
Citation: Riquelme, F.; Montero, E.;

Pérez-Cáceres, L.; Rojas-Morales, N.

A Track-Based Conference

Scheduling Problem. Mathematics

2022, 10, 3976. https://doi.org/

10.3390/math10213976

Academic Editor: Ripon Kumar

Chakrabortty

Received: 30 September 2022

Accepted: 21 October 2022

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Track-Based Conference Scheduling Problem
Fabian Riquelme 1, Elizabeth Montero 2,* , Leslie Pérez-Cáceres 3 and Nicolás Rojas-Morales 1

1 Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
2 Facultad de Ingeniería, Universidad Andres Bello, Viña del Mar 2531015, Chile
3 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
* Correspondence: elizabeth.montero@unab.cl

Abstract: The scheduling of conferences is a challenging task that aims at creating successful con-
ference programs that fulfill an often wide variety of requirements. In this work, we focus on the
problem of generating conference programs that organize talks into tracks: subevents within the
conference that are group-related talks. The main contributions of this work can be organized into
three scopes: literature review, problem formulation and benchmarking, and heuristic approach. We
provide a literature review of conference scheduling approaches that organizes these approaches
within a timetabling problem taxonomy. We also describe the main characteristics of the conference
scheduling approaches in the literature and propose a classification scheme for such works. To
study the scheduling of conferences that include tracks, we introduce the definition of the track-
based conference scheduling problem, a new problem that incorporates tracks in the conference
program. We provide a binary integer linear programming model formulation for this problem. Our
formulation considers the availability of presenters, chairs, and organizers, the avoidance of parallel
tracks, and best paper sessions, among other classical constraints of conference scheduling problems.
Additionally, based on our formulation, we propose a simple instance-generation procedure that
we apply to generate a set of artificial instances. We complete our work by proposing a heuristic
method based on the simulated annealing metaheuristic for solving the track-based conference
scheduling problem. We compare the results obtained by our heuristic approach and the Gurobi
solver regarding execution time and solution quality. The results show that the proposed heuristic
method is a practical approach for tackling the problem as it obtains solutions in a fraction of the time
required by Gurobi, while Gurobi is also unable to obtain an optimal solution in the defined time for
a subset of the instances. Finally, from a general perspective, this work provides a new conference
scheduling problem formulation that can be extended in the future to include other features common
in conference programs. Moreover, thanks to the instance generation procedure, this formulation can
be used as a benchmark for designing and comparing new solving approaches.

Keywords: conference scheduling; track-based conference scheduling; integer linear programming
model; simulated annealing

MSC: 90C27

1. Introduction

Globalization has fostered the organization of large scientific events in which the
scientific community can gather to share their work and discuss new ideas. Many scientists
worldwide regularly attend these conference events since they are great opportunities
for showcasing their work and networking within the scientific community. Organizing
such large conferences is often very challenging since their scheduling must consider
several aspects and meet a large set of requirements. Furthermore, technology allows the
organization of conference events in hybrid formats, in which attendees may join the event
through the internet, and contributions can be presented online and onsite. Nowadays, such
formats are highly attractive as they allow the submission of contributions and registration

Mathematics 2022, 10, 3976. https://doi.org/10.3390/math10213976 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10213976
https://doi.org/10.3390/math10213976
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1690-3875
https://orcid.org/0000-0001-5553-6150
https://orcid.org/0000-0001-7662-1397
https://doi.org/10.3390/math10213976
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10213976?type=check_update&version=3

Mathematics 2022, 10, 3976 2 of 25

of attendees that otherwise could not be included in the event. All this makes conference
planning an increasingly relevant and interesting subject of study. The classical approach
to scheduling a conference consists of bringing together a working group of people that,
with whiteboard and paper in hand, organizes and distributes talks over time slots and
locations. In its beginnings, in the absence of video conferences, the organizers had to
meet in person or write long emails to carry out appropriate planning of the event [1].
This approach can work for small conferences, where human capacity can still obtain
good results in a reasonable time. However, when large-size conferences are considered,
the planning results in a challenging task.

In this work, we focus on the problem of organizing a conference, particularly the
problem of generating the program of a conference event such that it fulfills a set of
requirements. The conference scheduling problem is a specific problem that belongs to a
large family of scheduling problems, the timetabling problems, which include both task
assignment and resource allocation. To relate this work with others in the literature, we
extend the classification commonly used in the literature for timetabling problems to a
taxonomy that includes conference scheduling problems. We aim to provide a methodology
for classifying conference scheduling problems and analyzing similarities between related
problems and our approach. The taxonomy organizes timetabling problems based on
the nature of the main elements to be scheduled. We complement the taxonomy with a
classification of conference scheduling problems that considers different aspects of the
scheduling. Finally, we perform a literature review describing a set of relevant conference
scheduling works and classify them based on their main characteristics.

Conferences often divide the planning day into sessions which may contain several
talks and activities such as discussion panels, meetings, and ceremonies, among others.
Generating a conference schedule involves assigning these sessions to a set of time slots
and locations. The requirements for the scheduling vary widely depending on the event
to be organized. These requirements include the attendants’ availability and preferences,
the distance between related sessions, the location capacity, and the grouping of related
talks. In this work, we propose a track-based conference scheduling problem that considers
subevents within the conference, which are called tracks. This problem was inspired by the
Genetic and Evolutionary Computation Conference (GECCO) case study. We provide a
mathematical formulation of the proposed problem, an instance generation procedure, and
a heuristic algorithm to perform the scheduling.

The main contributions of this work are:

• A taxonomy and classification of the existing approaches for conference scheduling;
• The proposal/definition of the track-based conference scheduling problem;
• A binary integer linear mathematical formation for the presented problem;
• A set of instances and an instance generation procedure;
• A simulated annealing-based approach to solve the proposed problem and computa-

tional experiments that evaluate the proposed method.

This article is organized as follows, Section 2 provides a literature review of formu-
lations and solving approaches for the conference scheduling problem. We provide a
taxonomy of timetabling problems, incorporating conference scheduling problems within
the literature and classifying them based on their main characteristics. Section 3 presents
our track-based conference scheduling problem proposal and provides a mathematical
formulation for the problem. Then, a heuristic approach to solve the proposed problem
is described in Section 5. An instance generation procedure is presented in Section 6,
and experimental results and their analysis are provided in Section 7. Finally, we present
our conclusions in Section 9.

2. Literature Review

Planning problems involve allocating resources, locations, and time slots to specific
tasks or events. We classify planning problems based on whether the main focus of
the scheduling is a set of tasks or events. Tasks are activities that must share a set of

Mathematics 2022, 10, 3976 3 of 25

locations and resources in a planning horizon, often satisfying a set of precedence rules
derived from a goal associated with their completion [2,3]. For example, some planning
problems can be related to scheduling a production process comprising several tasks
or rescheduling the production in a dynamic environment considering setup time and
limited resources (machines and setup workers) [4]. Events are activities that must share
locations, resources, and participants in a planning horizon. The scheduling of events
often requires satisfying exclusivity rules regarding the availability of participants [5,6].
For example, problems related to scheduling the exams of a term in a university. Many
similarities can be found between task and event-based planning problems. For example,
the multiprocessor task assignment problem can be analogous to a parallel room event
assignment problem. Furthermore, the topic-based conference scheduling problem can
be considered as scheduling tasks with precedence where one session must come before
another, and the next cannot be executed until the previous one is completed.

Despite the wide range of applications of timetabling problems in the literature, little
effort has been made to create a general taxonomy for organizing these problems. The lack
of such taxonomy is probably due to the large number of variants that can be considered
based on each problem’s particular constraints. We propose a taxonomy of timetabling
problems in Figure 1, which defines two main categories within these problems: event-
based problems or task/work-based problems.

timetabling problems
Event-based

Examination timetabling
Course timetabling
School timetabling
Conference timetabling

Attender-based perspective
Presenter-based perspective

Topic-based/tracks
our work

Task/ Work-based
Flow shop problem
Process planning
Travel planning
. . .

Figure 1. Timetabling problems taxonomy.

Our taxonomy puts the conference scheduling problem under the category of event-
based timetabling problems together with several academic event planning problems. Such
event-based problems range from meetings, championships [7], exhibitions [8], and bus
schedule planning [9]. The taxonomy distinguishes between problems formulated with
an attender-based or a presenter-based perspective within conference timetabling prob-
lems [10]. The attender-based problems seek to plan the conference, maximizing the at-
tendees’ satisfaction with the conference program. We note that these types of conference
timetabling problems are also known as preference-based problems in the literature. On
the other hand, presenter-based problems seek to assign talks into sessions such that the
conference program avoids presenters having different talks scheduled simultaneously.

Conference events can be very diverse regarding their program structure and re-
quirements. In conference timetabling problems, a conference program consists of a two-
dimensional grid that allocates talks, commonly organized in sessions, to time-space di-
mensions during the days of the conference event. We define talks as all the contributions
or interventions to be scheduled in the conference. Commonly, talks are presentations
of the research works selected to be included in the conference. Each talk is associated
with one or more authors, and it will be presented by (at least) one of them. Spacewise,

Mathematics 2022, 10, 3976 4 of 25

sessions are assigned to a set of available rooms (or locations). These rooms may have some
features (usually named facilities) that should be considered in the scheduling (e.g., room
capacity and size, among others). Timewise, sessions are assigned to time intervals with
a predefined duration; we refer to these time intervals as blocks. A conference day is thus
divided into blocks, while these blocks are further divided into time slots. Sessions can
coincide in the same block but in different rooms, these are called parallel sessions. Finally,
each talk within a session is assigned to a time slot within its block.

