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Abstract: Mobile robots are relevant dynamic systems in recent applications. Path planning is an
essential task for these robots since it allows them to move from one location to another safely and at
an affordable cost. Path planning has been studied extensively for static scenarios. However, when
the scenarios are dynamic, research is limited due to the complexity and high cost of continuously
re-planning the robot’s movements to ensure its safety. This paper proposes a new, simple, reliable,
and affordable method to plan safe and optimized paths for differential mobile robots in dynamic
scenarios. The method is based on the online re-optimization of the static parameters in the state-
of-the-art deterministic path planner Bug0. Due to the complexity of the dynamic path planning
problem, a metaheuristic optimization approach is adopted. This approach utilizes metaheuristics
from evolutionary computation and swarm intelligence to find the Bug0 parameters when the mobile
robot is approaching an obstacle. The proposal is tested in simulation, and well-known metaheuristic
methods are compared, including Differential Evolution (DE), the Genetic Algorithm (GA), and
Particle Swarm Optimization (PSO). The dynamic planner based on PSO generates paths with the
best performances. In addition, the results of the PSO-based planner are compared with different
Bug0 configurations, and the former is shown to be significantly better.

Keywords: dynamic path planning; differential drive mobile robot; online optimization; metaheuris-
tics; Bug0

MSC: 93C85

1. Introduction

The use of mobile robots is now widespread in a number of applications, including
the transport of people and goods [1,2], border surveillance, rescue and monitoring [3–5],
health and rehabilitation [6], and even entertainment [7]. The growth of this type of robot
can be attributed to its ability to operate in extended environments compared to the classic
fixed-base robots [8].

Mobile robots can be distinguished by the environment in which they operate (i.e.,
terrestrial, aquatic, aerial, or hybrid), the type of element that produces their motion (e.g.,
legs, wheels, caterpillars, propellers, etc.), or the ability to change direction (unidirectional,
multidirectional, or omnidirectional) [9]. Among the great diversity of mobile robots, the
differential drive one stands out for its ability to move on a plane with only two wheels,
the ease with which its movement can be described, the simplicity of its control, its relative
low cost, and its universality as it is present in a wide variety of applications [? ].
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One of the main problems faced by the differential mobile robot and, in general, by
any type of mobile robot is path planning [11]. Without loss of generality, path planning
refers to the task of getting the mobile robot from an initial configuration (this may include
its position and orientation in space) to a final one safely (i.e., avoiding obstacles or threats)
and with the least possible cost (e.g., using the least energy, traveling the shortest distance,
or with the greatest speed) [12].

Path planning, by its nature, is a complex task [9]. Depending on the features of the
robot and its operating environment, this task can be further complicated. Here, it is worth
distinguishing two cases: (1) When the operating environment includes static obstacles
(i.e., when the obstacles maintain their original configuration over time) and (2) when these
obstacles are dynamic (i.e., when the obstacles are moving).

Case (1) has been widely studied in the specialized literature from different approaches.
This has given rise to well-known and currently used path planners. In [13], four main
types of planners are distinguished. Among these are reactive-computing-based, which
can plan the next maneuver quickly and continuously as they receive information from
the operating environment. Relevant planners include Bug algorithms [14] and artificial
potential fields [15]. For their part, soft-computing-based planners use soft-computing
algorithms to approximate paths that meet certain performance criteria. In this field,
evolutionary computation and swarm intelligence algorithms [16], neural networks [17],
and fuzzy logic [18] stand out. On the other hand, C-space-search-based methods discretize
the operation space to reduce the number of possible paths and make planning more
efficient. The A* [19] and Rapidly Random Tree (RRT) [20] algorithms are representative of
this category. Finally, in the Optimal-Control-Based methods, the path is the solution to the
optimal control problem [21].

As for case (2), it adds difficulty to the planning problem inherent to dynamic obstacles.
In this case, the methods conceived to solve the path planning problem considering case (1)
are not sufficiently effective and require additional mechanisms to handle the environment’s
dynamism [13]. Some approaches to handling case (2) that have been successfully tested
consist of hybridization of different path planners [22], continuous re-planning of paths
as soon as a change in the operating environment is detected [23], or inclusion of new
operators in existing planning methods [24]. Thus, many of the planners proposed to date
for case (2) are very sophisticated and require advanced theoretical and practical tools to
be implemented. Some of these have high computational costs that may be unfeasible,
and in many cases, their operation may be limited to conditions that are difficult to meet
in practice.

Some recent works regarding cases (1) and (2) are described next. The work in [25]
proposes a minimum-time path-planning approach for mobile robots in dynamic environ-
ments. For this, the authors establish an optimization problem to find the path points that
minimize the realization time, produce a valid speed profile, and avoid collisions. The
problem is solved through the Resilient Propagation algorithm periodically, and the result-
ing paths reduce the number of collisions and time in a simulated soccer game. In [26], an
improved variant of the RRT is proposed to handle static scenarios with a mobile robot. The
new proposal reduces the complexity of the search trees of the original RRT and produces
suitable paths for realistic environments. The research in [27] performs the mobile robot
path planning using a pseudo-spectral method to solve an optimal control problem. That
method discretizes the path planning problem to transform it into a nonlinear optimization
one. The solution to the above problem contains global polynomial approximations of the
path for static scenarios. Similarly, the work in [28] transforms the optimal control problem
into a nonlinear optimization one and then solves it through the nonlinear trapezoidal
collocation programming method. The obtained paths adequately avoid static obstacles
and have a reduced length. A multi-agent version of the A-heuristic, a C-space-search
algorithm, is proposed in [29] to reduce the time in computing feasible paths for mobile
robots in static and dynamic scenarios. A hybrid Genetic Algorithm (GA) is proposed
in [30] to solve the path optimization problem with static obstacles. The problem consid-
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ers the minimization of the path length defined in terms of Bezier curves. As a result,
the GA obtains smooth paths for mobile robots. A variant of GA is also used in [31] to
solve the path planning problem in dynamic scenarios, this time through a multi-objective
optimization approach. The problem consists of finding the best motion command that
improves the goal reachability, increases the path smoothness, reduces the realization
time, and guarantees the robot’s safety. In [32], the path planning for a mobile robot is
performed over the CG-Space, a space conformed by all gravity center positions of the
robot considering different terrains. Different approaches, including reactive computing,
C-space search, and soft computing, are considered to solve the derived path planning
problem. The approach from soft computing based on the Particle Swarm Optimization
(PSO) algorithm obtains better paths in terms of smoothness and reduced length. Another
work that utilizes soft computing in path planning for static and dynamic scenarios is [33].
In that paper, the grasshopper algorithm is complemented with a sensing system to solve
the path optimization problem. The problem considers the maximization of the distance
to the obstacles and the minimization of the distance to the goal. Finally, in [34], a soft
computing algorithm, the variable-length vector Differential Evolution (DE), is proposed to
solve the path planning optimization problem for robots considering static obstacles. In
that work, the optimization problem is to find a variable number of points in the path that
minimize the length and ensures obstacle avoidance. The obtained results are better than
A* and an RRT variant.

As noted, a common thread in many recent works on path planning for mobile robots
in static and dynamic environments is formulating an optimization problem. This may be
because the desired path requirements can be expressed naturally and explicitly through
mathematical language in an optimization problem. Most of the problems addressed in
these works are complex due to their features, such as high non-linearity, non-continuity, or
non-differentiability, induced by the mobile robot’s behavior or the scenarios’ dynamism.
Due to these complications, previous works opt for approximate solution approaches to
these problems, many based on soft computing techniques known as metaheuristics, which
can provide outstanding results compared with other path-planning methods.

Metaheuristics are computational techniques that can provide high-performance ap-
proximate solutions to complex optimization problems at a reasonable computational
cost without requiring them to meet specific features [35]. Most metaheuristics are soft
computing methods derived from evolutionary computing and swarm intelligence [36],
i.e., they are inspired by the behavior of natural systems or phenomena.

