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Abstract: In this paper, we consider the problem of estimating the graphs of conditional dependencies
between variables (i.e., graphical models) from multiple datasets under Gaussian settings. We present
jewel 2.0, which improves our previous method jewel 1.0 by modeling commonality and class-specific
differences in the graph structures and better estimating graphs with hubs, making this new approach
more appealing for biological data applications. We introduce these two improvements by modifying
the regression-based problem formulation and the corresponding minimization algorithm. We also
present, for the first time in the multiple graphs setting, a stability selection procedure to reduce the
number of false positives in the estimated graphs. Finally, we illustrate the performance of jewel 2.0
through simulated and real data examples. The method is implemented in the new version of the R
package jewel.

Keywords: group lasso penalty; data integration; network estimation; stability selection

MSC: 62A09; 62J07; 92-08

1. Introduction

Gaussian graphical models (GGMs) are becoming essential tools for studying the
relationships between Gaussian variables. They are pervasive in many fields, especially
biology and medicine, where the variables are usually genes or proteins, and the edges
represent their interactions. In addition, researchers now often have several datasets
measuring the same set of variables, i.e., data collected under slightly different conditions,
on varying types of equipment, in different labs, or even for sub-types of disease. In this
case, we expect most connections between variables to be the same or similar across the
datasets; hence, GGM joint estimation is desirable to improve the estimation accuracy.

In [1], we proposed jewel, a technique for the joint estimation of a GGM in the multiple
dataset framework under the hypothesis that the graph structure is the same across the
classes. The jewel technique uses a node-wise regression approach (based on [2]) with
a group lasso penalty and has the advantage of providing a symmetric estimate of the
adjacency matrix, which encodes the graph’s structure. In this paper, we present jewel 2.0,
which attempts to extend jewel by addressing several aspects and enlarging its range
of applications.

Firstly, we modified the problem formulation to allow the simultaneous modeling of
commonalities and differences between datasets. In particular, we estimated a graph for
each class or dataset, assuming that all graphs share considerable amount of information
(denoted as the common part in the text, representing the edges present in all graphs) but
can exhibit some class-specific differences (representing the edges present only in some
graphs). Such an assumption significantly extends the range of applications since the
estimation of class-specific differences is of interest in several contexts, for example, when
we want to estimate gene regulatory networks associated with different disease sub-types.
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In such cases, the common part captures the main mechanisms associated with the disease,
while the class-specific model captures the differences related to a particular sub-type.
Although other joint estimation methods (see Section 3.3) have previously allowed this
extension, jewel 2.0 is the first method that both provides symmetric estimates of the graphs
(as with our previous jewel 1.0) and accounts for differences between graphs.

Secondly, we improved the method’s performance when applied to graphs with hubs,
which often describe biological networks. In the numerical studies presented in [1], we
noticed that the performance of jewel, as well as of the other joint estimation methods,
deteriorates when the underlying graphs have prominent hubs (i.e., a few nodes with high
degrees). We argued that this phenomenon was due to the type of “democratic” penalty
used in the problem formulation that does not allow some vertices to get the power to
become a hub/leader. Therefore, in jewel 2.0, we introduced specific weights into the
penalty function to enable hubs to emerge. The weights reduce the penalization of edges
incident to the potential hub node, allowing even more edges to “join” that vertex. This
modification considerably improves the performance of jewel 2.0, as shown by numerical
simulations carried out on synthetic graphs.

Finally, in this paper, we also incorporate a stability selection procedure to reduce the
number of false positives (i.e., estimated edges that are not truly present in the underlying
graph). In the high-dimensional context (i.e., when p >> n), methods often suffer from
increasing false positives or lack of power, depending on the choice of the regularization
parameter. Although simulations show that the overall performance is competitive, esti-
mated graphs must be sparse to be interpretable, but the presence of false positive edges
decreases the interpretability of the estimated network. We observed a significant presence
of incorrectly estimated edges in all methods we compared (under high dimensional set-
tings), although ROC curves are not dramatically impacted. Stability selection procedures
can alleviate the problem of false positives at the price of a slight loss of statistical power.
Our stability procedure extends the ideas of [3] to the multiple graph context, suggesting
the choice of only edges that persistently appear in the several runs of the method on
subsampled data; see Section 2.4 for details. To the best of our knowledge, jewel 2.0 is the
first method that employs a stability selection procedure to refine the estimated networks
in the context of joint inference.

The rest of the paper is organized as follows. In Section 2, we provide the necessary
background and introduce the jewel 2.0 method as well as the numerical algorithm for
its evaluation. In Section 3, we use synthetic data to demonstrate the performance of
jewel 2.0 in several scenarios and present a comparison with other existing methods. Then,
in Section 4, we demonstrate the application of jewel 2.0 to breast cancer gene expression
datasets. Finally, in Section 5, we discuss our study’s advantages and limitations and
provide directions for future work.

2. Materials and Methods

This section introduces the mathematical notations and the assumptions made in
this paper. Then, we describe the penalization model that allows the approach both to
incorporate differences among classes and to handle the presence of hubs. After that,
we propose the jewel 2.0 algorithm for the joint estimation of Gaussian graphical models.
Finally, the section also describes the choice of the regularization parameters and the
stability selection procedure and highlights the differences from our previous method,
jewel 1.0.

2.1. Problem Set-Up

Let X(1), X(2), . . . , X(K) be K ≥ 2 datasets containing measurements of (almost) the
same variables under K different but similar conditions (e.g., sub-types of disease) or
collected in distinct classes (e.g., different equipment or laboratories). Each dataset X(k) is
an nk × pk data matrix with nk observations of pk variables. We assume that observations
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(x(k)1 , . . . , x(k)nk )
> are independent and identically distributed samples from a pk-variate

Gaussian distribution with zero mean and covariance matrix Σ(k).
Every distribution N (0, Σ(k)) is associated with a graphical model G(k) = (Vk, Ek),

where vertices correspond to random variables, i.e., Vk = {X
(k)
1 , . . . , X(k)

pk }, and the absence
of edges (where Ek ⊆ Vk ×Vk) implies the conditional independence of the corresponding
variables, i.e., (i, j) /∈ Ek ⇔ X(k)

i ⊥⊥ X(k)
j |X

(k)
{l, l 6=i, j}. It is well known that the support of

the precision matrix encodes the graph structure, i.e., (i, j) ∈ Ek ⇐⇒ Ω(k)
ij 6= 0, where

Ω(k) = (Σ(k))−1 is the true precision matrix for the k-th class. Therefore, for each dataset,
the problem of graph estimation becomes equivalent to estimating the support of the
precision matrix, as illustrated in Figure 1. However, when the K datasets share some
dependency structure (as occurs when we consider similar datasets), a joint inference can
be more powerful and accurate, as already shown in [1] and referenced therein. The joint
inference requires modeling how the information about the graphs G(k) is shared across
different datasets.