In this work, we propose a new conference timetabling problem that can be classified
as a presenter-based approach. This problem introduces the notion of tracks which compose
the conference program. Tracks can be defined as subevents within the conference in
which several topic-related works will be presented. The proposed problem considers
scheduling requirements associated with speakers, session chairs, and track organizers,
hence its classification in the presenter-based category.

The outlined problem is further introduced in Section 3. In the following, we present a
literature review of conference scheduling problems.

2.1. Attender-Based Approaches

The work in [10] proposes an attender-based approach for scheduling conference ses-
sions to maximize public attendance. The primary objective of this approach is to schedule
the talks so that attendance is maximized, enabling the public to attend their preferred
articles. The secondary objective is to minimize the number of jumps between sessions that
occur when an attendee must leave a session to attend another talk in a parallel session.
The work described in [10] solved the planning of three different conferences: MathSport,
Models and Algorithms for Planning, and Scheduling Problems (MAPSP), and the Belgian
Conference on Operations Research (ORBEL). The author proposed a solution based on a
two-stage algorithm that used linear programming models and heuristics. The first stage
was responsible for building a set of parallel “tuples” of talks that minimized the costs
associated with nonattendance. This process was done considering a vector of preferences
of each attending person. As a result of this stage, N vectors of parallel talks were obtained.
The second stage searched for the parallel talk vectors’ schedule that minimized the jumps
between sessions. A local search method that exchanged talks between or within the
same session was applied. The article concluded that the ORBEL conferences were the
most complex instances studied. These conferences considered four parallel sessions and
approximately 80 talks to schedule. The results obtained by the proposal reached locally
optimal solutions in at most a minute of computation time.

In [11], an extensive study of attender-based planning was presented. The study
considered decision strategies such as time flexibility, presenter preferences, talks, sessions,
blocks, and spatial and temporal adjacency of talk scheduling. The same work defined
the characteristics and decisions that must be taken when planning a conference. The first
characteristic was determining the flexibility of the planning, that is, how redundant
the conference can be with respect to repeated sessions or talks, the number of sessions,
and the number of available time slots. The second characteristic consisted in defining
preference types, considering the preferences on time schedules, internal composition of
sessions, or spatial adjacency. The problem described in this work was the 2001 Annual
Meeting of the Decision Sciences Institute conference. The case study considered 213 sessions,
ten available time slots, and the preferences of 520 people. To tackle the scheduling,
the authors proposed a simulated annealing algorithm that required around 40 min to solve
the proposed problem.

2.2. Presenter-Based Approaches

In [12], the authors considered as a case study the European Conference on Operational
Research (EURO-K), which is one of the largest conferences in the world (https://www.
euro-online.org/web/pages/312/euro-k-conferences (accessed on 24 October 2022)).

https://www.euro-online.org/web/pages/312/euro-k-conferences
https://www.euro-online.org/web/pages/312/euro-k-conferences

Mathematics 2022, 10, 3976 5 of 25

In particular, the problem presented in the article was the EURO-K 2016 planning.
The conference had about 2000 participants and approximately 2000 articles to be exhibited,
with a total of 463 sessions throughout 25 study areas. In this conference, a set of study areas
were defined based on the articles’ keywords. These study areas can be considered close
to the definition of tracks in our work. The problem of EURO-K considered a conference
program that aimed at satisfying multiple needs and objectives for a set of articles being
scheduled to a set of rooms, buildings, time slots, days, and people. To solve the problem,
first, the organizers of a particular study area generated each of the sessions beforehand and
internally plan them; that is, they determine the order of the articles of each session. The or-
ganizers created groups of sessions (called streams) that had to be planned in sequence in
the same room and ideally should not be interrupted. The available rooms might be located
in different buildings. We note that most of the microplanning was done by the organizers
and not by the proposed solution approach. Then, the problem was reduced to assigning
(uninterrupted) streams to rooms in different buildings. The authors applied an integer
linear programming model that sought to optimize a list of objectives lexicographically.
First, it minimized the number of sessions scheduled in different buildings that belonged
to the same study area. Second, the number of related study areas allocated to the same
building was maximized. Third, it minimized the number of different rooms allocated to
each stream. Fourth, the interruptions in the schedule of each stream (time gaps) were
minimized. Moreover, it maximized the number of seats available in rooms based on
previous attendance records and preferences. The formulation divided the problem into
small subproblems, where, for example, the third objective could be solved independently
for each building. Experimental results showed that the proposed approach only took a
few hours to obtain a solution that substantially met each of the goals listed above.

In [13], the authors studied a problem similar to the one addressed in our work.
The case study considered was the International Conference on Production Research 2018.
Based on this case study, problem instances were generated considering between 120 and
240 articles to be presented. Unlike our work (and the EURO-K), this type of conference
did not have a simile of what we call tracks. This work aimed to generate a schedule for the
conference, grouping similar articles in sessions with related topics. The talks were grouped
by analyzing their similarity based on keywords and available information from the review
process. A linear programming model and a heuristic approach based on GRASP and
column generation were presented. The proposed heuristic managed to reach its solutions
in less than 1 min while a time limit of 1 h was fixed for the mathematical solver (Gurobi)
for each problem instance.

In [14], a presenter-based approach that sought to cluster talks within sessions accord-
ing to their content (e.g., keywords and title) was presented. The clustering was performed
constraining cluster size and was evaluated based on the schedule generated by the or-
ganization. Two new modifications to clustering algorithms were proposed, one using a
linear programming model and another based on a modification of the K-medoids algorithm.
The article considered the planning of the 13th International Conference on Machine Learning
and Applications (ICMLA-14) and the 27th and 28th Conference on Artificial Intelligence of the
Association for the Advancement of Artificial Intelligence (AAAI-13, AAAI-14). We note that
these conferences included a large variety of topics and did not consider the concept of
tracks defined in our work. The proposed solution involved using techniques such as
natural language processing followed by clustering algorithms. According to experimental
results, the proposed approaches achieved suitable schedules.

In [15], a new version of the problem that considered the perspective of the organizers,
participants, and presenters was studied. The problem definition used in this work sought
to plan talks with similar topics in joint sessions. The study presented three mathematical
models. The first was a linear programming model that could solve small and medium
instances. The second was a linear programming approach that modeled the problem as a
grouping problem that could solve larger instances than the first approach using branch
and cut techniques. Finally, the third approach was a clustering model with set partitioning

Mathematics 2022, 10, 3976 6 of 25

solved by a branch, cut, and price algorithm. Real and artificial instances derived from
the XV Latin American Robotics Symposium (LARS) and the Brazilian Logic Conference (EBL),
involving 86 and 96 talks, respectively, were used for evaluation. A time limit of 12 h for the
three models was established. The first two models did not manage to solve the relaxation
of the problem of the largest artificial instances, while the last model had a much better
performance requiring at most 5 h of computation time in the most complex cases.

As already noted, the problem proposed in this work can be classified as a presenter-
based approach. Hence, the problem includes a presenter perspective in the formulation
and other approaches described in this section. Presenter requirements are handled differ-
ently by each approach. The availability of presenters, as well as organizers, is considered
in our formulation. We note that the track concept introduces the organizers’ role in
the scheduling. Even though parallels to the track concept can be found in other ap-
proaches [13–15], these tracks are commonly built by the scheduling process, and thus, they
are not considered subevents with an internal organization. In our approach, attendance is
ensured by considering both availability and commitments across the conference. Thus,
tracks are not defined as independent subevents within the conference, as is the case in [12].
In this sense, the proposed problem is unique as it defines tracks (subevents) and considers
attendance in a conferencewide fashion. The following section provides more details re-
garding the main features of the approaches in the literature, highlighting the differences
and similarities between them and our work.

2.3. Classification

This section classifies the previously reviewed works which tackle different confer-
ence scheduling problems. Table 1 presents the classification of the reviewed works and
our problem highlighted in bold. The classification considers a set of characteristics of
the problems tackled in each work: the perspective (attender-based or presenter-based),
the criterion for grouping talks (topic-based, keyword-based, or track-based), the problem
divisibility, the problem objective(s), and the proposed approach (exact or local search meth-
ods). Additionally, we identify the real-world conference that was considered a reference
to define the conference scheduling problem tackled in each work. Most of the reviewed
works can be classified as presenter-based approaches. Regarding the grouping of talks, all
reviewed works use either a topic-based or keyword-based approach, while our work intro-
duces the concept of tracks. Only the work presented in [12] can be classified as a divisible
problem since the conference should be scheduled in different locations (buildings), which
can define an independent scheduling problem per location. Exact methods are the most
applied in the reviewed works, while in some cases, a local search procedure is also applied
to generate the scheduling. In this context, we classify our work as a presenter-based
approach with a track-based strategy for grouping talks, defining a nondivisible problem
that minimizes the missing seats and proposes exact and local search approaches. We
note that the definition of tracks as subevents is relevant to our work as it differs from
the talk-grouping strategy considered by other approaches. We highlight that tracks are
independent, having, for example, their organizers and chairs. Despite this, the generated
problem is nondivisible as the talks within a track are not scheduled independently for
attendance purposes. This feature implies that the people considered in the scheduling are
assumed to be interested in attending different tracks within the conference.