Based on the above, this work proposes a new, simple, reliable, and affordable method
to plan safe and optimized paths for the differential mobile robot in dynamic scenarios.
The method is based on a simple and efficient Bug-type planner known as Bug0 [13]. This
proposal re-optimizes the Bug planner online through three well-known metaheuristics:
Differential Evolution, the Genetic Algorithm, and Particle Swarm Optimization. This
new planner is tested in simulation using a scenario with several moving obstacles and is
compared to the original Bug0 algorithm with fixed parameters.

The rest of the paper is organized as follows. Section 2 describes the differential drive
mobile robot. Section 3 introduces the features of deterministic path planners with a special
focus on Bug methods and Bug0. The proposed dynamic path planner based on the online
optimization of a Bug-type method through metaheuristics is developed in Section 4. The
experimental details and results are discussed in Section 5. Conclusions are drawn in
Section 6.

2. Differential Drive Mobile Robot

The differential drive mobile robot is a mechanical system with the ability to move
in the plane XY by using two identical wheels placed on the same axis of rotation. The
orientation and position of this robot depend on the difference in the rotation speeds of the
two wheels. The above configuration can be described by three generalized coordinates as
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seen in Figure 1. These coordinates include the position x, y of the robot on the plane, and
the angular position θ measured concerning the axis X.

Figure 1. The differential drive mobile robot.

2.1. Kinematic Model

The kinematic model describes the robot’s motion in terms of the generalized coordi-
nates and the input rotation speeds of the wheels without considering the forces or torques
that produce the motion. This model can be utilized to simulate the behavior of the robot.
To determine the kinematic model of the differential mobile robot, the geometrical elements
that influence its positioning and orientation must be considered. These elements are the
radius of the wheels r and the length of the axis separating them L. Thus, this model is
derived below.

When both wheels rotate at given speeds, the robot platform travels with tangential
velocity v, and rotates with angular speed ω and radius R around the Instantaneous Center
of Rotation (ICR). Then, from Figure 1, it is easy to observe that:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

(1)

where ẋ = dx/dt and ẏ = dy/dt are the components of the velocity v at X and Y, respec-
tively, and θ̇ = dθ/dt is the rotational speed of the robot, with t as the time.

Both v and ω in (1) can be considered as the inputs of the robot since they can be
expressed in terms of the rotational speeds of the two wheels, as described next.

From Figure 1, the velocity v can be determined as:

v = Rω (2)

Likewise, the tangential velocities vl and vr of the wheels can be expressed in terms of
R, L, and ω as:

vl = Rlω =

(
R− L

2

)
ω

vr = Rrω =

(
R +

L
2

)
ω

(3)

where Rl and Rr are the rotation radius of each wheel with respect to ICR.
Solving the equation system given in (3) for ω and R leads:
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ω =
vr − vl

L

R =
L
2

(
vl + vr

vr − vl

) (4)

Substituting ω and R in (2) gives:

v =
vr + vl

2
(5)

From (4) and (5), it is clear that v and ω depend on the tangential velocities of the
wheels vl and vr. In turn, the above velocities can be determined if one knows the rotation
speeds of the wheels ωl and ωr as vl = rωl and vr = rωr.

2.2. State-Space Kinematic Model

Simulating the differential mobile robot’s kinematic behavior requires defining the
state concept first. The state of a system is a vector with a minimum set of variables that
define its behavior for any instant of time. In the case of mechanical systems, including the
differential mobile robot, the states that define their kinematic behavior can be given by the
generalized coordinates. Therefore, the vector of states for this robot is:

z(t) = [x(t), y(t), θ(t)]T (6)

Based on the above state vector, it is possible to define a state equation as follows:

ż(t) = f (z, u, t) (7)

where z(t) is the state vector, u(t) includes the system inputs (these are v(t) and w(t),
which allow the differential robot to move), and t is the time.

Thus, the state equation can be obtained using the results from the previous kinematic
analysis:

ż =

 ẋ
ẏ
θ̇

 =

 v cos(θ)
v sin(θ)

ω

 (8)

2.3. Dynamic Model

The differential robot’s dynamic model describes this system’s behavior in terms of its
generalized coordinates and also considers the forces or torques that generate its motion.
This model allows for more realistic simulations of the system compared to the kinematic
model. The Euler–Lagrange approach, a generalization of Newton’s laws for mechanical
systems that requires an analysis of energies [37], was used to obtain this model. This
approach requires the formulation of the Lagrangian for mechanical systems:

L = K−U (9)

where K and U are, respectively, the system’s total kinetic and potential energies.
Based on the Lagrangian in (9), the equations of motion of a non-holonomic system

such as the differential mobile robot can be calculated as [38]:

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= fi −

m

∑
j=1

λjaji (10)

where qi is the i-th generalized coordinate in q = [x, y, θ]T , and fi is its corresponding
generalized input torque or force, m is the number of non-holonomic constraints on the
robot’s motion, λj is the Lagrange multiplier associated with each constraint, and aji is the
component of the motion constraint for the i-th generalized coordinate.
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The total kinetic energy of the robot, due to its translational and rotational motions,
can be calculated as:

K =
1
2

mẋ2 +
1
2

mẏ2 +
1
2

Iz θ̇2 (11)

where m is the mass of the robot and Iz is its inertia tensor around the vertical rotation axis.
On the other hand, the potential energy of the mobile robot is U = 0 because it operates

in the horizontal plane and is not affected by the acceleration of gravity on Earth.
To determine the robot’s generalized input forces and torques, it is worthwhile to look

at Figure 2. As observed in the figure, the forces and torques that move the robot are F and
τθ . The components of these two elements for each generalized coordinate are:

f1 = F cos(θ) =
1
r
(τl + τr) cos(θ) (12)

f2 = F sin(θ) =
1
r
(τl + τr) sin(θ) (13)

f3 = τθ =
L
2r

(τr − τl) (14)

where τl and τr are the torques of the right and left wheels, respectively, that generate the
tangential forces Fl = r τl and Fr = r τr in Figure 2. The wheel torques are considered the
system inputs.

Figure 2. Diagram of forces, torques, and non-holonomic constraints of the differential mobile robot.

At this point, it is important to note that the differential mobile robot has only one
non-holonomic constraint (i.e., m = 1) that can be observed in Figure 2. That constraint
refers to the fact that the robot cannot move laterally. For this constraint to be satisfied, the
lateral velocities must be equal ẏ′l = ẏ′r, or else:

− ẋ sin(θ) + ẏ cos(θ) = 0 (15)

in a matrix form:
AT q̇ = 0 (16)

with A = [a11, a12, a13]
T = [− sin(θ), cos(θ), 0]T .

Based on the above, the equations of motion in (10) can be expressed in the closed
form observed in (17).

M(q)q̈ = E(q)u− AT(q)λ (17)

where:

M(q) =

 m 0 0
0 m 0
0 0 Iz

 (18)
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E(q) =
1
r

 cos θ cos θ
sin θ sin θ

L
2 − L

2

 (19)

u = [τl , τr]
T (20)

and λ is the Lagrange multiplier associated with the constraint on (15).

2.4. State-Space Dynamic Model

In the closed-form equation in (17), the system’s physical parameters (e.g., the mass m
or the inertia J) can be measured or estimated in some way. However, the same cannot be
said for the Lagrange multiplier λ. This variable can be eliminated if a state vector such as
the following is chosen:

z(t) = [x(t), y(t), θ(t), v(t), ω(t)]T (21)

Thus, the equation of state for the differential mobile robot is as follows:

ż = f (z, u, t) = B(z) + C(z)u (22)

with:
B(z) = [v cos(θ), v sin(θ), ω, 0, 0]T (23)

C(z) =

[
0 0 0 1

mr
1

2Iz
L
r

0 0 0 1
mr − 1

2Iz
L
r

]T

(24)

u = [τl , τr]
T (25)

The complete development of the above equation can be found at [39].

2.5. Robot Simulation

State equations such as (8) and (22) are ordinary differential equations whose inde-
pendent variable is t. If an initial condition z0 (i.e., an initial mobile configuration with an
initial position x0, y0, and orientation θ0) is imposed on these differential equations, initial
value problems are obtained. When these problems are solved, e.g., through a numerical
integration method, the result includes the robot’s predicted future states z(t + dt) after
a short time interval dt when the input u(t) is considered. This prediction simulates the
mobile robot for a given time window.