Figure 1. Idea of regression-based graphical model estimation for a single dataset X: estimate the
regression coefficient matrix Θ from the data and use its support as an adjacency matrix of the graph
G. See text for details.

In [1], we proposed the following joint estimation approach. We started with an
assumption that although the covariance matrices Σ(k), k = 1 . . . K, might be different,
the structures of K graphs coincide, i.e., the graph G is the same across all datasets. There-
fore, we needed to estimate the same support from K precision matrices. However, instead
of doing that directly, we estimated the support of K regression coefficient matrices. We
defined them as Θ(k) ∈ Rpk×pk with entries Θ(k)

ij = −Ω(k)
ij /Ω(k)

ii and Θ(k)
ii = 0. By construc-

tion, the support of the extra-diagonal entries of Θ(k) also encodes the graph structure,
i.e., (i, j) ∈ Ek ⇐⇒ Θ(k)

ij 6= 0. Hence, in jewel 1.0, we simultaneously estimated

Θ̂(1), . . . , Θ̂(K) by solving the following minimization problem:

(Θ̂(1), . . . , Θ̂(K)) = arg min
Θ(1)∈Rp1×p1

...
Θ(K)∈RpK×pK ,

diag= 0

{
1
2

K

∑
k=1

1
nk
||X(k) − X(k)Θ(k)||2F+

λ
p

∑
i<j=1

√
gij

√√√√ ∑
k:{Xi , Xj}⊂Vk

(
Θ(k)

ij

)2
+
(

Θ(k)
ji

)2
}

,

(1)

where gij denotes the cardinality of the group of symmetric variables (Θ(1)
ij , Θ(1)

ji , ......, Θ(K)
ij ,

Θ(K)
ji ) across all the datasets that contain the couple of variables (i, j). As a result, we

obtained K matrices (Θ̂(1), . . . , Θ̂(K)) with the same symmetric support, which represents
the adjacency matrix of the common estimated graph Ĝ.
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However, while the symmetry of the solution of Equation (1) is one of the main advan-
tages of our original formulation, forcing the datasets to have exactly the same underlying
graph might be a limitation in some cases. For example, the assumption that the datasets
X(k), k = 1 . . . K, share the same graph G might be reasonable when they represent the gene
expression of the same type of cells, measured in different laboratories or with different
instruments. In such cases, we expect the actual underlying regulatory mechanisms to
remain the same despite the technology. However, the assumption becomes limited when
the datasets represent the gene expression in cells isolated from different sub-types or
stages of some disease. In such a context, we expect a common underlying mechanism
that can be associated with that disease, but there could be sub-type-specific differences
that are not shared across all the datasets but characterize only one (or some, but not all)
condition. To overcome this limitation, in this paper, we modify the formulation of the
minimization problem in Equation (1) to allow the modeling of both commonalities and
differences between the graphs G(k), k = 1 . . . K. Therefore, by relaxing the assumptions,
we increase the range of applications of our approach.

Additionally, in [1] we demonstrated that jewel 1.0 performs comparably well or even
better than other joint approaches for GGM (i.e., JGL [4] and the proposal of Guo et al. [5]).
However, we also showed that all methods’ performances significantly decreased when
the true graph contained hubs. Scale-free graphs with a power of preferential attachment
bigger than 1 constitute typical examples of graphs with hubs. In general, many real-
life graphs such as gene regulatory networks or protein–protein interaction networks are
estimated to have a power law between 2 and 3. Therefore, we introduced some weights
into the penalization problem to allow for a better estimation of hubs. The key idea is
that small weights must be assigned to the edges linked to potential hubs so that hubs
can emerge (in other words, we allow the preferential attachment of an edge to a hub).
We will show that this modification leads to a considerable improvement in performance
when some preliminary information on the hubs is available. We note that although other
graph estimation methods with weighted penalties exist for one dataset, e.g., DW-lasso [6],
jewel 2.0 is the first joint method for several datasets with a weighted penalty.

To incorporate both changes, we reformulate the minimization problem as follows. We
define the set V = V1 ∪ · · · ∪VK with p being its cardinality. We define matrices of weights
for each graph, W(k), with entries W(k)

ij ∈ (0, 1]. These matrices incorporate information
about hubs when available (smaller weights should be assigned to edges incident to hubs,
larger weights to the others); otherwise, we set W(k) = 1. For each class k = 1 . . . K we
set Θ(k) = Ξ(k) + Γ(k), where matrices Ξ(k) share the same support structure among the
K classes (i.e., they represent the common information shared across different graphs)
while Γ(k) are class-specific (hence they allow to model differences among the classes). We
emphasize that Ξ(k) and Γ(k), k = 1 . . . K, act as auxiliary (or dummy) variables and do not
exactly represent common and specific parts of the graphs G(k). For example, non-zero
elements in position i, j of all Γ(k) are an indication of the common edge, despite the fact
of being present in class-specific Γ(k)s. In our procedure, we estimate Ĝ(k) through the
support of Θ(k) = Ξ(k) + Γ(k). Once we have estimated Ĝ(k), k = 1 . . . K, we can later
identify their common part as the intersection of the estimated graphs and the specific
parts as the difference between the common part and the individual estimates. With this
notation, we estimate Θ̂(1), . . . , Θ̂(K) by solving the following problem:
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(Ξ̂(1), Γ̂(1), . . . , Ξ̂(K), Γ̂(K)) = arg min
Ξ(1), Γ(1)∈Rp1×p1

...
Ξ(K), Γ(K)∈RpK×pK ,

diag= 0

{
1
2

K

∑
k=1

1
nk
||X(k) − X(k)Ξ(k) − X(k)Γ(k)||2F+

+λ1

p

∑
i<j=1

√
gijWij

√√√√ ∑
k:{Xi , Xj}⊂Vk

(
Ξ(k)

ij

)2
+
(

Ξ(k)
ji

)2

+λ2

p

∑
i<j=1

√
2 ∑

k:{Xi , Xj}⊂Vk

W(k)
ij

√(
Γ(k)

ij

)2
+
(

Γ(k)
ji

)2
}

,

(2)

where Wij = 1/K ∑k W(k)
ij and λ1, λ2 are two regularization parameters.

Note that the minimization problem in Equation (2) has two penalty terms. The first
penalty is applied to the entire group (Ξ(1)

ij , Ξ(1)
ji , . . . , Ξ(K)

ij , Ξ(K)
ji ) and enforces the pres-

ence/absence of an edge across all classes containing that edge (to capture common depen-
dencies). The second penalty is applied independently to each group (Γ(k)

ij , Γ(k)
ji ), k = 1 . . . K.