Mathematics 2022, 10, 3976 7 of 25

Table 1. Classification of the reviewed works. In the table header: Perspective—(A): Attender-based or (B): Presenter-based; Talks grouping—(C): Topic-based,
(D): Keyword-based or (E): Track-based; Solving method—(F): Exact Search or (G): Local Search.

Approach Based on
Perspective Talks Grouping Divisibility

Objective
Solving Method

(A) (B) (C) (D) (E) Yes No (F) (G)

[10] ORBEL, MathSport,
MAPSP X - - - X Maximize attendance,

minimize jumps X X

[11]
2001 Annual Meeting of

the Decision Science
Institute

X - - - X
Minimize the redundancy of
the scheduling, maximize the

preference satisfaction
X

[12] Euro-K X X X

Minimize the number of
sessions in buildings, maximize
the correlation between study
areas and buildings, minimize
the number of rooms to be used
per stream, minimize streams

interruption, maximize the
available seats in rooms

X

[13]
International Conference
on Production Research

18’
X X X X Maximize similarity between

talks on same sessions X X

[14] ICMLA, AAAI X X X Maximize intrasessions
similarity X

[15] LARS, EBL X X X Maximize intrasessions
similarity X

Our work GECCO X X X Minimize the number of
missing seats X X

Mathematics 2022, 10, 3976 8 of 25

3. Track-Based Conference Scheduling Problem

The track-based conference scheduling problem is a problem in which a set of talks
must be assigned to a set of locations and time slots. Some conferences define tracks as
subevents within the conference or groups of talks that share similar topics of interest. Each
talk is associated with a particular track. In our formulation, tracks are considered to be
predefined by the conference having talks assigned to tracks beforehand. Consequently,
the association of a talk to a track is fixed and cannot be modified during the scheduling
process. A track is organized into one or more sessions that group its talks. The assignment
of sessions to time blocks and their talks to time slots within the corresponding blocks
define the conference program.

Our work considers the 2019 Genetic and Evolutionary Computation Conference as a
case study. The GECCO event comprises several subevents, including tracks, workshops,
and other events within the conference. For simplicity, in the following, we consider all
these subevents as tracks. Tracks are organized by one or more people responsible for
coordinating and decision-making during the organization process. Each track plans a set
of talks. These talks can be invited talks or presentations of research works submitted and
accepted for the track. Tracks group their talks in sessions moderated by a session chair.
In GECCO, some tracks nominate submitted works for the best paper award; thus, some
talks in the conference are the best paper nominees (BP talks). Generally, BP talks within a
track are assigned to the same session. Sessions that contain BP talks are deemed best paper
sessions (BP sessions). In some cases, joint BP sessions are created, including nominees
of more than one track. For this, a previous agreement between track organizers is made.
Attendees vote during the conference for their best paper favorites; consequently, special
attention is given to minimizing the number of BP sessions scheduled in parallel.

GECCO 2019 included 173 talks, 56 sessions, 16 tracks, 7 time blocks distributed
over three days, and eight rooms. More information can be found on the conference
website (https://gecco-2019.sigevo.org/index.html/HomePage (accessed on 24 October
2022)). Figure 2 shows the summary of the GECCO 2019 conference program. The diagram
has two dimensions, a spatial dimension denoted by the rooms (rows of the table) and a
temporal dimension indicating the time blocks available for the schedule (columns of the
table). The sessions of each track are shown in a different color. Sessions that include best
paper nominee talks are marked with a star in the diagram.

Day 1
Block 1

Day 1
Block 2

Day 1
Block 3

Day 2
Block 1

Day 2
Block 2

Day 2
Block 3

Day 3
Block 1

Room 1 T1
session 1

T1
session 2

T8
session 1

T5
session 4

Joint session
T11 session 3
T7 session 3

T1
session 4

T1
session 5

Room 2 T2
session 1

T15
session 1

T3
session 3

Joint session
T14 session1
T12 session 2
T9 session 2

T13
session 2

T4
session 5

T3
session 4

Room 3 T3
session 1

T3
session 2

T13
session 1

T8
session 2

T8
session 3

T8
session 4

T8
session 5

Room 4 T6
session 1

T6
session 2

T6
session 3

T16
session 1

T16
session 2

T16
session 3

T16
session 4

Room 5 T10
session 1

T9
session 1

T7
session 1

T10
session 2

T5
session 5

T9
session 3

Room 6 T4
session 1

T4
session 2

T2
session 3

T4
session 3

T4
session 4

T5
session 7

T7
session 4

Room 7 T11
session 1

T12
session 1

T2
session 2

T11
session 2

T2
session 3

T2
session 4

T14
session 2

Room 8 T5
session 1

T5
session 2

T5
session 3

T7
session 2

T5
session 6

T5
session 8

T5
session 9

Figure 2. Overview of the conference program of GECCO 2019. Sessions that include best paper
nominee talks are marked with a star in the diagram.

In the following, we introduce the track-based conference scheduling problem for-
mulation. We consider a set of talks, each of them associated with a track within the

https://gecco-2019.sigevo.org/index.html/HomePage

Mathematics 2022, 10, 3976 9 of 25

conference. These talks should be grouped into sessions and scheduled in a set of rooms
and time slots. Each room has an associated capacity, measured as the number of available
seats. We assume that an estimation of the number of participants per track is available.
Such estimation can be obtained from historical attendance records, surveys, or attendance
expectations. We also consider a set of actors involved in the schedule: the presenter of
each talk, the session chairs, and the track organizers. The presenters correspond to the
people in charge of presenting the talks. Each of them may present one or more talks at
the conference. The organizers have mostly an administrative role, but it is sought that
at least one organizer can be present in the sessions of their respective tracks. The chairs
correspond to the masters of ceremonies for each session and must be present for the entire
session. The actors involved in the schedule might be unavailable in specific time slots due
to external reasons. Figure 3 describes the relationship of the elements considered in the
scheduling. We define that each talk has an associated presenter, and each talk belongs
to one session that, in turn, belongs to one track. Note that sessions are not predefined,
and thus, the assignment of talks to them is part of the scheduling process. We include in
our formulation the notion of best paper nominee talks. Sessions that contain such BP talks
are regarded as BP sessions, and their parallel scheduling should be minimized.

Presenter Talk Session

Track

1 1+ 1+ 1

1+

1
1

1+

Chair

Organizer 1+ 1+

1+ 1

Figure 3. Entity–relationship model diagram of the elements considered in the track-based conference
scheduling problem formulation.

The objective of our formulation is to find a conference schedule that assigns talks to
sessions, and sessions to rooms and time slots minimizing the number of missing seats in the
sessions. The number of missing seats is calculated based on track attendance estimated
based on historical attendance records. Other requirements of the problem are formulated
as constraints. Some of these aspects are: ensuring the availability of at least one session
chair and organizer per session, ensuring the availability of the presenters in their talks,
avoiding sessions of the same track scheduled in parallel, and avoiding best paper sessions
planned in parallel.

Figure 4 shows an example of a conference schedule that considers three tracks, each
shown in a different color (purple, green, and blue). The example conference considers
16 talks associated with these tracks, grouped into six sessions, using two rooms and three
blocks. It is considered that each session can contain (at most) three talks, i.e., three slots.
In this example, talks A, B, C, L, M, F, G, and H belong to the purple track. We note that
scheduled sessions are scattered throughout different blocks, with talks taking place in
parallel throughout several rooms. As already mentioned, having sessions of the same
track taking place in parallel should be avoided so that the public interested in a given
track can attend all its sessions.

Mathematics 2022, 10, 3976 10 of 25

TS1

TS2

TS3

TS1

TS2

TS1

TS2

TS3

A

Block 1

B C
R

oo
m

 2
R

oo
m

 1
Session 1

Block 2 Block 3

F G H

Session 3

I J K

Session 1

N O P

Session Y

D E

Session 1

L M

Session 2

Figure 4. Example of a conference with 16 talks, three tracks, three blocks and two rooms.

4. Mathematical Model

This section presents the mathematical model of the track-based conference scheduling
problem. The conference timeline is divided into a set of time blocks. A grid cell refers to
a particular block and room. We consider that sessions are logically divided into a fixed
number N of time slots to which talks should be assigned.

4.1. Variables
Our formulation defines the following decision variables:

xτsl ∈ (0, 1) = Talk τ is assigned to session s and slot l (1)
wpsl ∈ (0, 1) = Person p presents in session s slot l (2)

cps ∈ (0, 1) = Person (chair) p participates in session s (3)
ops ∈ (0, 1) = Person (organizer) p participates in session s (4)

ysrb ∈ (0, 1) = Session s is scheduled to grid cell (r, b) (5)
σpslrb ∈ (0, 1) = Person p participates in slot l of session s scheduled in grid cell (r, b) (6)

Variable (1) defines the talks that belong to a session and their order within the session.
Variable (2) indicates that presenters should be available for their talks. Variable (3) and (4)
constrain the chairs and organizers to be available for their sessions. Variable (5) defines a
session schedule in a grid cell. We define auxiliary variable (6) to represent that the same
person cannot be simultaneously in two places.

4.2. Parameters

Our formulation defines the following parameters:

N ∈ N: Maximum number of talks per session.

Γτ ∈ N: Track to which talk τ belongs.

Λs ∈ N: Track to which session s belongs.