3. Deterministic Path Planning

Without losing generality, path planning is a task that allows taking a mobile robot
from an initial configuration to a final one with the lowest possible risk and cost.

The above task is performed by a path planner. Deterministic path planners are algo-
rithms that can always find the same paths under the same operating conditions [40]. This
type of planner is effective when dealing with static environments. Moreover, its implemen-
tation is relatively simple and low-cost, so it is widely used. Nevertheless, deterministic
planners are less effective when a mobile robot operates within a dynamic scenario due to
its changing conditions and the unpredictable behaviors of its obstacles.

Among the wide variety of available deterministic path planners, the Bug-type is one
of the simplest and most affordable [13].

3.1. Bug-Type Path Planners

Bug-type planners are simple state-of-the-art alternatives as they only require feedback
from the environment (via sensors or transducers) and do not require a complete map of
it [39], i.e., the path is planned based on the scenario information that they can acquire
within a given radius.
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The operation of this type of path planner can be summarized in two simple behav-
iors [39]:

• The mobile robot always moves straight from its current position towards the goal.
• The mobile robot changes its moving direction only when it approaches an obstacle.

Mobile robots using Bug-type algorithms can avoid obstacles and move toward the
goal. These algorithms require low memory and processing, and the obtained path is
often not optimal, but is generally effective in reaching the final configuration without
collision [39].

3.2. The Bug0 Path Planner

Among the Bug-type planners, different variants are distinguished by the complexity
of their operations and how they perform the two activities mentioned above. All of them
have different benefits and limitations. The simplest of these algorithms is known as Bug0
and has two basic behaviors [39]:

• The robot moves towards the goal until an obstacle is detected or the final configuration
is reached. A variable-gain linear speed controller and a fixed-gain angular speed
controller are used for this, where the variable gain depends on the distance between
the robot and the goal.

• If a nearby obstacle is detected, the robot turns −π/2 or π/2 (only one choice) con-
cerning the collision direction and follows the contour of the obstacle until it can
follow a straight line to the goal. In this case, fixed-gain linear and angular speed
controllers are utilized.

Algorithm 1 describes Bug0. At fixed time intervals while moving the differential
mobile robot, Bug0 uses the distance to the nearest obstacle dobs, the orientation of the
nearest obstacle concerning the robot θobs, the position of the goal ξg = [xg, yg]T , and the
current position and orientation of the robot, respectively ξ(t) = [x(t), y(t)]T and θ, to
calculate the control inputs v and ω (linear and angular velocities) that take the robot closer
to the goal avoiding obstacles in the path. For this, it is assessed whether the distance to the
nearest obstacle is safe enough using an appropriate threshold µ (line 2). In that case, the
robot must steer toward the goal using a variable gain for the linear velocity controller v
and a fixed gain for the angular speed controller ω (lines 3 to 7). The variable gain depends
on the distance to the goal. Otherwise, the robot will go around the nearest obstacle using
fixed-gain linear and angular speed controllers in the direction θobs + s(π/2), i.e., to the left
or right of the obstacle direction (when s = 1 or s = −1, respectively), but always in the
same direction (lines 9 to 12). Using the control gains (fixed or variable), Bug0 calculates
the inputs v and ω (lines 14 to 16) that move the robot toward the goal, avoiding obstacles
in the path.

Here, it is important to note that the output of Algorithm 1 includes the control inputs
v and ω for the differential mobile robot. During a kinematic simulation, i.e., using the
model in (8), v and ω can be used directly as the inputs to the robot. In the case of a more
realistic simulation with the model in (22) or in practice, it is necessary to determine the
torques of the two wheels on the robot. This can be achieved using an inverse dynamics
controller [41] by solving the system of equations in (22) for τl and τr. Thus, the inverse
dynamic control for the differential mobile robot using a linear proportional compensator is:

τl = kpv ev
m r
2 − kpω eω

Iz r
L

τr = kpv ev
m r
2 + kpω eω

Iz r
L

(26)

where ev and eω are the difference between the tangential and angular velocities calculated
by Bug0 and the current robot velocities, with kpv and kpω as the proportional control gains.
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Algorithm 1: Bug0 path planner

Input: Distance to the nearest obstacle (dobs), Orientation of the nearest obstacle
with respect to the robot (θobs), Goal position (ξg = [xg, yg]T), Current robot
position (ξ(t) = [x(t), y(t)]T) and orientation (θ), Controller gains (g1 and
g2), Avoidance direction (s).

Output: Input linear speed (v) and input angular speed (ω) for the robot.
1 Control based on the distance to the nearest obstacle:
2 if dobs > µ then
3 Variable-gain control:
4 θre f ← arctan 2(yg − y, xg − x)
5 eθ ← θre f − θ

6 dg ←
√
(xg − x)2 + (yg − y)2

7 g←
[

dg
2 , g2

]T

8 else
9 Fixed-gain control:

10 θre f ← θobs + s π
2

11 eθ ← θre f − θv

12 g← [g1, g2]
T

13 Simple control of the differential mobile robot:
14 v← g1|cos(eθ)|
15 w← g2 · eθ

16 return v, ω

4. Proposed Dynamic Path Planner

As mentioned above, the Bug0 algorithm effectively handles the path planning prob-
lem for static scenarios. If the environment is dynamic, Bug0 may encounter some difficul-
ties related to its fixed parameters:

• In this algorithm, when the robot is near an obstacle, it always evades it in the same
direction (to the left or to the right, i.e., at±π/2 from the collision direction). Therefore,
there may be scenarios where the distance traveled increases, where the robot fails to
reach the goal, or where there is a collision with obstacles going to the same place;

• In addition, Bug0 uses a fixed gain control when approaching an obstacle. Conse-
quently, there may be scenarios where the movements generated by the fixed gain
control (these could be too slow or too fast) do not allow for evading dynamic obstacles
on time.

The proposed dynamic path planning method is based on the Bug0 algorithm for its
simplicity and low cost and it aims to address the above difficulties through a metaheuristic
online optimization approach. In this sense, it is necessary to formulate a formal dynamic
optimization problem whose solution includes the Bug0 parameters that help it handle
dynamic scenarios. The problem should be solved continuously, whenever necessary (when
a threat is near the robot, i.e., when dobs < µ).

The elements of the dynamic optimization problem and the metaheuristic solution
approach are described below.

4.1. Dynamic Optimization Problem

In general, a formal dynamic optimization problem can be defined as follows:

min J(p, t) = [J1(p, t), J2(p, t), . . . , Jm(p, t)]T (27)

s.t.:
gi(p, t) ≤ 0, i = 1, 2, . . . , ng (28)
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hj(p, t) = 0, j = 1, 2, . . . , nh (29)

The above problem is to find the value of the design variables in the vector p that
minimizes the m objective functions in J, as seen in (27). Solutions to this problem can
be conditioned by ng inequality constraints in (28) or nh equality constraints in (29). The
objective functions quantify the fulfillment of different performance indicators. On the
other hand, inequality constraints (also known as soft constraints) are conditions that can be
met with some degree of slack. Finally, equality constraints (also known as hard constraints)
are conditions that must be met exactly. Additionally, the search space, i.e., the possible
values that the vector p can acquire, is limited by the box constraints, which include each
design variable’s minimum and maximum values.

In a dynamic optimization problem as the one in (27)–(29), the time t introduces
dynamism. Thus, at each instant of time, the objective functions and constraints can change
their value for the same vector of design variables p.

4.1.1. Design Variables

Since one of the problems of Bug0 lies in its fixed parameters, as described above, it is
proposed to use a vector of design variables as follows:

p = [s, g1, g2]
T (30)

where s is the direction of avoidance (either left or right by π/2) in case of detecting a
nearby obstacle, and g1, g2 are the gains of the mobile speed controllers (see Algorithm 1).