This enforces the symmetry of the relation between two nodes in each class, allowing class-
specific differences to emerge. Figure 2 provides an illustration of the idea.

Figure 2. Illustration of the group penalties applied in jewel 1.0 (left panel) and jewel 2.0 (right panel).
In jewel 1.0, the penalty forces the datasets to share the same graph by either setting to zero or

retaining the coefficients associated with the entire group (Θ(1)
ij , Θ(1)

ji , . . . , Θ(K)
ij , Θ(K)

ji ). In jewel 2.0,

the first penalty is similar to the one in jewel 1.0, applied to the entire group (Ξ(1)
ij , Ξ(1)

ji , . . . , Ξ(K)
ij , Ξ(K)

ji ).

However, the second penalty is applied to each group (Γ(k)
ij , Γ(k)

ji ), k = 1 . . . K, independently, allowing
the approach to set to zero or retain edges in specific classes.

Moreover, the weights W(k)
ij in the penalties allow hubs to emerge. By assigning lower

weights to edges linked to potential hubs, we reduce the penalty on those edges and allow
hubs to emerge. Instead, by choosing W(k)

ij = 1, we have a more democratic approach that
is equivalent to an unweighted formulation. Weights could be estimated from the data or
provided by the user from prior knowledge, literature, and databases. Currently, using
information already available in the literature (from previous experiments) or knowledge
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stored in databases is becoming widespread, particularly in omics science, where interna-
tional projects and consortiums have released an enormous amount of data in open form.
For example, in [7], the authors suggested using gene networks retrieved from databases to
improve survival prediction. Here, we propose the use of information concerning potential
highly influential genes to estimate networks with hubs better. Section 3.2.2 discusses
weight choice in detail.

Finally, we note that the minimization problem in Equation (2) is not identifiable in
terms of Ξ(k) and Γ(k) but is identifiable in terms of the support of Θ(k), provided that
we estimate it using Ξ(k) + Γ(k). Furthermore, as a result of the minimization problem in
Equation (2), we obtain K graphs Ĝ(k) with largely the same structure G but also allow
some class-specific edges. See Figure 3 for an illustration of the idea.

Figure 3. Illustration of how jewel 2.0 estimates the graphs with largely the same support (i.e., the black
part of the graphs Ĝ(k)) but also allows for some class-specific edges (colored part of the graphs Ĝ(k)).
The lower part of the figure demonstrates how the idea translates to the R package jewel described
in Section 2.5.

2.2. Jewel 2.0 Algorithm

To solve the minimization problem in Equation (2), we apply the group descent
algorithm presented in [8]. To better describe this algorithm, we rewrite the problem in
Equation (2) using an equivalent formulation. To this end, we define the following matrices
and vectors (note that for the ease of notation without loss of generality, we suppose
p1 = · · · = pK = p):

- X(k)
.i the i-th column of matrix X(k) and X(k)

.−i the submatrix of X(k) without the i-th
column;

- y =

(
X(1)

.1

>
, . . . , X(1)

.p
>

, . . . , X(K)
.1

>
, . . . , X(K)

.p
>
)>

denotes the vector concatenating the

columns of all data matrices, dim(y) = Np× 1, N = ∑K
k=1 nk;

- ξ =
(

Ξ(1)
21 , . . . , Ξ(1)

p1 , . . . , Ξ(K)
1p , . . . , Ξ(K)

(p−1)p

)
, dim(ξ) = 1× p(p− 1)K, and

γ =
(

Γ(1)
21 , . . . , Γ(1)

p1 , . . . , Γ(K)
1p , . . . , Γ(K)

(p−1)p

)
, dim(γ) = 1× p(p− 1)K,

are obtained by concatenating the vectorized matrices over the K classes;
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-

X =





X(1)
.−1 0 . . . 0

0 X(1)
.−2 . . . 0

...
. . .

0 . . . X(1)
.−p


. . . 

X(K)
.−1 0 . . . 0

0 X(K)
.−2 . . . 0

...
. . .

0 . . . X(K)
.−p




denotes the block-diagonal matrix made up of the block-diagonal matrices X(k)

.−j,
k = 1 . . . K, j = 1 . . . p, dim(X) = Np× p(p− 1)K;

- augmented matrix X̃ = [X X];
- diagonal matrix D = blkdiag

(
(1/
√

nk) Ink p
)

k = 1...K, dim(D) = Np× Np.

With these notations, the problem in Equation (2) is equivalent to the following linear
regression model with non-overlapping weighted group lasso penalties:

(ξ̂, γ̂) = arg min
ξ,γ∈Rp(p−1)K

1
2

∣∣∣∣∣∣y− X̃[ξ γ]>
∣∣∣∣∣∣

D2
+ λ1

p

∑
i<j=1

√
gijWij||ξ [ij]||+ λ2

p

∑
i<j=1

√
2 ∑

k
W(k)

ij ||γ[ijk]||.︸ ︷︷ ︸
F(ξ,γ)

(3)

Function F(ξ, γ) in Equation (3) is jointly convex in ξ and γ, and the two penalties
involve ξ or γ independently. Hence, we can apply an alternating optimization algorithm
as follows:

- initialize vector γ;
- given γ, estimate ξ by

ξ̂ = arg min
ξ∈Rp(p−1)K

1
2

∣∣∣∣∣∣ỹ− Xξ>
∣∣∣∣∣∣

D2
+ λ1

p

∑
i<j=1

√
gijWij||ξ [ij]||, with ỹ = y− Xγ>;

- given ξ, estimate γ by

γ̂ = arg min
γ∈Rp(p−1)K

1
2

∣∣∣∣∣∣ỹ− Xγ>
∣∣∣∣∣∣

D2
+ λ2

p

∑
i<j=1

√
2 ∑

k
W(k)

ij ||γ[ijk]||, with ỹ = y− Xξ>.

The two steps are alternated and repeated until convergence.
Since the groups are non-overlapping and orthogonal by construction, each minimiza-

tion step can be solved using the group descent algorithm of [8]. Algorithm 1 illustrates the
steps of the proposed jewel 2.0 algorithm in details.

Note that Algorithm 1 generalizes the one presented in [1] to the double penalties
(which are alternately updated) in the minimization problem in Equation (2). However, it
still uses the idea of the Active matrices discussed in [1], where only non-zero entries are
updated. The algorithm provided here also has a minor difference compared to the jewel 1.0
version: now, the order of variables is randomized instead of being 1→ p. Although the
algorithm converges regardless of the order [8], we decided to use the random order of
updates because we have empirically seen that it provides an advantage in the running
time without loss in performance. Finally, we note that the matrices and vectors defined
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in this subsection to describe the algorithm do not need to be explicitly constructed to
implement the algorithm, as discussed in [1].