Tst ∈ (0, 1): Session s belongs to track t.

Cr ∈ N: Capacity of room r.

Fsr ∈ (0, 1): Session s can be allocated to room r.

Hs ∈ N: Historical attendance of session s.

∆sr ∈ N
{

Hs − Cr, if Hs > Cr

0, otherwise

Bτ ∈ (0, 1): Talk τ is nominated to best paper award.

Mathematics 2022, 10, 3976 11 of 25

Author(τ): Presenter of talk τ.

Chairs(s): Set of available chairs for session s.

Organizers(s): Set of available organizers for session s.

Persons: Set of persons that participate in the event. Persons considers the

union of the sets Author(τ), Chairs(s), and Organizes(s).

Unavailability(p): Set of time blocks where person p is unavailable

to participate (present/chair/organize).

Talks(t): Set of talks of track t.

Sessions(t): Set of sessions of track t.

BestPaper(): Set of talks nominated to best paper.

Yt: Number of sessions of track t.

T : Set of talks.

N defines the maximum number of talks to be assigned to each session (number of
time slots). The model defines this parameter as fixed. However, if sessions of different
sizes are required, it would suffice to extend this parameter to define the number of time
slots per block (Nb) and modify the constraints accordingly to update the model. Γτ and
Λs define the track to which a talk and a session belong, respectively. Cr establishes the
capacity of a room expressed as the number of available seats. Fsr defines if a session
can be allocated to a particular room based on the session requirements and the facilities
available in a room. Hs is the number of expected participants per session. This value
can be estimated from historical attendance records or can be estimated by the organizers
based on the expected attendance. ∆sr defines the expected missing seats when session s is
scheduled in room r. Bτ is a binary constant that indicates if talk τ is nominated for the
best paper award or not.

Author(τ) identifies the presenter of talk τ. Chairs(s) and Organizers(s) identify the
sets of available chairs and organizers for session s of a particular track, respectively.
The set Persons considers the union of the sets Author(τ), Chairs(s), and Organizes(s).
Unavailability(p) identifies the set of time slots where a person p (presenter, chair or,
organizer) is unavailable. Talks(t) and Sessions(t) identify the set of talks and sessions of
track t, respectively. BestPaper() lists the set of talks nominated for the best paper award.

We define Yt as the fixed number of sessions per track. Nevertheless, the number of
required sessions can be computed for each instance as the number of sessions needed to
plan all the talks of each track (Equations (7) and (8)).

Yt =

⌈
Talks(t)
|T |

⌉
(7)

The total number of sessions = ∑
t

Yt (8)

Thus, the number of sessions is considered a constant value throughout the resolution
of the linear programming model.

4.3. Constraints

The constraints related to the track-based conference scheduling problem are listed
below. Constraint (9) establishes that each talk must be scheduled exactly once. Con-
straint (10) controls the maximum number of talks N that can be allocated to each session.
Constraint (11) establishes that each slot can be allocated to at most one article.

Mathematics 2022, 10, 3976 12 of 25

∑
s

∑
l

xτsl = 1 ∀τ (9)

∑
τ

∑
l

xτsl ≤ N ∀s (10)

∑
τ

xτsl ≤ 1 ∀s, l (11)

Constraints (12) and (13) indicate that each session can be allocated to a unique grid
cell (r, b), and each grid cell can be used by at most one session. Constraint (14) forbids the
assignment of a talk to a session that belongs to a different track. Constraint (15) controls
the relationship between the scheduling of a talk and its presenter in the same session.
Constraint (16) indicates that all best paper talks of the same track must be scheduled in a
unique session. Constraint (17) avoids the simultaneous scheduling of sessions that belong
to the same track. Sessions can be allocated to the same block using the set of available
rooms. To avoid same-track sessions in the same time slots, the constraint accounts only for
sessions in a given track using the parameter Tst, allowing at most one in each time slot.

Constraint (18) avoids the schedule of talks/sessions to unavailable time blocks of
presenters, chairs, and organizers. In this case, we assume that there is a list of unavailable
time blocks for each person p participating in the conference.

∑
r

∑
b

ysrb = 1 ∀s (12)

∑
s

ysrb ≤ 1 ∀r, b (13)

∑
l

xτsl = 0 ∀τ, s, Γτ 6= Λs (14)

xτsl ≤ wpsl ∀τ, s, l, p ∈ Author(τ) (15)

∑
l

xτsl = 1 ∀t, τ ∈ BestPaper(), s ∈ Sessions(t) (16)

∑
s

∑
r

ysrb · Tst ≤ 1 ∀t, b (17)

wpsl + ysrb ≤ 1 ∀p, s, l, r, b ∈ Unavailability(p) (18)

Constraint (18) forbids the assignment of a session s to a block b (which is unavailable
for person p) when person p is presenting a talk in any slot l of session s. We note that
person p could have a presentation in one or more slots of session s, and thus, there is a
constraint per slot. For example, assume that person p1 is not available in the first block
b1 of the conference (Unavailability(p1) = {b1}), and their talk is assigned to session s2,
which has two slots, l1 and l2. Then, for each room r of the conference, two constraints
are generated:

wp1,s2,l1 + ys2,r,b1 ≤ 1 (19)

wp1,s2,l2 + ys2,r,b1 ≤ 1 (20)

Constraints (21)–(24) avoid a person simultaneously attending more than one session.
Constraint (21) specifies that each person participates in only one session in each time slot.
Auxiliary variables σpslrb are used to ensure the linear nature of the formulation of these
constraints. Variables σpslrb activate variables wpsl and ysrb using constraints (22)–(24).

∑
s

∑
r

σpslrb ≤ 1 ∀p, b, l (21)

wpsl + ysrb − σpslrb ≤ 1 ∀p, s, l, r, b (22)

σpslrb ≤ wpsl ∀p, s, l, r, b (23)

σpslrb ≤ ysrb ∀p, s, l, r, b (24)

Mathematics 2022, 10, 3976 13 of 25

Constraints (25)–(28) indicates that a particular chair and organizer should attend
their associated sessions.

ysrb ≤ ∑
p

cps ∀s, r, b, p ∈ Chairs(s) (25)

N · cps ≤ ∑
l

wpsl ∀p, s (26)

ysrb ≤ ∑
p

ops ∀s, r, b, p ∈ Organizers(s) (27)

N · ops ≤ ∑
l

wpsl ∀p, s (28)

4.4. Objective Function

The objective function considers the minimization of the missing seats of the program
schedule, according to the historical attendance of track sessions. The idea here is to
perform the best allocation of sessions to available rooms minimizing the missing seats in
all sessions. In other words, we aim to reduce, as much as possible, the number of persons
who cannot attend a session due to a lack of seats in the assigned rooms. In a real-world
situation, the requirements defined by previous attendance records may not be met by the
rooms currently available.

Moreover, a variance can be expected between the historical attendance record and the
attendance of the current conference event. A quiz can be performed during the conference
registration to reduce the expected variation and improve the quality of the solutions and
the use of available rooms. For this, ∆sr indicates the difference between the expected
attendance and room capacity. The objective function summarizes these differences in
Equation (29).

min z = ∑
s

∑
r

∑
b

ysrb · ∆sr (29)

5. Heuristic Approach

The heuristic solution proposed in this work searches for good-quality solutions
by allowing the algorithm to traverse infeasible areas of the search space. An initial
session assignment is generated and submitted to a local search algorithm based on sim-
ulated annealing (SA) to improve its quality. SA [16] is a well-known metaheuristic that
has been used to solve many different problems such as routing problems [17–20], sym-
bolic regression [21], feature selection and/or hyperparameter tuning for classification
algorithms [22–24], influence maximization on social networks [25], and many other prob-
lems [26,27]. Furthermore, SA has been implemented for solving many different scheduling
problems related to machine scheduling problems [28], scheduling of relief teams in natural
disasters [29], for the multiobjective job-shop problem [30], in scheduling tasks in cloud
computing applications [31], among others.

The SA algorithm implements proportional cooling, periodic overheating, stagnation
detection mechanisms, and an adaptive setting of initial temperatures.

5.1. Solution Representation

Solutions are represented as matrices of size rooms × blocks. The value of each matrix
cell indicates the session allocated to a room i in block j. Zero values indicate that no session
is allocated to a specific cell.

Figure 5 shows an example of a solution representation. The schedule represented
by this solution considers five time blocks, three rooms, and five tracks (light blue, yellow,
purple, red, and green). Each track is composed of a different number of sessions; for
example, the track shown in light blue has four sessions. The value 0 indicates no session
assigned to that particular combination of room and time block.

Mathematics 2022, 10, 3976 14 of 25

1 1 2 3 4
2 3 1 2

1
3

1 2 1 2 0
R
oo

m
s

2
3

1 2 3 4 5
Blocks

Figure 5. A program built by sequential assignment left-right top-bottom (the numbers represent the
order of insertion in the grid).

5.2. Initial Solution Generation

The initial session assignment lists the whole set of talks T , grouped only by track. Yt
is computed as previously explained in Section 4, and the total number of sessions required
to schedule the conference is then computed. The talks are assigned to sessions according
to the following criteria:

1. All best paper talks are assigned to the same session.
2. The remaining talks are iteratively assigned to sessions such that the papers maximize

the joint availability of the session. The joint availability of a session is expressed as
the total number of slots to which talks can be assigned.