4.1.2. Objective Function

The objective function must quantify the quality of the paths generated by the differ-
ential mobile robot when using a given p.

An essential aspect of path planning is that the paths developed by the mobile robot
should be low-cost. This may be related to traveling the greatest possible distance in the
shortest time or using the least amount of energy.

Therefore, it is proposed to use the objective function in (31). This function considers
the Euclidean distance between the goal position ξg = [xg, yg]T and the robot position
ξ̂(t + h dt) = [x̂(t + h dt), ŷ(t + h dt)]T estimated by the kinematic model for the instant
t + h dt by using Bug0 with the parameters in p, with h as the future prediction horizon,
i.e., the number of future steps of dt that are simulated by the kinematic model.

J(p, t) =
√
(xg − x̂(t + h dt))2 + (yg − ŷ(t + h dt))2 (31)

Therefore, the dynamic planner will be able to perform a simulation of the robot’s
behavior using the kinematic model from its current configuration. The above aims to
determine the parameters of Bug0 that best bring it closer to the goal.

4.1.3. Constraints

The operation of the differential mobile robot is limited to collision-free paths with
moving obstacles in the environment.

In the dynamic path planning problem, the constraints count the number of collisions
the robot could have when using a given vector p in Bug0 within the same prediction
horizon h discussed in the previous section. Then, the dynamic optimization problem only
considers equality constraints as follows:
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hj(p, t) =
{

1, if dk(t + l dt) < L
2 + Lk

2
0, otherwise

,

j = 1, 2, . . . , nobsh, (32)

k = 1, 2, . . . , nobs,

l = 1, 2, . . . , h

where dk(t + l dt) is the Euclidean distance between robot position ξ̂(t + l dt) = [x̂(t +
l dt), ŷ(t + l dt)]T (estimated by the kinematic model for the instant t + l dt by using Bug0
with the parameters in p) and the k-th obstacle location ξ̂k(t + l dt) = [x̂k(t + l dt), ŷk(t +
l dt)]T (predicted or calculated for the instant t + l dt), Lk is the length of the k-th obstacle,
and nobs is the number of dynamic obstacles. It is assumed that the location of every
dynamic obstacle ξ̂k(t + l dt) can be predicted or calculated [42,43].

With the above, the planner can simulate the mobile robot’s kinematic behavior and use
the positional information of the dynamic obstacles to determine whether a configuration
p of the Bug0 algorithm can avoid collisions.

4.2. Solving a Dynamic Optimization Problem

As discussed above, a dynamic optimization problem is one in which the objective
function and/or constraints change over time. Typically, there are two ways to solve this
type of problem [44]:

1. Using an optimizer that solves the problem from scratch each time a change is de-
tected;

2. Incorporating additional mechanisms in the optimizer to adapt the solutions found
so far without solving the problem from scratch.

The solution approach (1) is adopted in this work to maintain the simplicity of the
proposal.

4.3. Metaheuristic Optimizers

The optimization problem in (30)–(32) includes highly nonlinear, discontinuous, and
non-differentiable elements, which makes it difficult to solve by traditional search or
optimization methods. For this reason, approximate optimization techniques, such as meta-
heuristics, may be suitable alternatives to find good solutions to this kind of problem [45].

Although a wide variety of metaheuristics are currently available [36], no single one of
them is capable of providing the best solutions to all types of optimization problems, accord-
ing to the No Free Lunch theorems [46]. One way to select the best alternative among these
techniques for a specific problem is to do so empirically, by testing different metaheuristics
of proven effectiveness. This approach is adopted in this work. Among the available
metaheuristics, three alternatives have a proven track record of successful use in various
science and engineering contexts. Differential Evolution, the Genetic Algorithm, and Parti-
cle Swarm Optimization are these techniques. Many recent metaheuristics are based on the
above techniques or propose improvements at an additional computational cost.

The general performance of these three metaheuristic optimizers is described below.

4.3.1. Differential Evolution

Differential Evolution (DE) [47] is a metaheuristic optimization technique inspired
by natural evolution. This algorithm has a population of individuals that searches for the
approximate solution to a complex optimization problem. DE has several variants, and one
of the simplest and most effective is rand/1/bin [48]. The general operation of DE rand/1/bin
is described in Algorithm 2. In DE, each D-dimensional vector pi = [xi1 , pi2 , . . . , piD ]

T ,
i = 1, 2, . . . , NP (also called individual) in a population with NP vectors is used to represent
a candidate solution to the optimization problem. At the beginning of the algorithm, the
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initial population includes individuals randomly generated in the search space delimited
by dmin and dmax (lines 1 and 2). During a maximum of Gmax generations, each of the
base individuals in the current population P generates first a mutant with the rand/1
operator, which uses the scaling factor F and three random individuals from P (lines 5
and 6). Then, the base individual and its mutant are recombined to obtain an offspring
through the bin operator and the crossover rate CR (line 7). Finally, the base individual
competes with its offspring to determine the fittest solution, which persists in P (line 8).
For this, the performance of each individual is measured in terms of their ability to solve
the optimization problem. At the end of the last generation, the best individual from the
population P is selected as the approximated solution to the optimization problem (lines 10
and 11).

Algorithm 2: Differential Evolution

Input: Maximum number of generations (Gmax), Number of individuals in
population (NP), Crossover rate (CR), Scaling factor (F), Objective function
(J), Search space bounds (dmin and dmax).

Output: Best design vector (pbest).
1 G ← 0
2 Generate an initial population P with NP individuals randomly selected between

dmin and dmax.
3 while G < Gmax do
4 foreach pi ∈ P do
5 Select three parent individuals pr1, pr2, and pr3 randomly from the

population P such that r1 6= r2 6= r3 6= i.
6 Generate a mutant individual vi using rand/1 operator:

vi = pr1 + F (pr2 − pr3)
with F ∈ [0, 1] as the scaling factor.

7 Generate an offspring individual ui using bin operator:

ui,j =

{
vi,j, if rand(0, 1) < CR or j = jrand
pi,j, otherwise

with CR ∈ [0, 1] as the crossover rate and jrand a randomly chosen design
variable.

8 Select from pi and ui the individual which remains in the population P
based on J.

9 G ← G + 1

10 Select pbest as the best individual from the population P based on J.
11 return pbest

4.3.2. Genetic Algorithm

As DE, the Genetic Algorithm (GA) is a metaheuristic technique based on natural
evolution, but at chromosome level [49]. Currently, several variants of GA have been
proposed and are distinguished by the approaches adopted in the evolutionary operations
of crossover, mutation, selection, and the codification of the chromosomes. One popular
and effective GA, widely used to solve multi-objective optimization problems, is the
Non-dominated Sorting Genetic Algorithm II (NSGAII) [50]. The Algorithm 3 describes
the operation of a single-objective version of NSGAII referred to as GA only. In the
GA in Algorithm 3, the chromosomes are D-dimensional vectors pi = [xi1 , pi2 , . . . , piD ]

T ,
i = 1, 2, . . . , NP that represent possible solutions to an optimization problem. GA starts
with a population with NP chromosomes randomly generated in the search space given
by dmin and dmax (lines 1 and 2). During Gmax generations, NP/2 couples of chromosomes
are selected from the population through a binary tournament (line 4). The contestants
of each tournament are chosen randomly from the population. Next, each couple of
chromosomes can be recombined through the Simulated Binary Crossover (SBX) operator
with the distribution index ηc [51] and based on a given probability Pc (line 5). SBX



Mathematics 2022, 10, 3990 13 of 28

generates two offspring chromosomes that can be mutated at the given rate Pm through
the Polynomial Mutation (PM) operator with the distribution index ηm [52] (line 6). The
resulting new chromosomes are included in the population P (line 7). By the end of each
generation, only the NP fittest chromosomes are preserved in the population P (line 8).
After the maximum number of generations Gmax is reached, the best chromosome in the
population is taken as the solution to the optimization problem (lines 10 and 11).

Algorithm 3: Genetic Algorithm

Input: Maximum number of generations (Gmax), Number of individuals in
population (NP), Crossover probability (Pc), Mutation probability (Pm),
Distribution index for SBX (ηc), Distribution index for PM (ηm), Scaling
factor (F), Objective function (J), Search space bounds (dmin and dmax).