Algorithm 1 The jewel 2.0 algorithm.

INPUT: data X(1), ..., X(K), weights W(1), . . . , W(K)

parameters λ1, λ2, tol and tmax

INITIALIZE:
Common part: Ξ(1, 0), ..., Ξ(K, 0)

Specific part: Γ(1, 0), ..., Γ(K, 0)

Residuals (common and specific): RC(k) = RS(k) = X(k) − X(k)Γ(k,0) − X(k)Ξ(k,0)

Matrices of active pairs Active = Active(k) =


0 1 . . . 1

0 0 1
...

. . .
...

0 0 . . . 0

 ∀k

REPEAT UNTIL CONVERGENCE
Fix the specific part Γ(1, t), ..., Γ(K, t), update the COMMON part.
Generate orderΞ by resampling from 1 to p.
for j ∈ orderΞ do

for i = j + 1 . . . p do
if Activeij 6= 0 then

evaluate z =
(

z(1)ij , z(1)ji , . . . , z(K)ij , z(K)ji

)
by

z(k)ij =
1
nk

X(k)
.i

>
RC(k)

.j + Ξ(k, t)
ij

z(k)ji =
1
nk

X(k)
.j

>
RC(k)

.i + Ξ(k, t)
ji

compute Wij = ∑k W(k)
ij /K

evaluate threshold = 1− λ1
√gijWij/‖z‖

if threshold < 0 then
Activeij ← 0 and z← 0

else
z← z · threshold

end if
update residuals

RC(k)
.j = RC(k)

.j + X(k)
.i

(
Ξ(k, t)

ij − z(k)ij

)
RC(k)

.i = RC(k)
.i + X(k)

.j

(
Ξ(k, t)

ji − z(k)ji

)
update coefficients (Ξ(1, t+1)

ij , Ξ(1, t+1)
ji , ..., Ξ(K, t+1)

ij , Ξ(K, t+1)
ij )← z

end if
end for

end for

Update residuals RS(k) = X(k) − X(k)Γ(k, t) − X(k)Ξ(k, t+1).
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Algorithm 1 Cont.

Fix the common part Ξ(1, t+1), ..., Ξ(K, t+1), update the SPECIFIC part.
Generate orderΓ by resampling from 1 to p.
for k = 1 . . . K do

for j ∈ orderΓ do
for i = j + 1 . . . p do

if Active(k)ij 6= 0 then

evaluate z =
(

z(k)ij , z(k)ji

)
by

z(k)ij =
1
nk

X(k)
.i

>
RS(k)

.j + Γ(k, t)
ij

z(k)ji =
1
nk

X(k)
.j

>
RS(k)

.i + Γ(k, t)
ji

evaluate threshold = 1− λ2
√

2W(k)
ij /‖z‖

if threshold < 0 then
Active(k)ij ← 0 and z← 0

else
z← z · threshold

end if
update residuals

RS(k)
.j = RS(k)

.j + X(k)
.i

(
Γ(k, t)

ij − z(k)ij

)
RS(k)

.i = RS(k)
.i + X(k)

.j

(
Γ(k, t)

ji − z(k)ji

)
update coefficients (Γ(k, t+1)

ij , Γ(k, t+1)
ji )← z

end if
end for

end for
end for
Update residuals RC(k) = X(k) − X(k)Γ(k, t+1) − X(k)Ξ(k, t+1).

Combine common and specific parts Ξ(k, t+1) + Γ(k, t+1) = Θ(k, t+1).

Check convergence: stop if
∑k

∣∣∣Θ(k, t+1) −Θ(k, t)
∣∣∣

∑k
∣∣Θ(k, t)

∣∣ < tol or t > tmax.

OUTPUT:
Ĝ(k) = supp Θ̂(k, t∗), where t∗ is the last iteration to achieve the convergence.
Ĝ = ∩kĜ(k)

2.3. Selection of Regularization Parameter

The minimization problem of Equation (2) contains two regularization parameters: λ1
which penalizes the common part of the graphs, Ξ(k), k = 1 . . . K, and λ2 which penalizes
the class-specific part of the graphs, Γ(k), k = 1 . . . K. In general, larger values of the
parameters provide a more sparse estimator, which can lead to many false negatives.
In contrast, small values of regularization parameters result in dense graphs with more
false positives and less interpretability. Therefore, the choice of such parameters is crucial
for the success of any regularization method. In this context, the two parameters are
not independent since edges set to zero in the common part might be included in the
class-specific part and vice-versa.
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To better explain the interplay relation between λ1 and λ2, we first consider the
reparametrization proposed in JGL [4], which connects the regularization parameters
to two physical parameters ω1 and ω2 representing the sparsity of the graphs and the
similarity across graphs in different classes

sparsity : ω1 =
λ1√
2K

+
λ2√

2

similarity : ω2 =
λ2/
√

2
ω1

.

With this reparametrization, we have λ1 =
√

2Kω1(1 − ω2) and λ2 =
√

2ω1ω2.
The motivation behind this reparameterization is that it is easier to elicit prior information
on ω1 and ω2 than on λ1 and λ2.

In a more data-driven spirit, Chapter 9.7 of [9] suggests the use of a proportional
relation between the two regularization parameters, namely λ2 = φλ1. In the specific
setting of matrix decomposition in the multivariate regression, the author proposes the
following estimate (see Equation (9.7) of [9]):

φ =

√
maximum size over all groups +

√
log(#groups)√

log(#parameters to estimate)
.

In our case, we still use the relation λ2 = φλ1. However, to avoid a computationally
intensive data-driven search over φ, we chose the value φ empirically after extensive
numerical experimentation under different settings, where we evaluated ROC curves
and edges for a range of values φ = 1, 1.1, 1.2, 1.3, 1.4, 1.5. We set φ = 1.4 (the value that
provided the best performance on average among the tested values) and used it in all the
subsequent analyses on synthetic and real datasets.

With the established relation λ2 = φλ1 and having fixed the value of φ, the complexity
of the parameter space reduces to a choice of only the regularization parameter λ1. In prin-
ciple, one can extend the Bayesian information criterion (BIC) as done in [1]. However,
there is a long ongoing debate on using BIC in high-dimensional settings. For example, [10]
reported poor performance. In general, BIC might be too liberal in the high-dimensional
regime. Therefore, the BIC estimate might represent only an empirical rough estimate of
the optimal regularization parameter. Its usage beyond empirical evidence would require
studying the conditions to guarantee the recovery of the true structure. Since this paper
introduces the stability selection procedure (described in the next section), we suggest
that the user chooses a value for λ1 within a plausible range and then applies the stability
selection to mitigate the impact on the final estimate of non-optimal choices. We used this
suggestion in Section 4. We further discuss the choice of the regularization parameter in
Section 5.