3. When a talk can not be assigned to any session, given that it causes the schedule to be
unfeasible due to null joint availability. The talk is assigned to the first session with
enough space.

An initial solution is generated by populating the program representation matrix
with the sessions ordered by track. The sessions are assigned sequentially by room, going
from left to right through the time blocks. Tracks are randomly selected to be allocated.
For example, in Figure 5, the sessions of each track were assigned sequentially, starting
with the light blue track and then the yellow, purple, red, and green tracks. This procedure
allows initially assigning tracks to the minimum number of rooms and reducing the number
of parallel session assignments for each track. We note that this procedure does not consider
the sessions’ availability, and thus, it can generate infeasible programs, assigning sessions
to their unavailable blocks. Moreover, the process does not consider the objective of
minimizing the number of missing seats; thus, it can assign sessions to rooms that largely
do not provide the number of seats required for the session.

Once all talks are assigned to sessions, one chair and organizer are randomly allocated
to each session.

5.3. Evaluation Function

This work’s search task corresponds to solving a constraint satisfaction problem that
also seeks to minimize the missing seats according to historical attendance. We apply the
evaluation function given in Equation (30), which is composed of the sum of the objective
function z defined in Equation (29) plus a penalization function related to the unsatisfied
hard constraints weighted by a factor (γ > 1).

f (x) = z(x) + ηγ (30)

Considering a complete instantiation, where all variables have a value assigned,
the total number of unsatisfied hard constraints η is calculated as the sum of the follow-
ing elements:

• The number of persons in blocks of time they are not available.
• The number of pairs of sessions that share a chair or organizer scheduled in parallel.
• The number of pairs of the same track sessions scheduled in parallel.
• The number of presenters scheduled as chair/organizer and presenter in parallel.
• The number of presenters that have two talks programmed in the same time slot.

Mathematics 2022, 10, 3976 15 of 25

5.4. Local Search

Algorithm 1 shows the pseudocode of our proposal. Considering the initial session
assignment, the algorithm constructs an initial solution (S). Then, the algorithm locally
searches for neighbors choosing one of four different operators (lines 4–5). Each operator
has a probability pj of being selected. The details of each operator are presented in the
next section. Solutions that improve the best-so-far solution are always accepted, while
worsening solutions are accepted according to the classical Metropolis acceptance criterion
defined by simulated annealing approaches (lines 6 to 11). A geometric cooling scheme
is applied to reduce the temperature in each iteration by a factor of α. The temperature
is increased in each reheat following a linear behavior proportional to the number of
iterations. Ti+1 += β− (β− 1) · i

N , where i is the current iteration and N is the total number
of iterations to be performed by the search procedure. As the process advances, reheating
is iteratively less intense (line 13).

Algorithm 1: Simulated annealing procedure outline.

S = initial solution;
Ti = initial temperature;
for i = 1→ N do

O = choose which operator(p1, p2, p3, p4);
Sn = choose random from neighborhood(S, O);
∆ = f(Sn) - f(S);
if ∆ < 0 then

S = Sn
else

if exp(−∆
Ti
) > rand(0, 1) then

S = Sn
end

end
if χ iterations without improvement then

Ti+1 += β− (β− 1) · i
N

end
Ti+1 = Ti · α

end

The proposed algorithm considers four operators in the local search process: (1) talk
swap, (2) chair exchange, (3) organizer exchange, and (4) session swap. In each iteration,
one operator is randomly selected with probability pj (j ∈ [1, 4]).

5.5. Talk Swap

Two random sessions of the same track are chosen; a talk is randomly selected for
each of these sessions, and then these talks are swapped. The objective of this operator is to
perturb the session assignment to avoid the premature stagnation of the search process.

5.6. Chair Exchange

A session is randomly selected, and the chair assigned to this session is replaced by a
randomly selected chair of the respective track. This operator allows a search for a good
session chair assignment that covers an entire time block (a column within the grid).

5.7. Organizer Exchange

A randomly selected organizer is reassigned to a randomly selected session. This
operator allows a search for an organizer assignment in which organizers do not have more
than one responsibility in the same time block.

Mathematics 2022, 10, 3976 16 of 25

5.8. Session Swap

Two random sessions from the grid are selected, and their rooms and time blocks (r, b)
are exchanged. We note that sessions can belong to any track. This operator contributes
to the exploration of the search space, and it can be expected to generate most of the
improvements in the early stages of the algorithm.

The three first operators (talk swap, chair exchange and organizer exchange) perform
changes within a program session, while the last operator (session swap) performs changes
between program sessions. Consequently, the first three operators perform small changes
to a solution (complete variable instantiations). On the other hand, the session swap
operator performs the largest modifications since it changes the schedule of many talks at
the same time.

6. Experimental Setup

In this section, we present our experimental setup. We first introduce the problem-
instance generation process and then describe the parameter tuning process performed for
the heuristic approach.

6.1. Instance Generation

To evaluate our proposal, we implemented a track-based conference scheduling in-
stance generation procedure. The instance generator was programmed in Python 3.9.5,
and its input features were the number of talks |T | , the number of people involved in
the schedule P, the number of blocks B, the number of rooms R, the number of tracks T,
the number of talks per session L, and the percentage of unavailability C.

We generated a set of test instances considering dimensions similar to GECCO 2019.
These instances were generated using a fixed number of talks and tracks, while other
parameters were set to different values. The total number of instances generated was
determined by the permutation of the following parameters:

• Number of talks: set to the number of talks in GECCO 2019 = 173 talks.
• Number of tracks: set to the number of talks in GECCO 2019 = 14 tracks.
• Number of persons: set to either 130, 150, or 170 people to be considered for the schedule.
• Number of rooms: set to either five, six, seven, eight, or nine rooms available. We note

that GECCO 2019 defined eight rooms.
• Number of blocks: set to either six, seven, eight, or nine time blocks. We note that

GECCO 2019 defined seven time blocks.
• Talks per session: set to either four or five talks per session.
• Percentage of unavailability: set to either 10%, 20%, or 30% of the overall time slots for

each person considered in the schedule. From preliminary experiments, we concluded
that any value greater than 30% often led to infeasible conference schedules and, thus,
infeasible problem instances.

The total number of generated instances could be computed by T · R · B · L · P · C =
5× 4× 2× 3× 3 = 360. Some of these instances were discarded because they considered
a number of sessions higher than the size of the program grid (time slots × rooms),
making them clearly unfeasible. Finally, a subset of 45 instances was considered for the
experiments in our study. In the following, instances are identified by the parameter values
provided as input for its generation. For example, instance T 173-P170-R9-B6-L4-T14-C0.2
considers 173 talks, 170 persons, 9 rooms, 6 blocks, 4 talks per session, 14 tracks and 20% of
unavailability. The problem instances used in this study are available in [32].

6.2. Parameter Tuning

We applied the ParamILS [33] configurator to adjust the parameters of our heuristic
approach before performing the experiments to evaluate its performance. ParamILS is an
iterated local search algorithm designed to search for high-performing parameter settings.
The advantage of using such a procedure is that, in general, configurators require evaluating

Mathematics 2022, 10, 3976 17 of 25

fewer instances than traditional manual approaches, and it optimizes the computational
effort involved in adjusting parameters. We provided ParamILS 10,000 target algorithm
executions as the computational budget available to perform the tuning of our algorithm.
Each execution of our heuristic approach applied a termination criterion of 10 iterations.
The tuning was performed over a training set composed of four instances. These instances
were selected since, experimentally, they appeared to be difficult to solve by traditional
exact approaches. The instances chosen for training are listed in Table 2.

Table 2. Details of the training instances provided for the tuning process.

Talks Tracks Persons Rooms Blocks Time Slots Unavailability

(0) 173 14 130 5 8 5 30%
(1) 173 14 170 6 9 4 20%
(2) 173 14 130 9 6 4 30%
(3) 173 14 150 7 6 5 20%
(4) 173 14 170 9 6 4 10%

The parameters tuned and their domains are listed in Table 3. We note that ParamILS
requires all parameter domains to be categorical; thus, numerical parameters were dis-
cretized based on preliminary experiments. Additionally, ParamILS requires defining a
default value for each parameter which is used to initialize the search. Default parameter
values are underlined in Table 3. Finally, the values selected by ParamILS are shown
in bold.

Table 3. Parameter values domains defined for the parameter tuning process of the simulated anneal-
ing approach. Default parameter values are underlined and selected values are shown in bold.

Parameter Range of Values

Cooling rate α = {0.90, 0.95, .999}
Penalty multiplier γ = {100, 1000, 10,000}
Iterations to reheat χ = {1000, 0,000}
Reheat multiplier β = {1, 100, 1000}

p1 = {0.00, 0.25, 0.50, 0.75, 1.00}
Operator probabilities p2 = {0.00, 0.25, 0.50, 0.75, 1.00}

p3 = {0.00, 0.25, 0.50, 0.75, 1.00}
p4 = 1.00− p1 − p2 − p3

7. Experimental Results

This section presents the results obtained from the evaluation of the proposed algo-
rithm. The implementation of the proposed algorithm is available in [32]. The algorithm
was implemented in C++ and compiled using the g++ compiler (Ubuntu 6.2.0-5ubuntu12)
6.2.0. Our heuristic procedure was evaluated by performing 25 executions over each of
the 45 test instances with a 107 iterations termination criteria. The experiments reported
in this work were executed on a 3.50 GHz i5-4690K device with 16 GB RAM. ParamILS
was applied to configure the heuristic algorithm, and the parameter settings suggested by
the configurator were used in the reported experiments. Our mathematical formulation
was also solved by the Gurobi solver version 9.1.1 using default settings and considering a
maximum execution time of 3600 s = 1 h for each problem instance. First, we attempted to
solve the generated problem instances using the Gurobi solver and then, we applied the
proposed heuristic algorithm to assess its performance compared to the exact solver.