Output: Best design vector (pbest).
1 G ← 0
2 Generate an initial population P with NP chromosomes randomly selected

between dmin and dmax.
3 while G < Gmax do
4 Select NP/2 couples of chromosomes from a binary tournament based on J.

The contenders are chosen randomly from P.
5 Recombine each couple of chromosomes using the SBX crossover operator [51]

with a distribution index ηc. To recombine a couple, rand(0, 1) < Pc must be
satisfied.

6 Mutate each offspring chromosome using the PM operator [52] with a
distribution index ηm. To mutate to a descendant chromosome,
rand(0, 1) < Pm must be satisfied.

7 Include the chromosomes resulting from the two previous operations in P.
8 Preserve only the fittest NP chromosomes of P based on J.
9 G ← G + 1

10 Select pbest as the best individual from the population P based on J.
11 return pbest

4.3.3. Particle Swarm Optimization

Unlike the evolutionary algorithms DE and GA, Particle Swarm Optimization (PSO)
is a representative swarm intelligence method. This kind of metaheuristic is inspired
by the collaborative nature of species in search of survival [53]. PSO considers a swarm
of particles (e.g., individuals of any species) whose positions change over time to find
a beneficial location (e.g., with the greatest amount of resources). A universally used
variant of PSO considers a swarm with fully connected topology (i.e., each particle knows
the others) and assumes that the particles have a memory of their best positions and the
best position of the swarm. Furthermore, using a linearly decreasing inertia factor while
updating particle positions has been shown to be beneficial in many PSO applications [54].
Algorithm 4 describes the operation of the above PSO variant. In PSO, D-dimensional
vectors pi = [xi1 , pi2 , . . . , piD ]

T , i = 1, 2, . . . , NP represent the position of each particle in a
swarm of NP. Each position is a candidate solution to the optimization problem. These
positions are generated randomly in the search space bounded by dmin and dmax (lines 1 and
2). In addition, each particle keeps a record of its best-known position (line 3) and the best-
known position by the swarm (line 4). At each iteration, PSO updates the velocity of each
particle using an inertia weight, its current position, its best-known position (also known as
personal best), and the best-known position of the swarm (also known as global best) using
the constants C1 and C2 that ponders the local and global knowledge respectively, with
C1 + C2 < 4 (line 8). The inertia weight w starts in a maximum value wmax and decreases
linearly on each iteration until wmin (line 6). The calculated velocity updates the particle
position (line 7). Every time a particle position is obtained, the personal and global best
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positions are updated (lines 10 and 11). When the last iteration Gmax is reached, the global
best position is selected as the solution to the optimization problem.

Algorithm 4: Particle Swarm Optimization

Input: Maximum number of iterations (Gmax), Number of individuals in
population (NP), Crossover rate (CR), Local knowledge constant (C1),
Global knowledge constant (C2), Minimum inertia weight (wmin),
Maximum inertia weight (wmax), Objective function (J), Search space
bounds (dmin and dmax).

Output: Best design vector (pgbest).
1 G ← 0
2 Generate an initial swarm P with NP particle positions randomly selected

between dmin and dmax.
3 Initialize the best positions known by the particles Ppbest with the initial positions

in P.
4 Select the best position known by the swarm pgbest as the best position in Ppbest

based on J and hj, j = 1, . . . , nh.
5 while G < Gmax do
6 Update the inertia weight using:

w = wmax − G
Gmax

(wmax − wmin).
7 foreach pi ∈ P do
8 Calculate the particle velocity using its personal best position ppbest

i and
pgbest:

ṗi = w + β1C1(ppbest
i − pi) + β2C2(pgbest − pi)

with β1 and β2, two random numbers in [0, 1], and C1 and C2 the
constants that ponder the local and global knowledge of the swarm, with
C1 + C2 < 4.

9 Update the particle position using:
pi = pi + ṗi

10 Update the best position known by the particle ppbest
i based on J.

11 Select the best position known by the swarm as the best position in Ppbest

based on J.
12 G ← G + 1

13 return pgbest

4.4. Additional Considerations on the Metaheuristic Optimizers

The original versions of the aforementioned algorithms consider unconstrained single-
objective optimization problems with continuous variables. In this section, we present the
aspects that must be considered in the metaheuristic optimizers to be able to handle the
dynamic path planning problem for the differential mobile robot.

4.4.1. Handling Hard Constraints

For unconstrained optimization problems, whenever it is necessary to discriminate
a solution in DE, GA, or PSO, only the value of the objective function J is considered. In
the case of problems with constraints, such as dynamic path planning, it is necessary to
incorporate a mechanism that considers the feasibility of the solutions (i.e., the extent to
which they comply with the constraints). Deb’s rules mechanism is a simple and efficient
alternative to handle constrained problems [55]. For this purpose, the rules first weigh the
feasibility and then the optimality when comparing two solutions.

Deb’s feasibility rules establish the following [55]:

1. If a feasible solution is compared against a non-feasible solution, then the former
is preferred;
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2. If two feasible solutions are compared, the one with the best objective function value
is preferred;

3. If two infeasible solutions are compared, the one with the lowest constraint violation
sum is preferred.

The constraint violation sum is represented as follows for a dynamic optimization
problem:

φ(p, t) =
ng

∑
i=1

max{0, gi(p, t)}2 +
nh

∑
j=1
|hj(p, t)| (33)

The above rules are included in the metaheuristics to handle the constraints of the
dynamic path planning problem.

4.4.2. Handling Box Constraints

Another problem faced by these metaheuristics is to ensure that the solutions generated
during their operation remain within the search space given by dmin and dmax (i.e., the box
constraints). The metaheuristics used in this work adopt a simple mechanism to handle
box constraints. This mechanism consists of regenerating the variable randomly when it
exceeds the bounds dmin and dmax:

pi,j =

{
pi,j, if dmin,j ≥ pi,j ≥ dmax,j

dmin,j + rand(0, 1)(dmax,j − dmin,j), otherwise
(34)

4.4.3. Handling Mixed Variables

As could be observed in the problem in (30)–(32), the design variables considered are
mixed [56]. This is because the control gains g1 and q2 in (30) are continuous, while the
avoidance direction s ∈ {−1, 1}. By their very nature, the metaheuristics considered in this
work can handle only continuous variables. However, a simple mechanism is incorporated
to handle mixed variables to solve the dynamic planning problem. The mechanism consists
of mapping the value of s to the values in the set {−1, 1} with (35) each time the problem
needs to be evaluated or when the solution is used in Bug0.

s =
{

1, if s ≥ 0
−1, otherwise

(35)

5. Experiments and Results

The dynamic path planner described in the previous section is tested in simulation.

5.1. Experiments Details

For the experimentation, the robot is simulated with the dynamic model in (22) to
provide results closer to reality. In that model, the kinematic parameters of the mobile robot
are L = 15 (cm) and r = 2.4 (cm), while the dynamic ones are m = 0.75 (kg) and Iz = 0.001
(kg·m2), as proposed in [39]. The mobile robot simulation is performed using the numerical
Euler integration method with a step size dt = 0.03 (s). Additionally, the proportional gains
of the inverse dynamics controller in (26) are chosen as kpv = 50 and kpω = 50 to govern
the robot wheels based on the input commands v and ω. On the other hand, the scenario is
not bounded and matches the horizontal XY plane. Moreover, the start and goal points are
fixed in the scenario. The start point is ξ0 = [0, 0]T (m) and the goal is ξg = [4, 0]T (m). The
initial orientation of the differential mobile robot is θ0 = 0 (rad). Seven dynamic obstacles
are considered within the scenario (nobs = 7), each of them with the same size of the mobile
robot, i.e., Lk = L, k = 1, 2, . . . , nobs. The dynamic behavior of each obstacle in the scenario
is described in Table 1. The threshold used in Bug0 is set as µ = 0.25 (m) .