2.4. Stability Selection

Graph estimation can be regarded as a binary classification problem: for each pair of
vertices {i, j}, we decide whether an edge (i, j) exists or not. As with any binary classifi-
cation method, it is essential to estimate as many true edges as possible and avoid false
positives for better interpretability, which becomes especially valuable in high dimensions.

In this respect, another important novelty of jewel 2.0 compared to jewel 1.0 is the
implementation of a stable variable selection procedure that decreases the number of false
positives. The idea is that actual positive edges should be more stable than false positive
edges because the former result from true numerical significance while the latter are merely
the result of a chance. With this in mind, one expects that by repeating the calculation
several times (on different realizations with a fixed regularization parameter), the true
positive edges are more frequent (i.e., appear more stable) than the false positive edges.
Motivated by this argument, we extended the idea presented in [3] for the first time to the
multiple graphs estimation problem.
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The variable stability selection procedure implemented in jewel 2.0 works as follows.
Fix #subsets, representing the number of times we re-run the method on random subsets of
the data, and fix chosen fraction, representing the fraction of times that an edge must appear
in the results produced on random subsets to be considered stable. Then,

- Repeat for s = 1 . . . #subsets

- randomly subsample the data matrices X(1, s), X(2, s), . . . , X(K, s) of the size nk/2×
pk from X(1), X(2), . . . , X(K);

- obtain Ĝ(k)(s), k = 1 . . . K, by applying jewel 2.0 to the subsampled data.

- Select an edge {i, j} in the graph k if 1/#subsets ∑#subsets
s=1 Adj(Ĝ(k)

ij (s) 6= 0) ≥ chosen fraction.

In our approach, the regularization parameter λ1 is the same throughout the entire
stability selection procedure. One might choose, for example, λ1 obtained with a model
selection estimator such as BIC or select a user-defined value (as performed in Section 4)
within a reasonable range. The main advantage of the stability selection procedure is
that the final estimate of the graphs Ĝ(k) is not only sparser but also does not critically
depend on the specific choice of the regularization parameter. As we show in the numerical
experiment, the stability selection procedure effectively refines the graphs (providing
sparser solutions) and reduces the number of false positive edges.

2.5. Code Availability

The jewel 2.0 approach is implemented as an R package jewel, which is freely available
at https://github.com/annaplaksienko/jewel (accessed on 15 October 2022). As illustrated
in Figure 3, the main function jewel performs the entire algorithm and is relatively simple
to use: the user must provide only the list of K numeric data matrices and a numeric value
of λ1, as all other parameters are optional. See package documentation and READ.ME
file for the details. All the code to reproduce the simulation studies is provided at https:
//github.com/annaplaksienko/jewel_simulation_studies (accessed on 15 October 2022).

3. Results on Synthetic Data

This section presents simulation results to demonstrate the specific advantages of jewel
2.0 in handling differences among classes, dealing with network hubs, and refining the
networks to reduce false positives and improve interpretability. Moreover, we also compare
jewel 2.0 to similar methods for joint Gaussian graphical model estimation. Before present-
ing the results, in Section 3.1, we briefly describe the data generation procedure for our
experimental settings.

3.1. Experimental Settings

To demonstrate the capability of our approach, we used scale-free graphs since they can
describe many social and biological processes. Using the following procedure, we generated
K scale-free graphs G(k) with similar supports. We first generated a scale-free graph G(1)

with p vertices with the Barabasi–Albert algorithm [11] (barabasi.game function from the
igraph package [12]). We tuned graph sparsity with the m parameter, which describes the
number of edges added at each iteration of the Barabasi–Albert algorithm. The resulting
graph G(1) has mp − (2m − 1) edges. We monitored the hub structure with the power
parameter, which tunes the preferential attachment. With increased power, vertices with
more edges are more likely to have new edges to be added to them at each step of the
Barabasi–Albert algorithm. Hence, by modifying the power parameter, we can generate
networks with different hub/not-hub structures.

Then, given the graph G(1), we modified it K− 1 times (to obtain K graphs total) with
igraph’s function rewire(..., with = keeping_degseq), which moves the edges of a
given graph, preserving its order and the degree distribution. We tuned the number of
differences introduced in each modified graph using the niter parameter, i.e., the number
of iterations of the algorithm (unless stated otherwise, parameter niter = 0.08 ∗ p, making
the graphs have about 26% of edges not in common, i.e., not in the intersection).

https://github.com/annaplaksienko/jewel
https://github.com/annaplaksienko/jewel_simulation_studies
https://github.com/annaplaksienko/jewel_simulation_studies
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We used the resulting graphs G(k), k = 1 . . . K, as the support to construct the precision
matrices Ω(k). We considered the adjacency matrices of the graphs and replaced all 1s with
realizations from the uniform distribution on [−0.8,−0.2] ∪ [0.2, 0.8]. To ensure positive
definiteness of Ω(k), we set its diagonal elements equal to |µmin(Ω

(k))|+ 0.1, with µmin
being the minimum eigenvalue of the matrix. Then, we constructed covariance matrices

Σ(k) as Σ(k)
ij =

(
Ω(k)

)−1

ij
/
√(

Ω(k)
)−1

ii

(
Ω(k)

)−1
jj . Finally, we generated data matrices X(k) as

nk = n independent identically distributed observations from N (0, Σ(k)).
In our experimental setting, we chose K = 3, p = 500, and n = 100, and we repeated

the above procedure 20 times. We evaluated the performance using the true positive
rate TPR = TP/(TP + FN) and false positive rate FPR = TN/(TN + FP), where FP is
the number of false positives, TP the number of true positives, FN the number of false
negatives, and TN the number of true negatives. jewel 2.0 returns as an output K graphs
Ĝ(k), instead of the single graph Ĝ obtained from jewel 1.0. Therefore, we first calculated
TPR(k) and FPR(k) for each graph and then calculated TPR and FPR by averaging over
K = 3 graphs. Finally, we averaged the results over 20 independent runs.

Simulations were carried out on an 8-core 4.2 GHz processor and 32 GB RAM computer.

3.2. Performance of Jewel 2.0

This section aims to illustrate the three main novelties we have introduced with this
work. First, we demonstrate the performance of jewel 2.0 when graphs G(k) have varying
amount of differences. Then, we deal with graphs with a non-uniform edge distribution
(i.e., graphs with hubs). Finally, we demonstrate how stability selection can reduce the
number of false positives and lead to more interpretable graphs.