7.1. Gurobi Results

We applied the Gurobi solver to the 45 instances generated with the procedure de-
scribed in Section 6. Tables 4–6 provide the results obtained by the solver. From these
experiments, we classified the set of problem instances according to whether the solver was
able to solve them. We defined the following classes: (a) optimally solved instances (optimal

Mathematics 2022, 10, 3976 18 of 25

solutions were obtained by Gurobi), (b) unsolved instances (Gurobi was unable to solve the
instance in the provided time), or (c) infeasible instances (Gurobi determined infeasibility).

Table 4 shows the results obtained for the instances in which Gurobi was able to
find the optimal solution. For each instance, this table shows the value of the objective
function (z), the lower bound of z determined by Gurobi (bound), the percentage difference
between these values (gap), the execution time spent to find z (time (s)) and the final
status of the instance. We note that all instances listed in Table 4 have a gap equal to zero
(Gurobi determined the optimal solution), and instances are sorted by total execution time
in descending order. Given that the solver was able to solve these instances, they can
be classified as “easier” generated instances. The solving times required by Gurobi differed
between instances: 3 instances required times > 2700 s, 36 instances took 1800–2700 s, 7 instances
took 900–1800 s, and 12 of 21 instances took 0–900 s. The solution time required for solving
the instances did not seem to be influenced by the number of persons, the number of rooms,
the number of blocks, or the time slots considered in the scheduling. Interestingly, most
of the instances in this table have an unavailability level of 10% or 20%. Furthermore,
instances at the bottom of the table tend to have a 10% of unavailability, signaling that
they are generally easier to solve. We interpret this as an indication that the unavailability
parameter directly influences the difficulty of the generated instance. Such influence is
easily explainable since larger unavailability levels increase the probability of generating
conflicts when generating a schedule. Despite this, we note that this is not always the case,
as in some cases, large levels of unavailability might make the scheduling process easier as
it might reduce the number of possible assignments.

Table 4. Gurobi results for optimally solved problem instances.

Case Instance z Bound Gap Time (s) Status

(5) T 173-P170-R9-B6-L4-T14-C0.2 44 44 0 2983 optimal
(6) T 173-P130-R9-B6-L4-T14-C0.1 65 65 0 2915 optimal
(7) T 173-P170-R6-B9-L4-T14-C0.3 139 139 0 2541 optimal
(8) T 173-P150-R9-B6-L4-T14-C0.2 21 21 0 2521 optimal
(9) T 173-P130-R7-B6-L5-T14-C0.2 30 30 0 2184 optimal
(10) T 173-P130-R6-B7-L5-T14-C0.2 15 15 0 2165 optimal
(11) T 173-P150-R6-B9-L4-T14-C0.2 261 261 0 2095 optimal
(12) T 173-P130-R5-B8-L5-T14-C0.1 134 134 0 2094 optimal
(13) T 173-P170-R7-B6-L5-T14-C0.2 30 30 0 1655 optimal
(14) T 173-P150-R6-B7-L5-T14-C0.2 166 166 0 1498 optimal
(15) T 173-P170-R6-B7-L5-T14-C0.1 21 21 0 1450 optimal
(16) T 173-P130-R6-B9-L4-T14-C0.3 61 61 0 1448 optimal
(17) T 173-P130-R6-B9-L4-T14-C0.2 33 33 0 1381 optimal
(18) T 173-P150-R9-B6-L4-T14-C0.1 22 22 0 1186 optimal
(19) T 173-P150-R7-B6-L5-T14-C0.1 15 15 0 1111 optimal
(20) T 173-P170-R6-B7-L5-T14-C0.2 52 52 0 1067 optimal
(23) T 173-P170-R5-B8-L5-T14-C0.2 41 41 0 834 optimal
(30) T 173-P150-R5-B8-L5-T14-C0.2 52 52 0 633 optimal
(31) T 173-P170-R6-B9-L4-T14-C0.1 76 76 0 632 optimal
(32) T 173-P130-R7-B6-L5-T14-C0.1 24 24 0 629 optimal
(33) T 173-P170-R5-B8-L5-T14-C0.1 40 40 0 611 optimal
(34) T 173-P150-R6-B9-L4-T14-C0.1 32 32 0 600 optimal
(38) T 173-P130-R6-B9-L4-T14-C0.1 175 175 0 485 optimal
(39) T 173-P130-R5-B8-L5-T14-C0.2 21 21 0 431 optimal
(40) T 173-P170-R7-B6-L5-T14-C0.1 119 119 0 417 optimal
(41) T 173-P150-R5-B8-L5-T14-C0.1 17 17 0 403 optimal
(42) T 173-P150-R6-B7-L5-T14-C0.1 37 37 0 396 optimal
(43) T 173-P130-R6-B7-L5-T14-C0.1 5 5 0 326 optimal

Table 5 shows the set of test instances for which Gurobi could not reach an optimal
solution in the specified computation time. The subset included 5 out of the 45 generated
instances, which seemed to have varied features. These instances were the most difficult to

Mathematics 2022, 10, 3976 19 of 25

solve in the generated set. We believe that the difficulty of these instances is related to mul-
tiple factors, and thus, it cannot be linked to only one generation parameter input. For three
instances, Gurobi could not find an estimate for the lower bound, and an undefined z value
was reported indicating that Gurobi failed to find any solutions for them. On the other
hand, for two instances, Gurobi found solutions very close to the estimated lower bound.

Table 5. Gurobi results for unsolved problem instances.

Case Instance z Bound Gap Time (s) Status

(0) T 173-P130-R5-B8-L5-T14-C0.3 37 36 ∼0 3619 time
(1) T 173-P170-R6-B9-L4-T14-C0.2 176 175 ∼0 3601 time
(2) T 173-P130-R9-B6-L4-T14-C0.3 - - - 3600 time
(3) T 173-P150-R7-B6-L5-T14-C0.2 - - - 3600 time
(4) T 173-P170-R9-B6-L4-T14-C0.1 - - - 3600 time

Finally, Table 6 provides the set of instances for which Gurobi indicated that there
was no feasible solution. We note that most of the infeasible instances define a 30%
unavailability level, while the one with the lowest execution time is the only instance with a
20% unavailability level. This points to the fact that the number of conflicts associated with
the unavailability of the people involved in the conference program is decisive in defining
if a problem has a solution. Nevertheless, as we already mentioned, this single parameter
is not enough to understand instance difficulty.

Table 6. Gurobi results for infeasible problem instances.

Case Instance Time (s) Status

(21) T 173-P170-R9-B6-L4-T14-C0.3 1032 infeasible
(22) T 173-P150-R9-B6-L4-T14-C0.3 852 infeasible
(24) T 173-P170-R7-B6-L5-T14-C0.3 799 infeasible
(25) T 173-P150-R6-B9-L4-T14-C0.3 769 infeasible
(26) T 173-P150-R5-B8-L5-T14-C0.3 734 infeasible
(27) T 173-P150-R7-B6-L5-T14-C0.3 686 infeasible
(28) T 173-P170-R6-B7-L5-T14-C0.3 681 infeasible
(29) T 173-P170-R5-B8-L5-T14-C0.3 639 infeasible
(35) T 173-P150-R6-B7-L5-T14-C0.3 599 infeasible
(36) T 173-P130-R7-B6-L5-T14-C0.3 595 infeasible
(37) T 173-P130-R6-B7-L5-T14-C0.3 486 infeasible
(44) T 173-P130-R9-B6-L4-T14-C0.2 106 infeasible

7.2. Heuristic Results

In this section, we present the experimental results obtained in the evaluation of our
heuristic method when applied to solve the generated instances. Tables 7–9 show the
results of the heuristic approach for each instance subset. For each instance, we present
the minimum (min(f)), the maximum (max(f)), and the average (Av(f)) evaluation function
values obtained by the heuristic approach. In addition, the average execution time (Av(T))
and the status quality of the process returned by Gurobi are shown for reference. In Table 7,
we included the optimal objective function found by Gurobi. Results in bold highlight
when max(f) = min(f) = Av(f).

From Table 7, we note that for every optimally solved instance, the heuristic method
was able to find good-quality solutions. In all instances, the heuristic method reached the
optimal solution found by Gurobi. In addition, 82% of the results are shown in bold, which
indicates that the heuristic method found the same quality value in all the independent
executions. Therefore, this suggests a certain stability of the proposed heuristic algorithm
regarding the obtained results. On the other hand, the remaining instances presented small
differences between their minimum and maximum f values. Regarding execution time,
the heuristic method drastically reduced the time required to obtain optimal solutions

Mathematics 2022, 10, 3976 20 of 25

compared to the Gurobi solver. The time reduction ranged between 97% of reduction in the
easiest instance to 99% in the hardest instance.

Table 7. Heuristic results for optimally solved problem instances. Results in bold highlight when
max(f) = min(f) = Av(f).