Mathematics 2022, 10, 3990 16 of 28

Table 1. Dynamic behavior of obstacles in the test scenario for t ∈ [0, 15] (s).

Obstacle x (m) y (m)

1 1.0 0.1 sin
( t

2
)

2 2.0 + 0.2 cos
( t

2
)

−0.2 + 0.2 sin
( t

2
)

3 3.0 0.1 cos
( t

2
)

4 1.0 + 0.5 cos
( t

2
)

0.25
5 3.0 + 0.5 sin

( t
2
)

−0.25
6 2.0 + 2.0 sin(2t) 0.5
7 2.0 + 2.0 cos(2t) −0.5

Concerning the dynamic optimization problem, the box constraints used to limit
the values of the design variables are as follows: dmin = [0.0, 0.0,−1.0]T and dmax =
[1.0, 10.0, 1.0]T . As for the kinematic simulation of the mobile robot required to make future
predictions, a sampling interval dt, a prediction horizon h = 10, and Euler’s numerical
integration method are used.

In the case of the metaheuristics DE, GA, and PSO, their parameters are selected based
on the suggestions in the specialized literature. The parameters of DE are the scaling factor
F generated randomly in [0.3, 0.9] at each generation and the crossover rate CR = 0.5 [48].
In the case of GA, the crossover and mutation probabilities are Pc = 1 (this value ensures
that the same number of evaluations of the optimization problem are always carried out per
generation) and Pm = 1/3, while their distribution indexes are ηc = 20 and ηm = 20 [50].
Finally, in PSO, the local and global knowledge constants are C1 = 2 and C2 = 2, and the
bound of the inertia weight are vmin = 0.4 and vmax = 0.9 [54]. The population/swarm
size is established as NP = 25 and the maximum number of generations/iterations as
Gmax = 100 for all metaheuristics. The above aims to ensure that the computational cost of
the optimization can be affordable in possible physical experimentation. The optimization
procedure with the metaheuristics is launched when dobs < µ. Since the controller gains
are not optimized by DE until the first time that dobs < µ is fulfilled, then it is used at first
the pair of fixed gains g1 = 0.4 and g2 = 5 proposed in [39].

All experiments are performed on a conventional personal computer and implemented
in C++. The source code can be found at https://dr-rodriguez-molina.com/codes/ (ac-
cessed on 12 October 2022).

5.2. Results and Discussion

In order to generate simulation results and obtain sufficient evidence of the proposal’s
performance (from now on, D-Bug0), 30 independent runs were performed with each
metaheuristic optimizer under the experimental conditions described in the previous
section. The versions of D-Bug0 using Differential Evolution, Genetic Algorithm, and
Particle Swarm Optimization are named D-Bug0/DE, D-Bug0/GA, and D-Bug0/PSO,
respectively.

Table 2 shows the summary statistics on the performance of the alternatives D-
Bug0/DE, D-Bug0/GA, and D-Bug0/PSO considering different indicators: the total path
length, the number of collisions with the dynamic obstacles, the time it took the differential
mobile robot to reach the goal, its average speed, and the computational time to process
both the proposed path planning algorithm and the simulation. The best results in this
table are highlighted in boldface.

Based on Table 2, the proposed dynamic planner D-Bug0 can generate free-collision
paths regardless of the adopted metaheuristic and despite the scenario having multiple
moving obstacles. This is highly relevant because it could help safeguard the integrity
of the actual differential mobile robot in a physical experimental environment to avoid
unnecessary repair costs. Concerning the other indicators, significant differences can be
noted in the performance of the three dynamic planners. The PSO-based alternative stands
out from the others in terms of path length, time to goal, and execution time. On the other
hand, D-Bug0/GA helps the mobile robot track the path at the highest speed. In the same

https://dr-rodriguez-molina.com/codes/
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table, the small value of the standard deviation, compared to the mean, for all indicators,
indicates that the results obtained are very similar in each run, highlighting the reliability
of D-Bug0.

Table 2. Descriptive statistics on the results of the 30 independent executions with D-Bug0/DE,
D-Bug0/GA, and D-Bug0/PSO.

Measure Indicator D-Bug0/DE D-Bug0/GA D-Bug0/PSO

Path length (m) Mean 4.0955 4.1085 4.0909
Std. 0.0044 0.0057 0.0017
Min. 4.0897 4.0976 4.0887
Max. 4.1024 4.1183 4.0947

Collisions Mean 0.0000 0.0000 0.0000
Std. 0.0000 0.0000 0.0000
Min. 0.0000 0.0000 0.0000
Max. 0.0000 0.0000 0.0000

Arrival time (s) Mean 12.1890 12.2170 12.1860
Std. 0.0140 0.0129 0.0122
Min. 12.1800 12.2100 12.1800
Max. 12.2100 12.2400 12.2100

Speed (m/s) Mean 0.3360 0.3363 0.3357
Std. 0.0003 0.0003 0.0003
Min. 0.3354 0.3356 0.3351
Max. 0.3365 0.3370 0.3361

Execution time (s) Mean 3.2064 3.2254 3.1925
Std. 0.0508 0.0474 0.0390
Min. 3.1610 3.1700 3.1510
Max. 3.4260 3.4220 3.3800

Although the results in Table 2 provide an overview of the performance of the different
D-Bug0 planners, it is necessary to confirm the results with a non-parametric statistical
test due to the stochastic behavior of the metaheuristics, which generates non-normal
distributions of results for each group of 30 independent runs [57]. The pairwise Wilcoxon
rank-sum test was adopted for this purpose considering a two-sided alternative hypothesis
(this establishes that two results distributions have significant differences) and a statistical
significance α = 5% (the minimum probability to accept the alternative hypothesis). The
results of the Wilcoxon tests are in Table 3. This table includes information from the
Wilcoxon tests performed for each indicator considered in Table 2. In addition, it describes
the test performed and shows the sums of ranks R+ and R− (these indicate respectively the
number of times the first method outperformed the second and vice versa). The p-value in
the last column denotes the probability of accepting the alternative hypothesis and rejecting
the null hypothesis (this establishes that two results distributions do not have significant
differences). The winner of each pairwise test is shown in boldface. Table 4 summarizes the
number of wins for each dynamic planner in the Wilcoxon test. Here, it can be confirmed
that D-Bug0/PSO is the best alternative.

Having identified that the best dynamic planner is D-Bug0, it is appropriate to perform
a more in-depth analysis of its performance. In this way, Table 5 shows the results obtained
with the D-Bug0/PSO planner corresponding to its 30 independent runs. The first column
includes the run number, while the following columns show the path length, collisions,
arrival time, speed, and execution time. At the bottom of the table are the summary
statistics for each of the above columns. The results in boldface refer to the best results of
the 30 runs.
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Table 3. Pairwise Wilcoxon tests over the results of the 30 independent executions with D-Bug0/DE,
D-Bug0/GA, and D-Bug0/PSO.

Measure Test R+ R− p-Value

Path length D-Bug0/DE vs. D-Bug0/GA 464 1 3.7252 × 10−9

D-Bug0/DE vs. D-Bug0/PSO 43 422 2.3666 × 10−5

D-Bug0/GA vs. D-Bug0/PSO 0 465 1.8626 × 10−9

Collisions D-Bug0/DE vs. D-Bug0/GA 0 0 1.0000
D-Bug0/DE vs. D-Bug0/PSO 0 0 1.0000
D-Bug0/GA vs. D-Bug0/PSO 0 0 1.0000

Arrival time D-Bug0/DE vs. D-Bug0/GA 253 0 2.0342 × 10−5

D-Bug0/DE vs. D-Bug0/PSO 48 72 0.4578
D-Bug0/GA vs. D-Bug0/PSO 0 325 4.8413 × 10−6

Speed D-Bug0/DE vs. D-Bug0/GA 81 384 0.0012
D-Bug0/DE vs. D-Bug0/PSO 387 78 0.0009
D-Bug0/GA vs. D-Bug0/PSO 462 3 9.3132 × 10−9

Execution time D-Bug0/DE vs. D-Bug0/GA 310 125 0.0466
D-Bug0/DE vs. D-Bug0/PSO 136.5 328.5 0.0494
D-Bug0/GA vs. D-Bug0/PSO 43 422 0.0001

Table 4. Summary of the pairwise Wilcoxon tests over the results of the 30 independent executions
with D-Bug0/DE, D-Bug0/GA, and D-Bug0/PSO.