3.2.1. Performance on Graphs with Varying Differences

We motivated the minimization problem in Equation (2) by the need to estimate graphs
G(k) that share a common part but can have class-specific differences. Therefore, here, we
evaluated the performance of jewel 2.0 when applied to datasets with varying differences
between their underlying graphs G(k).

We set the parameter niter in the rewire(..., with = keeping_degseq(niter))
function to 2, 4, 8, 10% of number of vertices p, resulting in graphs with 7, 13, 26, and 32% of
difference (on average over 20 independent runs). Here, by “difference” we mean“ #edges
not in the intersection of K = 3 graphs”.

ROC curves obtained with the jewel 2.0 method applied to K = 3 datasets of the size
p = 500, nk = 100 and varying underlying graphs are reported in Figure 4. We set the
parameter power = 1, and we compare two different sparsity scenarios: with parameter
m = 1, i.e., 499 edges, and m = 2, i.e., 997 edges. Here, we set weights W(k)

ij = 1 regardless
of the graph structure.

As we can observe from Figure 4, jewel 2.0 demonstrates good performances in all
scenarios of varying amounts of differences between K graphs. Unsurprisingly, the perfor-
mance decreases as the graphs become increasingly different, but even for 32% of difference,
the method still performs well.

3.2.2. Performance on Graphs with Hubs

In [1], we have noticed that the performance of our previous method jewel 1.0 and
similar joint estimation methods deteriorates with the increase in the power decay of the
degree distribution (i.e., for graphs that contain a few nodes with a significant number of
connections and most of the nodes with limited connections). The problem was already
noticeable in our simulations for power = 1.5. To face this problem, in this work, we
introduced weights W(k)

ij into the model formulation of Equation (2), whose idea is to adjust
the penalty on edge (i, j) according to the degree of its incident nodes i and j. When i
and/or j have a high degree, the penalty on the groups involving {i, j} is decreased to favor
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the edge (i, j) to emerge, whereas when i and j have a low degree, the penalty is increased
to favor the removal of the edge (i, j).

Figure 4. ROC curves for jewel 2.0 method applied to K = 3 datasets of the size p = 500, nk = 100
with various differences between their underlying graphs (denoted by different colors). Parameter

power = 1, all weights are set W(k)
ij = 1. Left panel: performance for m = 1, i.e., 499 edges.

Right panel: performance for m = 2, i.e., 997 edges.

We first describe an ideal procedure to demonstrate the advantages of our weighted
approach by using oracle weights obtained from the true degrees of the nodes, which,
of course, are not available in real data applications.

Suppose an oracle provides a vector of true degrees for each class k = 1 . . . K and
denote it d(k) ∈ Np, with N = {0, 1, 2, 3 . . . }. We then define the oracle weights matrix W(k)

for the class k = 1 . . . K by the following formulae:

W(k) = W(k)/ max(W(k)), with W(k)
ij =

1√
d(k)i · d

(k)
j

. (4)

Note that the re-scaling by max(W(k)) assures that weights are in the interval (0, 1] and
are not dependent on the number of nodes p. Figure 5 (upper black lines) demonstrates that
with the oracle choice of weights jewel 2.0 provides excellent performance. In particular,
the oracle weights provide a great improvement compared to the no-weight approach
(i.e., W(k) = 1, lower black lines in Figure 5).

According to the results of the oracle estimator, we might suggest the use of a two-step
procedure where one first applies jewel 2.0 with W(k) = 1 and then estimates the degree
vectors d̂(k), k = 1 . . . K, and reapplies jewel 2.0 using d̂(k) as an oracle. However, such a
procedure becomes time consuming (since it requires running jewel 2.0 twice) and does not
show the same excellent performance as the oracle estimator.

In the spirit of proposing a practical procedure, we noticed that to retain good per-
formance, it is not necessary to know precisely the weights W(k)

ij as given in Equation (4),
but it is sufficient to distinguish potential hubs from other nodes. Furthermore, in many
applications, it is reasonable to assume that we have prior information on whether or
not specific nodes are hubs (but it is less feasible to have prior information on the node
degrees). For example, in protein–protein interaction networks, the key players are known
from the literature, so we can assume that these nodes are hubs without knowing the
exact degree. To evaluate whether a simple procedure is effective, we performed the
following simulation:

- for each k, we considered the vector of true nodes’ degrees d(k);
- for each k, we fixed a threshold cut(k) as to choose only a top % of all degrees;
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- if d(k)i >= cut(k), then replace it with 10 (to identify it as a “hub”); else, replace it with
1 (to identify it as “not hub”);

- finalize weights construction as in Equation (4).

We have evaluated this procedure for choosing weights by setting cut(k) to select
1, 3, 5% of the highest degree vertices as ”hubs” for each k. Results are reported in Figure 5
with different colors, as well as the results obtained using W(k) = 1 and the oracle weights.

Figure 5. ROC curves for jewel 2.0 method applied to K = 3 datasets of the size p = 500, nk = 100.
Parameter power = 1.5. The upper black lines demonstrate the excellent performance obtained with
the oracle weights compared to the lower black lines that correspond to W(k) = 1 (i.e., the standard
unweighted approach). Performance with the simple procedure that assigns weights as hub/non-hub
using prior information is given in different colors depending on the percentages of nodes declared
hubs. Left panel: performance for m = 1, i.e., 499 edges. Right panel: performance for m = 2,
i.e., 997 edges.

Figure 5 shows the performance for the power of preferential attachment power = 1.5.
We can see that although the simple procedure is unable to reach the performance of
the oracle weights, it outperforms the standard unweighted approach (i.e., W(k) = 1).
Moreover, results are quite robust to the percentage of nodes identified as hubs. Results
are also robust to the specific value assigned to the hubs (data not shown). Indeed, we
applied the same simple procedure assigning 3 or 5 to the hubs instead of 10 and obtained
a similar conclusion. Therefore, although an optimal choice of the weights is still needed,
the weighted approach proposed in Equation (2) can face the problem of graphs with hubs
representing the Achilles’ heel of most of the available methods.