Case Instance min(f) max(f) Av(f) b z

(5) T 173-P170-R9-B6-L4-T14-C0.2 44 44 44.0 12 44
(6) T 173-P130-R9-B6-L4-T14-C0.1 65 65 65.0 12 65
(7) T 173-P170-R6-B9-L4-T14-C0.3 139 140 139.0 6 139
(8) T 173-P150-R9-B6-L4-T14-C0.2 21 22 21.0 11 21
(9) T 173-P130-R7-B6-L5-T14-C0.2 30 31 30.6 8 30
(10) T 173-P130-R6-B7-L5-T14-C0.2 15 15 15.0 7 15
(11) T 173-P150-R6-B9-L4-T14-C0.2 261 261 261.0 5 261
(12) T 173-P130-R5-B8-L5-T14-C0.1 134 134 134.0 6 134
(13) T 173-P170-R7-B6-L5-T14-C0.2 30 30 30.0 8 30
(14) T 173-P150-R6-B7-L5-T14-C0.2 166 166 166.0 6 166
(15) T 173-P170-R6-B7-L5-T14-C0.1 21 21 21.0 7 21
(16) T 173-P130-R6-B9-L4-T14-C0.3 61 62 61.1 6 61
(17) T 173-P130-R6-B9-L4-T14-C0.2 33 34 33.1 6 33
(18) T 173-P150-R9-B6-L4-T14-C0.1 22 22 22.0 11 22
(19) T 173-P150-R7-B6-L5-T14-C0.1 15 15 15.0 8 15
(20) T 173-P170-R6-B7-L5-T14-C0.2 52 52 52.0 6 52
(23) T 173-P170-R5-B8-L5-T14-C0.2 41 41 41.0 5 41
(30) T 173-P150-R5-B8-L5-T14-C0.2 52 52 52.0 4 52
(31) T 173-P170-R6-B9-L4-T14-C0.1 76 76 76.0 5 76
(32) T 173-P130-R7-B6-L5-T14-C0.1 24 24 24.0 8 24
(33) T 173-P170-R5-B8-L5-T14-C0.1 40 40 40.0 5 40
(34) T 173-P150-R6-B9-L4-T14-C0.1 32 32 32.0 8 32
(38) T 173-P130-R6-B9-L4-T14-C0.1 175 175 175.0 6 175
(39) T 173-P130-R5-B8-L5-T14-C0.2 21 21 21.0 5 21
(40) T 173-P170-R7-B6-L5-T14-C0.1 119 119 119.0 8 119
(41) T 173-P150-R5-B8-L5-T14-C0.1 17 17 17.0 5 17
(42) T 173-P150-R6-B7-L5-T14-C0.1 37 37 37.0 7 37
(43) T 173-P130-R6-B7-L5-T14-C0.1 5 5 5.0 7 5

Table 8. Heuristic results for unsolved problem instances.

Case Instance min(f) max(f) Av(f) Av(T) (s) Status

(0) T 173-P130-R5-B8-L5-T14-C0.3 36 36 36.0 5 time
(1) T 173-P170-R6-B9-L4-T14-C0.2 175 175 175.0 6 time
(2) T 173-P130-R9-B6-L4-T14-C0.3 10 4011 810.7 13 time
(3) T 173-P150-R7-B6-L5-T14-C0.2 42 42 42.0 8 time
(4) T 173-P170-R9-B6-L4-T14-C0.1 168 168 168.0 12 time

Table 8 presents the results of the heuristic approach for the instance set that remained
unsolved by Gurobi. For four of these instances, the heuristic approach always found
solutions that had the same f value. Two of these f values were equal to the lower
bound estimated by Gurobi (see Table 5), indicating that these solutions were globally
optimal. Such results show the advantages of using a heuristic method like the one
proposed in this work, as good solutions can be found in a fraction of the time it takes
to find a globally optimal solution with a solver like Gurobi. Within this instance subset,
instance (2) seemed to be challenging for the heuristic procedure, obtaining results with
considerable variability. For this instance, the heuristic found a maximum value of f = 4011,
which indicated that this solution was infeasible. Moreover, the mean f obtained for this
instance was Av(f) = 810.7, indicating that only a few executions yielded infeasible solutions.
Consequently, we considered that instance (2) was the most difficult for our heuristic
algorithm since it was not always possible to obtain feasible solutions. This instance

Mathematics 2022, 10, 3976 21 of 25

considerably differed from the others in the set, as no other instance presented this result
variability. When checking the instance’s conflict matrix, we observed that the conflicts
were fairly distributed among the persons considered in the problem. Consequently, we
conclude that the difficulty of the instance was due to the interaction between these conflicts.
Regarding the execution time, there was not enough information to observe a relationship
between the time required by the heuristic algorithm and the instance features (persons,
rooms, etc.). Furthermore, comparing this instance set and the optimally solved instances,
we did not see such a relationship between the execution times and the instances.

Table 9. Heuristic results for infeasible problem instances.

Case Instance min(f) max(f) Av(f) Av(T) (s) Status

(21) T 173-P170-R9-B6-L4-T14-C0.3 8069 12,073 8870.9 12 infeasible
(22) T 173-P150-R9-B6-L4-T14-C0.3 4175 8176 4975.4 12 infeasible
(24) T 173-P170-R7-B6-L5-T14-C0.3 5043 5049 5044.4 9 infeasible
(25) T 173-P150-R6-B9-L4-T14-C0.3 8152 8153 8152.1 5 infeasible
(26) T 173-P150-R5-B8-L5-T14-C0.3 10,064 15,068 12,264.6 5 infeasible
(27) T 173-P150-R7-B6-L5-T14-C0.3 10,121 10,122 10,121.0 8 infeasible
(28) T 173-P170-R6-B7-L5-T14-C0.3 10,032 10,032 10,032.0 6 infeasible
(29) T 173-P170-R5-B8-L5-T14-C0.3 10,063 10,065 10,063.8 5 infeasible
(35) T 173-P150-R6-B7-L5-T14-C0.3 10,102 10,103 10,102.2 6 infeasible
(36) T 173-P130-R7-B6-L5-T14-C0.3 5012 10,013 5213.2 8 infeasible
(37) T 173-P130-R6-B7-L5-T14-C0.3 5039 5039 5039.0 7 infeasible
(44) T 173-P130-R9-B6-L4-T14-C0.2 8024 8025 8024.0 12 infeasible

Table 9 shows the results of the heuristic method for the infeasible instance set. In these
cases, the heuristic method obtained larger f values compared to the other instance sets.
These larger values were related to the infeasibility of the problem instances and to the
penalty applied to unsatisfied hard constraints. The results showed that in this set, most of
the instances did not share the values of min(f) and max(f). This showed that the heuristic
method had a hard time converging to one area of the solution space. This can be due to the
number of “good-quality” solutions that exist in these instances, given the large numeric
difference between the penalty value applied in the evaluation function f and the values of
the objective function z. Since solutions in these spaces are not feasible, several solutions
with the same number of constraint violations might share similar f values despite their
different structures. As it is shown in Section 6.2, the penalty multiplier applied in these
experiments was γ = 1000. From this, the number of unsatisfied hard constraints could
be estimated as ∼ f

1000 . For instance (24), the heuristic method converged to solutions
with f values around 5000, indicating that most of the instances should have around five
constraint violations. It is important to mention that the number of unsatisfied constraints
was low as it involved only five conflicts that, in a real situation, could be directly arranged
with the involved people. This information could be useful for organizers in a real-case
scenario to request more availability or flexibility from presenters and organizers, request
more rooms, and evaluate changing the venue, among other actions. We note that the min(f)
and max(f) values had the same order of magnitude in most of these instances, and thus, it
can be considered that the heuristic method converged in terms of orders of magnitude.
The instances that had a larger difference in orders of magnitude were instances (21), (22),
(26), and (36). Of these instances, the only instance that had a mean Av(f) that was much
larger than the min(f) was instance (26), indicating that for this instance, the heuristic
method did not always converge to solutions with a similar level of constraint satisfaction.
Even though heuristic methods were not able to detect when instances did not have a
feasible solution, we considered that these consistent results provided evidence of the lack
of feasible solutions.

Mathematics 2022, 10, 3976 22 of 25

8. Discussion

In this work, we proposed the track-based conference scheduling problem, a confer-
ence scheduling problem that considered the notion of tracks in the scheduling process.
The proposed problem allows one to perform the scheduling of conferences that define
subevents (tracks) which can have their own organization and requirements but should not
be scheduled independently (nondivisible problem). We remark that, to our knowledge,
this is the first approach that includes such a talk notion. Our proposal included a binary
linear mathematical model that considered the minimization of the number of missing
seats as its objective. Our model aimed at satisfying the availability of presenters, chairs
and organizers, avoiding parallel track and best paper sessions, among other constraints.

We also proposed an instance generation procedure for generating instances for the
track-based conference scheduling problem. This procedure allows the generation of
instances with different input features, such as the number of talks, tracks, rooms, blocks,
time slots, people, and the unavailability level of the people involved in the scheduling.
In this work, we generated a set of 45 test instances using a fixed number of talks (173)
and tracks (14) and varying the other features. To compare the difficulty of the generated
instances, we applied the Gurobi solver to solve them. We identified three subsets of
instances based on the results obtained by Gurobi. The largest subset contained instances
that the solver was able to solve optimally. The second subset contained instances that
Gurobi determined as infeasible, and the smallest was the instance subset that Gurobi could
not solve in the given time. These results showed that the generated instance set contained
instances with different characteristics, not only in terms of their input features but also in
terms of their difficulty levels. The difference in difficulty between the generated instances
was interesting, as these differences were not necessarily correlated with the input features.
Such difficult differences were probably due to the conflicts arising from the availability of
the people considered in the scheduling. In this context, a future line of work would be
improving the generation procedure, maybe including other features that can offer more
refined control over the difficulty level of the generated instances. Regarding the instance
set generated in this work, we consider that it is a good benchmark tool for evaluating
solution approaches as it contains instances with different difficulty levels.