Measure D-Bug0/DE D-Bug0/GA D-Bug0/PSO

Path length 1 0 2
Collisions 0 0 0

Arrival time 1 0 1
Speed 1 2 0

Execution time 1 0 2

Total wins 4 2 5

In Table 5, it can be observed that the difference between the minimum and maximum
values is less than 0.01 (m) for the path length, approximately 0.01 (s) for the arrival time,
and 0.003 (m/s) for the speed, which further denotes that such reliability in spite that
D-Bug0/PSO is stochastic. On the other hand, D-Bug0/PSO shows efficiency since all
the simulation runs are performed in an acceptable time in proportion to the arrival time.
This is observed in the execution time column, where the results do not exceed 3.38 (s). In
contrast, the standard deviation for this column is slightly higher in proportion to the mean
concerning the rest of the columns. This is because the simulations are conducted on a
conventional computer where, in addition, multiple processes derived from the operational
functioning are executed at the same time.

At this point, making some observations regarding the execution time is important.
One of the aspects that have a greater influence on the execution time in D-Bug0/PSO
are the parameters of the PSO optimizer. In particular, Gmax and NP are the values that
have the greatest impact on the time since they determine the number of evaluations of
the optimization problem that the metaheuristics utilize (the number of evaluations is
Gmax NP). If the number of evaluations is insufficient, the optimizer may find solutions
far from optimal. On the other hand, if the number of evaluations is excessive, time may
prevent the practical implementation of the planner. One way to evaluate whether the
number of evaluations is sufficient is through convergence plots such as those shown in
Figure 3. This figure shows the evolution of objective function value J for the best solution
in the swarm over the iterations in different optimization processes for an arbitrary run of
D-Bug0/PSO. The figure shows that PSO needs about 50 iterations to obtain an unbeatable
solution. Considering that, under the proposed experimental conditions, D-Bug0/PSO
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requires, on average, 96 optimization processes to complete the planning, the processing
time for each process is affordable (i.e., less than dt), with an adequate budget for problem
evaluations. In the case of processing equipment with fewer resources than a conventional
PC, the time window to obtain a solution with the metaheuristics can be longer, as it has
been observed in other online optimization works [58], however, some parameters of the
proposal, such as µ, must also be readjusted.

Table 5. Results of D-Bug0/PSO after 30 independent runs.

Run Path Length (m) Collisions Arrival Time (s) Speed (m/s) Execution Time (s)

1 4.0904 0 12.1800 0.3358 3.3800
2 4.0901 0 12.1800 0.3358 3.2160
3 4.0925 0 12.1800 0.3360 3.1840
4 4.0925 0 12.2100 0.3352 3.1880
5 4.0893 0 12.1800 0.3357 3.2430
6 4.0897 0 12.1800 0.3358 3.1800
7 4.0912 0 12.1800 0.3359 3.1940
8 4.0894 0 12.1800 0.3357 3.1780
9 4.0924 0 12.2100 0.3352 3.1810
10 4.0947 0 12.2100 0.3354 3.2050
11 4.0887 0 12.1800 0.3357 3.1820
12 4.0908 0 12.1800 0.3359 3.1770
13 4.0933 0 12.2100 0.3352 3.1800
14 4.0893 0 12.1800 0.3357 3.1770
15 4.0945 0 12.2100 0.3353 3.1900
16 4.0900 0 12.1800 0.3358 3.1730
17 4.0891 0 12.1800 0.3357 3.1810
18 4.0898 0 12.1800 0.3358 3.1960
19 4.0927 0 12.1800 0.3360 3.1870
20 4.0904 0 12.1800 0.3358 3.1830
21 4.0901 0 12.1800 0.3358 3.1870
22 4.0898 0 12.1800 0.3358 3.1790
23 4.0888 0 12.1800 0.3357 3.1940
24 4.0898 0 12.1800 0.3358 3.1780
25 4.0894 0 12.1800 0.3357 3.1800
26 4.0936 0 12.1800 0.3361 3.1510
27 4.0902 0 12.1800 0.3358 3.1870
28 4.0923 0 12.1800 0.3360 3.1560
29 4.0897 0 12.1800 0.3358 3.2020
30 4.0919 0 12.2100 0.3351 3.1850

Mean 4.0909 0.0000 12.1860 0.3357 3.1925
STD 0.0017 0.0000 0.0122 0.0003 0.0390
Min 4.0887 0.0000 12.1800 0.3351 3.1510
Max 4.0947 0.0000 12.2100 0.3361 3.3800

It is also interesting to observe a sketch of the behavior of D-Bug0/PSO. Figure 4
shows an arbitrary execution of D-Bug0/PSO. This figure plots the complete scenario every
1.5 (s). The red, green, black, and blue circles represent the obstacles, the goal, the robot,
and the path’s starting point, respectively. This figure shows how D-Bug0/PSO changes
the avoidance direction and robot speed to avoid collisions with dynamic obstacles.

In addition, the results of D-Bug0/PSO are compared with those obtained with the
original Bug0 algorithm considering obstacle avoidance always to the left and to the right
(from now on, Bug0+ and Bug0−, respectively). The fixed gains for the controllers in
Bug0+ and Bug0− are the same as the initial ones for D-Bug0, i.e., g1 = 0.4 and g2 = 5.
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Figure 3. PSO convergence plots for different optimization processes during an arbitrary D-
Bug0/PSO run.
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Figure 4. Behavior of D-Bug0/PSO for an arbitrary run. The complete scenario is shown every 1.5 (s).

Tables 6 and 7 include the results obtained with Bug0− and Bug0+ (i.e., Bug0 with
fixed parameters and different obstacle avoidance directions), respectively, after 30 inde-
pendent runs under the same experimental conditions as D-Bug0/PSO. The first column
of these tables shows the number of the run, and the following columns show the travel
distance, the number of times the robot collided with the dynamic obstacles, the time it
took for the robot to reach the goal, the speed and the time it took for the computer to
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process each variant of the Bug0 algorithm as well as the simulation. As in Table 5, the
lower part of these two tables shows the same statistical measures for each column, and,
similarly, the best results are shown in boldface.

Tables 6 and 7 show that the standard deviation is zero for path length, arrival time,
and speed, highlighting the deterministic behavior of the Bug0 algorithms. Therefore, the
same results of these columns are always observed in each of the 30 independent runs
of the Bug0 algorithms. Small variations in execution time values are attributed to other
tasks executed in the computer’s operating system. On the other hand, one of the most
important findings in these two tables is that the paths generated by Bug0+ and Bug0−
always collide with dynamic obstacles. In the case of Bug0−, Table 6 shows that the number
of collisions is 19, while in the case of Bug0−, Table 7 indicates it is 16. The difference
between the number of collisions is due to the fixed direction in which Bug0+ and Bug0−
avoid obstacles. The above results indicate that although the null variation in the results
of the runs could be desirable, the generated paths do not meet the objective of collision
avoidance and may lead to additional costs during physical testing. For this reason, Bug0
with fixed parameters may not be suitable for path planning in dynamic environments.

Table 6. Results of Bug0− after 30 independent runs.