3.2.3. Stability Selection Reduces the Number of False Positives

In this section, we compare the results obtained by running jewel 2.0 on the same
dataset without the stability procedure and with the stability procedure described in
Section 2.4 where we fixed #subsets = 25, 50, 100 and chosen fraction = 0.6, 0.7, 0.8. The re-
sults are shown in Figure 6 with different colors and line types. In particular, in the left
panel of Figure 6, we show the average (over K = 3) order of the estimated graphs Ĝ(k)

(i.e., log2 of the average number of estimated edges) as a measure of graph’s “sparseness”;
in the middle panel of Figure 6, we show the average precision to measure the proportion of
true positive edges, while in the right panel of Figure 6, we show the average F1-score, de-
fined as F1 = 2TP/(2TP + FP + FN), to measure the overall accuracy. As we can observe
from the inspection of Figure 6, the “sparseness” of the estimated graphs decreases with
the stability procedure, as expected. More importantly, the stability selection procedure
reduces the number of false positives at a much higher rate than the loss of true positives.
Overall, it increases the precision (middle panel), maintaining a good accuracy (right panel).
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We also note that the gain in performance is obtained even with #subsets = 25, meaning
that stability selection can be used even when a high number of re-sampled sets is not
computationally feasible.

Figure 6. Performance of the jewel 2.0 method applied to K = 3 datasets of the size p = 500, nk = 100,

m = 1, power = 1, all weights are set W(k)
ij = 1. The solid black line denotes performance without

stability procedure. Colour denotes a varying threshold of % of subsets in which edge needs to be
present to be chosen. Line-type denotes a varying number of subsets. Left panel: log2 of the order of
the graphs. Middle panel: precision. Right panel: F1-score.

To highlight the advantage of having more precise estimates with the same accuracy,
i.e., estimated graphs with greater “sparseness”, in Figure 7, we compared results with
and without stability selection for the same graph. It is evident that the stability selection
estimates sparser graphs than those obtained without stability selection. Comparison is
provided for #subsets = 25 and chosen fraction = 0.8. Figure 7 is a part of a more extensive
comparison on a finer grid of λ1. When considering the entire study, we also observed that
stability makes the final graph estimates less influenced by the specific choice of λ1. To
conclude this subsection, we note that although the idea of the stability selection procedure
is not novel, to our knowledge, jewel 2.0 is the first joint estimation method to adopt it in
the context of multiple graphs.

Figure 7. Estimated graph Ĝ(1) of one of the independent runs. Rows demonstrate results with jewel
2.0 and results with an additional stability selection procedure (#subsets = 25, choose edges present
in 80% of results), columns correspond to different values of regularization parameter λ1.



Mathematics 2022, 10, 3983 16 of 20

3.3. Comparison of Jewel 2.0 with Other Joint Estimation Methods

In this subsection, we compare the performance of jewel 2.0 with other methods for
joint estimation: joint graphical lasso (JGL) with group penalty [4], and the proposal of
Guo et al. [5]. JGL requires two tuning parameters λ1 and λ2, where the first controls for
differences between the graphs and the second for graph sparsity. The authors suggested
the use of the relation λ1 = (1 − ω2)/(

√
2ω2) · λ2. We set parameter ω2 = 0.7 since

it provides better performances in the original paper. Hence, here, we vary only their
parameter λ2.

We also compared jewel 2.0 with another joint estimation method, simone [13] (which,
as discussed in [1], is the most similar to jewel 2.0), but we did not include the results in
the full comparisons for the following technical reasons. When we provided the range
of λ parameters from 1 to 0.01 to the simone function, the estimation produced “out of
convergence” results for λ ≈ 0.15 or lower (depending on the dataset realization). Using
the default function parameters, the simone function went out of convergence even faster.
This behavior did not allow us to produce a meaningful ROC curve for [13]. We should
note that our simulation settings are different from the ones considered in [13], where the
number of variables p was lower, and the authors explored only the n > p setting.

We considered four different m− power scenarios, with parameter m = 1, 2 (resulting
in 499 edges with 0.4% sparsity and 997 edges with 0.8% sparsity, respectively, the same
settings as we had in all previous experiments) and parameter power = 1, 1.5. In the case of
power = 1.5, we also added jewel 2.0 with a priori weights to the comparison to demonstrate
its advantage. In that case, we estimated the weights using the simple approach where we
chose 1% of vertices as hubs—even though the performance with this setting was slightly
worse than with 3% or 5%, we deemed this one more realistic. Figure 8 illustrates the
results of the comparison study.

As we can see in Figure 8, jewel 2.0 and JGL demonstrate similar performance in the
case of power = 1, both superior to the performance of the proposal of Guo et al. As already
observed, in the case power = 1.5, the performance of all three methods drops drastically;
however, once we use jewel 2.0 with a simple choice of weights, we see a significant gain in
performance. Note that neither JGL nor Guo et al. include methods for dealing with hubs.
Therefore, while jewel 2.0 can adapt its penalization to allow hubs to emerge, the other
methods remain democratic in their penalization and do not perform well when graphs
have hubs.

Figure 8. ROC curves corresponding to different joint estimation methods are denoted by different
colors. Each panel demonstrates performance in different m− power settings [5].
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4. Results on Real Data

The estimation of multiple GGMs could be useful in various contexts. For instance,
GGMs allow connections to be found between stocks’ prices (considering different markets
as K classes) or social relations (considering different social media as K classes), and so on.
In the context of estimating gene networks from gene expression, we can consider gene
expression data obtained from different equipment or laboratories (as we did, for example,
for jewel 1.0 [1]), or we can consider different sub-types of disease. Identifying the gene
regulatory networks and differences associated with a particular sub-disease can help
to tailor treatments. Since this paper discusses the advantages of our algorithm from a
methodological point of view, in the following, we provide only a small example of an
application to real data without investigating the biological implications of our findings.

We apply jewel 2.0 to the gene expression datasets of the patients with breast cancer,
which is the most common type of cancer among women. We consider four molecular breast
cancer sub-types: luminal A, luminal B, basal-like, and HER2-enriched. Each sub-type can
have specific regulatory mechanisms. However, most of the regulatory mechanisms are
shared across all sub-types.

We used the gene expression microarray data available in The Cancer Genome Atlas
and described in [14]. Gene expressions were measured using Agilent G450 microarrays.
The dataset contains 522 primary tumor samples among which there are n1 = 231 samples
of luminal A cancers, n2 = 127 of luminal B cancers, n3 = 98 of basal-like cancers, and
n4 = 58 of HER2-enriched cancers. These K = 4 sub-types were identified in the original
paper of [14]. We used the data with K = 4 datasets to reveal sub-type-specific gene
regulatory networks.

