q =

1.0075 1.0091 0.975
1.0091 1.084 1.1389
0.975 1.1389 1.0012


N =

 0.913 1.0111 0.9548
1.0111 1.01479 0.9091
0.9548 0.9091 0.975


* The results for three months are given.

To test the goodness-of-fit of the model, we calculated the skewness and kurtosis of
the error between the actual and the estimated short rates by employing the 3M maturity
spot rate as proxy (the figures are not presented here).
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In the whole period, the kurtosis and skewness of the errors for LieOLS were deter-
mined as 3.18 and −0.5516, respectively. The kurtosis and skewness of the errors for LieNLS
were determined as 3.34 and −0.63, and 3.11 and −0.513 for LieGMM, respectively.

In Table 4, the estimations of Lie parameters with OLS, NLS, and GMM methods
are presented.

4.2. Forecast Results

The results of the in-sample and out-of-sample were compared. Since the lowest RMSE
and MAE coefficients in the in-sample and out-of-sample results are considered as the best
result, the model that gives these results will be accepted as the most successful. The results
of the in-sample and out-of-sample forecasts are given in Tables 5 and 6, respectively.

Table 5. In-sample forecast results.

Lie Traditional

LieNLS LieGMM LieOLS OLS NLS GMM
RMSE 0.45 0.97 1.062 6.96 5.66 6.28
MAE 0.42 0.88 0.96 5.73 5.58 6.07

Table 6. Out-of-sample forecast results.

LieNLS LieGMM LieOLS

* T + 10
RMSE 0.45 0.73 2.042
MAE 0.42 0.67 1.55

T + 20
RMSE 0.76 2.709 4.96
MAE 0.73 2.65 4.73

T + 30
RMSE 1.098 2.88 5.25
MAE 1.089 2.81 5.07

* T + 10, T + 20, and T + 30 show the next working 10 days, 20 days, and 30 days, respectively.

Table 5 shows the results of Lie methods with OLS, NLS, and GMM, and the results of
traditional models using OLS, NLS, and GMM methods.

Lie methods with OLS, NLS, and GMM provide better results than traditional methods.
RMSE and MAE results determined by Lie methods with OLS, NLS, and GMM are smaller
than those determined by traditional methods. RMSE and MAE values determined by
traditional NLS and LieNLS are smaller than the others within their own groups.

4.3. The Results of the Out-of-Sample Forecast

In Table 6, the MAE and RMSE results for Lie methods with NLS, OLS, and GMM
were obtained to search their forecast accuracy for 10, 20, and 30 workdays ahead (shown
as T + 10, T + 20, and T + 30, respectively). According to the results of the out-of-sample, the
Lie method with NLS exhibited the lowest RMSE, followed by the Lie method with GMM.

4.4. To Test for Forecast Accuracy

The Diebold–Mariano (DM) test results are shown in Table 7, and the p-values are
given. If the p-value is <0.05, the H0 hypothesis was rejected. Three models were compared
in the terms of RMSE performance.
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Table 7. Diebold–Mariano results.

RMSELieOLS RMSELieNLS RMSELieGMM

RMSELieOLS - 0.78 0.56
RMSELieNLS 0.0 - 0.00

RMSELieGMM 0.0 0.55 -

Firstly, among the models, when RMSELieOLS is compared with RMSELieNLS, and
when RMSELieOLS is compared with RMSELieGMM, we fail to reject the H0 hypothesis of
equal forecast accuracy. We also compared the RMSELieNLS model with the RMSELieOLS
and RMSELieGMM models. The H0 hypothesis is rejected in favor of the RMSELieNLS
model. The results show that the RMSELieNLS model is preferred over the RMSELieOLS
and RMSELieGMM models.

5. Conclusions

This paper aimed to analyze the interest rates for the period from 1 September 1981
to 28 December 2020 by using the Lie method with OLS, NLS, and GMM estimators for
the US. In the literature, interest rate term structure models generally aimed to determine
the nonlinear structure of interest rates. Some of them covered nonlinear stochastic state
dynamics evolving on a vector space. Refs. [2,7,21] tested the interest rate models in the con-
text of the Lie method. As a differentiation from these papers, in this paper, we suggested
LieOLS, LieGMM, and LieNLS models in the context of the drift and noise volatility terms
of stochastic state equations. Firstly, we explored chaotic and nonlinear structures. Sec-
ondly, the evidence of nonlinear and chaotic structures of the variables, and the suggested
Lie methods with OLS, NLS, and GMM estimators determined the parameter estimates.
Thirdly, the results of LieOLS, LieGMM, and LieNLS models were compared with those of
traditional OLS, NLS, and GMM methods. Then, the forecast results of in-sample and
out-of-sample were obtained. The forecasting results of in-sample were compared with
results of traditional estimators. According to the results of the Lie method, traditional
estimators exhibited low forecasting performance. Lastly, we applied Diebold–Mariano
tests in terms of RMSE performance. The results determined that the RMSELieNLS model
has better performance over the RMSELieOLS and RMSELieGMM models. According to our
results, employing the Lie methods caused a rising forecasting performance in the existence
of the nonlinear structure. The lie method is a good estimator. For this reason, the use of the
Lie method in the solution of the stochastic problem, which is difficult to solve, can provide
significant improvements. This is very important in the context of policy recommendations.
The results of the Lie method, in comparison with the traditional methods, can allow us to
make the best decision in the context of policy recommendations.

As a suggestion for future papers, the usage of this method to solve open problems
in applied mathematics, economics, and financial mathematics will provide important
contributions. On the other hand, because the use of supersymmetries in engineering and
physics is common and very important, using the fractional super group, SU(2), which
is one of the real forms of the fractional super group, SL(2,C), obtained in Ucan and
Kosker [22], to solve this model is suggested in future papers.
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