Run Path Length (m) Collisions Arrival Time (s) Speed (m/s) Execution Time (s)

1 5.3562 19 19.1100 0.2803 0.0030
2 5.3562 19 19.1100 0.2803 0.0020
3 5.3562 19 19.1100 0.2803 0.0020
4 5.3562 19 19.1100 0.2803 0.0020
5 5.3562 19 19.1100 0.2803 0.0040
6 5.3562 19 19.1100 0.2803 0.0030
7 5.3562 19 19.1100 0.2803 0.0030
8 5.3562 19 19.1100 0.2803 0.0030
9 5.3562 19 19.1100 0.2803 0.0040
10 5.3562 19 19.1100 0.2803 0.0030
11 5.3562 19 19.1100 0.2803 0.0040
12 5.3562 19 19.1100 0.2803 0.0040
13 5.3562 19 19.1100 0.2803 0.0040
14 5.3562 19 19.1100 0.2803 0.0030
15 5.3562 19 19.1100 0.2803 0.0030
16 5.3562 19 19.1100 0.2803 0.0030
17 5.3562 19 19.1100 0.2803 0.0030
18 5.3562 19 19.1100 0.2803 0.0030
19 5.3562 19 19.1100 0.2803 0.0030
20 5.3562 19 19.1100 0.2803 0.0030
21 5.3562 19 19.1100 0.2803 0.0040
22 5.3562 19 19.1100 0.2803 0.0040
23 5.3562 19 19.1100 0.2803 0.0030
24 5.3562 19 19.1100 0.2803 0.0030
25 5.3562 19 19.1100 0.2803 0.0030
26 5.3562 19 19.1100 0.2803 0.0040
27 5.3562 19 19.1100 0.2803 0.0030
28 5.3562 19 19.1100 0.2803 0.0030
29 5.3562 19 19.1100 0.2803 0.0030
30 5.3562 19 19.1100 0.2803 0.0080

Mean 5.3562 19 19.1100 0.2803 0.0033
Std. 0.0000 0 0.0000 0.0000 0.0011
Min. 5.3562 19 19.1100 0.2803 0.0020
Max. 5.3562 19 19.1100 0.2803 0.0080
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Table 7. Results of Bug0+ after 30 independent runs.

Run Path Length (m) Collisions Arrival Time (s) Speed (m/s) Execution Time (s)

1 5.0425 16 16.3500 0.3084 0.0010
2 5.0425 16 16.3500 0.3084 0.0030
3 5.0425 16 16.3500 0.3084 0.0030
4 5.0425 16 16.3500 0.3084 0.0020
5 5.0425 16 16.3500 0.3084 0.0020
6 5.0425 16 16.3500 0.3084 0.0020
7 5.0425 16 16.3500 0.3084 0.0030
8 5.0425 16 16.3500 0.3084 0.0030
9 5.0425 16 16.3500 0.3084 0.0030
10 5.0425 16 16.3500 0.3084 0.0030
11 5.0425 16 16.3500 0.3084 0.0030
12 5.0425 16 16.3500 0.3084 0.0030
13 5.0425 16 16.3500 0.3084 0.0030
14 5.0425 16 16.3500 0.3084 0.0020
15 5.0425 16 16.3500 0.3084 0.0030
16 5.0425 16 16.3500 0.3084 0.0030
17 5.0425 16 16.3500 0.3084 0.0030
18 5.0425 16 16.3500 0.3084 0.0030
19 5.0425 16 16.3500 0.3084 0.0030
20 5.0425 16 16.3500 0.3084 0.0030
21 5.0425 16 16.3500 0.3084 0.0030
22 5.0425 16 16.3500 0.3084 0.0030
23 5.0425 16 16.3500 0.3084 0.0030
24 5.0425 16 16.3500 0.3084 0.0030
25 5.0425 16 16.3500 0.3084 0.0030
26 5.0425 16 16.3500 0.3084 0.0030
27 5.0425 16 16.3500 0.3084 0.0020
28 5.0425 16 16.3500 0.3084 0.0030
29 5.0425 16 16.3500 0.3084 0.0030
30 5.0425 16 16.3500 0.3084 0.0030

Mean 5.0425 16 16.3500 0.3084 0.0028
Std. 0.0000 0 0.0000 0.0000 0.0005
Min. 5.0425 16 16.3500 0.3084 0.0010
Max. 5.0425 16 16.3500 0.3084 0.0030

Based on Tables 5–7, it can be noted that the paths generated by D-Bug0/PSO have, in
all cases, reduced path lengths, collisions, and arrival times, and consequently, higher speed
values. Based on the above, the paths generated by D-Bug0/PSO are better than those of
the original Bug0 planning method. In particular, the fact that the number of collisions in
the paths generated by D-Bug0 is zero, while in the paths obtained by Bug0+ and Bug0− it
is different, indicates a great advantage of the first method since it can lead to significant
savings in robot damage costs in a real scenario. Therefore, after observing the data yielded
by the path planners, the high efficiency of the D-Bug0/PSO becomes clear since it obtains
better results in all the aspects listed in the Tables 5–7, except for the simulation execution
time, although the last one is still affordable for eventual experimentation with the physical
device.

Finally, Figures 5 and 6 describe the behavior of an arbitrary execution of Bug0− and
Bug0+, respectively. These figures include plots of the full scenario every 1.5 (s). The red,
green, black, and blue circles represent the obstacles, the goal, the differential mobile robot,
and the start of the path, respectively. These figures show how the Bug0 path planner tries
(and sometimes fails) to avoid dynamic obstacles by changing the robot’s direction to the
left (for Bug0+) or right (for Bug0−) of the potential collision point, even when it might
not be the most suitable direction. Moreover, it is observed that, for some obstacles, the
speed with which the robot moves, related to the fixed gains g1 and g2, is adequate.



Mathematics 2022, 10, 3990 24 of 28

x(m)

y
(m

)

x(m)

y
(m

)

t = 0.0 (s) t = 1.5 (s)

x(m)

y
(m

)

x(m)

y
(m

)

t = 3.0 (s) t = 4.5 (s)

x(m)

y
(m

)

x(m)

y
(m

)
t= 6.0 (s) t = 7.5 (s)

x(m)

y
(m

)

x(m)

y
(m

)

t = 9.0 (s) t = 10.5 (s)

x(m)

y
(m

)

x(m)

y
(m

)

t = 12.0 (s) t = 13.5 (s)

x(m)

y
(m

)

x(m)

y
(m

)

t = 15.0 (s) t = 16.5 (s)

x(m)

y
(m

)

x(m)

y
(m

)

t = 18.0 (s) t = 19.5 (s)

Figure 5. Behavior of Bug0− for an arbitrary run. The complete scenario is shown every 1.5 (s).
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Figure 6. Behavior of Bug0+ for an arbitrary run. The complete scenario is shown every 1.5 (s).

6. Conclusions and Future Work

Path planning is an essential task for the differential mobile robot. This task is complex
due to the environment features and the robot’s behavior. Planning is harder when the envi-
ronment is dynamic and deterministic planners may fail to obtain safe and well-performing
alternatives. Nevertheless, proposed advanced methods can resolve this kind of scenario,
but their implementation complexity and cost may not be suitable for all applications.
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For this reason, the proposed path planning method combines the performance of
the deterministic planner Bug0 and metaheuristic techniques to optimize it in achieving
optimized and collision-free paths with an affordable computational cost. In this sense, it is
observed that Bug0 is effective in static scenarios where obstacles can always be avoided
in the same direction. When the scenarios are dynamic, Bug0 may collide since it cannot
predict a future interaction between the moving obstacles and the robot. Therefore, the pro-
posal includes a predictive stage, which allows the planner to estimate the robot’s behavior
within a future time window and thus determine the best speed control parameters and
avoidance direction. To this end, three well-known metaheuristics, including Differential
Evolution, the Genetic Algorithm, and Particle Swarm Optimization, are implemented in
the proposal to test different combinations of the above values and determine the alternative
that allows the robot to approach the goal without colliding.

Based on the results obtained in the simulation, the dynamic planner based on PSO
(D-Bug0/PSO) obtains the best collision-free paths with reduced length and arrival time.
Likewise, the computational time required by the proposal is affordable and can be used in
a physical prototype. Compared to the original Bug0 with fixed parameters, D-Bug0/PSO
is significantly better since the former caused the robot to collide several times and increases
the path length due to its deterministic behavior.

Future work intends to implement a method to predict the paths of dynamic obstacles
and use their information within the planner instead of assuming that their behaviors
are known. In addition, online variants of the metaheuristics used are contemplated to
avoid starting each optimization process from scratch and reduce computational time. This
research can be tested with a physical object by managing these limitations.
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