For the sake of simplicity, we limited our attention to the genes belonging to the
following 10 pathways from the Kyoto Encyclopedia of Genes and Genomes database [15]:
breast cancer pathway (hsa05224), estrogen signaling pathway (hsa04915), p53 signaling
pathway (hsa04115), PI3K-Akt signaling pathway (hsa04151), GnRH signaling pathway
(hsa04912), PPAR signaling pathway (hsa03320), Wnt signaling pathway (hsa04310), NF-
kappa B signaling pathway (hsa04064), notch signaling pathway (hsa04330), and hedgehog
signaling pathway (hsa04340). According to the literature, these pathways are associated
with breast cancer. These pathways involve 945 genes; out of them, 901 were measured
in our datasets (with p = 900 also annotated in the STRING database [16], see below).
Therefore, we applied jewel 2.0 (with weights for hub detection and with stability selection)
to the K = 4 submatrices with this subset of genes.

We retrieved prior weights information by building a broad network using the STRING
database [16] with p = 900 genes. STRING is a database of known and predicted protein–
protein interactions that can be physical and functional and derived from lab experiments,
known co-expression, and genomic context predictions and knowledge in the text mining
of the databases. We limited the query to connections from “experiments” and “databases”
as active interaction sources and set the minimum required interaction score to the highest
value of 0.9. As a result, the STRING network had 775 out of 900 vertices connected to any
other node (i.e., 125 nodes were isolated) and 7514 edges.

From the STRING network, we chose the 27 vertices (3% of p = 900) with the highest
true degrees as “hubs”. Therefore, in jewel 2.0, we set their degree to 10 while the degree of
all the other vertices was set to 1. We then computed edges’ weights with the Equation (4)
formula. We chose regularization parameter empirically as λ1 = 0.35. We then ran jewel 2.0
with this parameter, estimated weights, and performed a stability selection procedure with
25 subsets, choosing edges that appeared in at least 80% of the results. The resulting
networks are presented in Figure 9.

The resulting networks Ĝ(k), k = 1 . . . 4, had 3336, 3297, 3318, and 3313 edges,
respectively. There were 3171 edges in their intersection (gray edges in Figure 9, i.e., about
4–6% of edges in each graph were class-specific). For each estimated network, we measured
the number of edges in common with the STRING database network and observed 418,
417, 408, and 412 edges in common, respectively. The p-values of the hypergeometric test
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to assess the significance of the edge overlaps were strictly less than 10−10 for all four
networks. Therefore, the estimated graphs showed a significant overlap with the STRING
networks compared to random graphs of the same size. This result encourages the quality
of the connection, although we also note that connections in the STRING database are not
tissue or disease-specific and are not necessarily of the same nature as the ones estimated
with jewel 2.0 (conditional dependence). Thus, we did not regard a considerable overlap as
the main quality criteria.

We observe that for each of the K estimated graphs, the nodes with the highest degree
include the 27 vertices we initially provided as potential hubs. Some of them are key genes
in breast cancer, such as LCK, which was shown to influence cell motility in breast cancer,
or TRAF6, which promotes tumorigenesis.

Finally, to investigate the impact of the choice of the regularization parameter, we
repeated the analysis with a different value (e.g., λ1 = 0.3), reporting similar results in
terms of estimated networks.

Figure 9. Networks estimated with jewel 2.0 with λ1 = 0.35, with weights derived from the prior
information (27 (3% of p = 900) vertices with the highest degree in the STRING networks are
identified as “hubs” with degree 10, all other vertices have degree 1) and with stability procedure
(#subsets = 25, chosen fraction = 0.8). Edges common to all K = 4 graphs are in grey, and class-specific
edges are colored. Note that vertices that are isolated in the union of these graphs are not plotted
for simplicity.

5. Discussion

The proposed method represents a significant advancement of our original method
jewel, presented in [1]. jewel 2.0 extends the range of applications by relaxing the as-
sumptions and also provides several other improvements. Namely, by reformulating the
minimization problem as in Equation (2), i) jewel 2.0 allows us to jointly estimate both
common and class-specific parts of GGMs from multiple datasets, and ii) it allows the
user to specify weights to capture the graph topologies that present hubs better. Moreover,
with jewel 2.0, we introduced a stability selection procedure to the multiple joint graphical
model context. This procedure extends the idea of [3]. It reduces the number of false
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positives, providing sparser and more explicative graphs, and reduces the influence of
the specific choice of the regularization parameter on the estimated graphs. Finally, we
demonstrated the performance of jewel 2.0 in simulation and with real data applications.

Although we showed that jewel 2.0 performs well, we believe there is still room for
further improvement. Therefore, in the following, we emphasize our study’s limitations
and the directions of future work. Furthermore, we stress that limits are not specific to our
approach but represent common challenges to all methods available in this context.

The jewel 2.0 minimization problem requires two regularization parameters: λ1 and λ2.
The choice of the regularization parameters is known to impact the estimator’s performance.
In general, under high-dimensional settings, the problem of finding suitable estimates of
the regularization parameters is still open, with limited theoretical results available for
guaranteeing the recovery of the true structure given the chosen parameter. In this paper,
we chose to reduce the complexity of the space by setting λ2 = φλ1, fixing φ to a default
value (selected to produce good performance under different settings). The value of λ1 can
be either estimated from the data (e.g., using BIC or similar data-driven criteria) or chosen
by the user in a plausible range of values. In simulations, we investigated the performance
of jewel 2.0 when using the ROC curve over a wide range of λ1. In the real data example,
we chose λ1 empirically and then used the stability selection to reduce the impact of the
choice on the final estimate. However, a data-driven estimation of λ1 or both φ and λ1
would better adapt to the specific data structure. The work of [17] provides an interesting
suggestion in this direction.

Another direction of future work consists of improving the stability selection pro-
cedure. Inspired by [3], we were the first to introduce a stability selection approach to
reduce false positives in the context of multiple graphical model estimation. However,
in this context, one can consider further adapting the idea of [3] for setting the bound
on the number of false positives or extending the idea of [10]. Both methods used the
graphical lasso on a single dataset. Hence, their adaptation to regression-based approaches
and multiple datasets might not be straightforward. In general, the study of convergence
properties of the resulting estimator would be advisable.

With the weighted approach, we have demonstrated the great improvement that jewel
2.0 can bring when dealing with graphs containing hubs. In several applications, such
as gene networks, knowledge available from the literature might give an indication of
which genes can act as hubs. The incorporation of this information in the weights improves
the estimate. However, the choice of optimal weights remains an open challenge to be
addressed in future works.

Finally, the computational cost of GGMs methods on big data remains challenging.
Both jewel 1.0 and jewel 2.0 perform well for a number of variables p of the order of several
hundreds. Both become unfeasible when applied to tens or hundreds of thousands of
variables that might arise from big data analysis. In [1], we showed that other similar
methods suffer from the same problem (some more than others), with our approach being
the fastest. Although we have introduced some speed-ups (such as the active shooting
approach, for example), we believe there is still much room for improvement.
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