Aiming to provide a practical method for solving the most complex instances in
the generated instance set, we presented a simulated-annealing-based algorithm for the
proposed problem. We evaluated our procedure on the generated set of instances to
assess the algorithm’s ability to tackle different instances. The results showed that the
algorithm could solve, in a fraction of time, all the instances for which Gurobi found
the optimal solution. In the case of the instances where Gurobi did not find a solution
in the provided time, the heuristic method seemed to have converged to near-optimal
solutions. Not surprisingly, the results obtained for the infeasible instances were the most
varied of the test. Despite this, we could observe that the heuristic approach converged
to “low” infeasibility levels for these instances. This showed that the heuristic approach
could provide complete instantiations that, even though they were not feasible, offered a
conflict-reduced alternative that could be used as a base to improve upon, for example,
considering additional people (alternative presenters, new organizers) in the conference
schedule. We note that such infeasible instance scenarios are possible in real settings,
and thus, alternatives should be at hand to create the final conference program. Overall,
experimental results indicated that the proposed heuristic was an adequate approach for
the track-based conference scheduling problem. The proposed approach allowed us to
obtain good solutions quicker than the Gurobi solver, while also offering better solving
perspectives for more complex or larger instances.

The work presented in this article aimed at including in the problem formulation the
most distinctive features of the conference program of our reference real-world case: the
Genetic and Evolutionary Computation Conference. The proposed formulation focused on
obtaining feasible solutions (conference programs), and thus, it did not allow completely
infeasible instantiations to be considered valid program alternatives. This is a clear limi-

Mathematics 2022, 10, 3976 23 of 25

tation when considering scenarios in which feasible schedules are not possible and that,
consequently, require someone to intervene to generate favorable problem conditions or
make compromises regarding the program. In future work, we would like to incorporate
the minimization of infeasibility as an objective in our mathematical formulation. In this
way, an exact solver like Gurobi would be able to provide complete instantiations that min-
imize infeasibility when dealing with infeasible instances. In the same context, the problem
formulation can be extended to include other program features that can be considered for
the scheduling. In particular, our problem definition currently does not include the use of
joint sessions and other preferences related to the scheduling of the sessions and the talks
within them. We aim to include such features in future work. Such work would contribute
to providing a more flexible problem definition that can handle additional conference
program requirements.

A key aspect of this work is the instance generation procedure. This method, though sim-
ple, provides reasonable test instances with different difficulty levels enabling the eval-
uation and comparison of approaches. In this context, we plan to improve the instance-
generation procedure, including new features that provide better control over the generated
instances. Furthermore, generating a more diverse set of instances in terms of input features
and complexity is interesting as it would help to establish an instance benchmark set for
this problem. Finally, we aim to improve the search performance of our algorithm in future
work. In particular, we would like to focus on solving large and more diverse instances in
reasonable computation times.

9. Conclusions

The task of scheduling a conference event can be defined as an event-based timetabling
problem that aims at finding an adequate conference program that assigns a set of talks to
rooms and time slots. In this work, we focused on such conference scheduling approaches,
contributing to it by (1) providing a comprehensive literature review that placed conference
scheduling problems within the timetabling problem family, (2) proposing the track-based
conference scheduling problem that included the notion tracks as its main feature, (3) provid-
ing a binary integer linear mathematical formulation that modeled the problem, (4) proposing
a simple feature-based instance generation procedure, (5) proposing a simulated annealing-
based approach to solve the problem, and (6) providing an experimental evaluation of the
proposed method and a comparison with the results obtained by the Gurobi Solver. We
consider that the results obtained are promising both regarding our problem formulation and
the results obtained by the proposed heuristic method. Future research directions will focus
on improving the problem formulation extending it to include new features and objectives,
establishing a varied instance benchmark, and improving the proposed heuristic approach.

Author Contributions: Conceptualization, L.P.-C., F.R., N.R.-M. and E.M.; investigation, F.R. and
E.M.; methodology, F.R., L.P.-C., N.R.-M. and E.M.; software, F.R. and E.M.; supervision, E.M.;
validation, F.R. and E.M.; writing—original draft, L.P.-C., N.R.-M. and E.M.; writing—review and
editing, L.P.-C., N.R.-M. and E.M. All authors have read and agreed to the published version of the
manuscript.

Funding: Leslie Pérez-Cáceres was funded by FONDECYT project number 11190154. Nicolás
Rojas-Morales was funded by Universidad Técnica Federico Santa María DGIIP project number
PI_LII_2022_03.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Problem instances are available at the specified website.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 3976 24 of 25

References
1. Doshi, V.; Tuteja, S.; Bharadwaj, K.; Tantillo, D.; Marrinan, T.; Patton, J.; Marai, G.E. StickySchedule: An Interactive Multi-User

Application for Conference Scheduling on Large-Scale Shared Displays. In Proceedings of the 6th ACM International Symposium
on Pervasive Displays, PerDis ’17, Lugano, Switzerland, 7–9 June 2017; Association for Computing Machinery: New York, NY,
USA, 2017. [CrossRef]

2. Yuraszeck, F.; Mejía, G.; Pereira, J.; Vilà, M. A Novel Constraint Programming Decomposition Approach for the Total Flow Time
Fixed Group Shop Scheduling Problem. Mathematics 2022, 10, 329. [CrossRef]

3. Zhang, H.; Buchmeister, B.; Li, X.; Ojstersek, R. Advanced Metaheuristic Method for Decision-Making in a Dynamic Job Shop
Scheduling Environment. Mathematics 2021, 9, 909. [CrossRef]

4. Li, Y.; Carabelli, S.; Fadda, E.; Manerba, D.; Tadei, R.; Terzo, O. Machine learning and optimization for production rescheduling in
Industry 4.0. Int. J. Adv. Manuf. Technol. 2020, 110, 2445–2463. [CrossRef]

5. Chávez-Bosquez, O.; Hernández-Torruco, J.; Hernández-Ocaña, B.; Canul-Reich, J. Modeling and Solving a Latin American
University Course Timetabling Problem Instance. Mathematics 2020, 8, 1833. [CrossRef]

6. Zhu, K.; Li, L.D.; Li, M. School Timetabling Optimisation Using Artificial Bee Colony Algorithm Based on a Virtual Searching
Space Method. Mathematics 2022, 10, 73. [CrossRef]

7. Schönberger, J.; Mattfeld, D.; Kopfer, H. Memetic Algorithm timetabling for non-commercial sport leagues. Eur. J. Oper. Res.
2004, 153, 102–116. [CrossRef]

8. Lee, H.Y.; Lin, Y.C. A decision support model for scheduling exhibition projects in art museums. Expert Syst. Appl. 2010,
37, 919–925. [CrossRef]

9. Zhang, W.; Xia, D.; Liu, T.; Fu, Y.; Ma, J. Optimization of single-line bus timetables considering time-dependent travel times:
A case study of Beijing, China. Comput. Ind. Eng. 2021, 158, 107444. [CrossRef]

10. Vangerven, B.; Ficker, A.M.; Goossens, D.R.; Passchyn, W.; Spieksma, F.C.; Woeginger, G.J. Conference scheduling—A personal-
ized approach. Omega 2018, 81, 38–47. [CrossRef]

11. Sampson, S.E. Practical Implications of Preference-Based Conference Scheduling. Prod. Oper. Manag. 2004, 13, 205–215. [CrossRef]
12. Stidsen, T.; Pisinger, D.; Vigo, D. Scheduling EURO-k conferences. Eur. J. Oper. Res. 2018, 270, 1138–1147. [CrossRef]
13. Castaño, F.; Velasco, N.; Carvajal, J. Content-Based Conference Scheduling Optimization. IEEE Lat. Am. Trans. 2019, 17, 597–606.

[CrossRef]
14. Vallejo-Huanga, D.; Morillo, P.; Ferri, C. Semi-Supervised Clustering Algorithms for Grouping Scientific Articles. Procedia Comput.

Sci. 2017, 108, 325–334. [CrossRef]
15. Bulhões, T.; Correia, R.; Subramanian, A. Conference scheduling: A clustering-based approach. Eur. J. Oper. Res. 2021, 297, 15–26.

[CrossRef]
16. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]
17. Lin, B.; Zhao, Y.; Lin, R.; Liu, C. Integrating traffic routing optimization and train formation plan using simulated annealing

algorithm. Appl. Math. Model. 2021, 93, 811–830. [CrossRef]
18. Yu, V.F.; Winarno, W.; Maulidin, A.; Redi, P.; Lin, S.W.; Yang, C.L. Simulated Annealing with Restart Strategy for the Path Cover

Problem with Time Windows. Mathematics 2021, 9, 1625. [CrossRef]
19. Ilhan, I. An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm

Evol. Comput. 2021, 64, 100911. [CrossRef]
20. Sajid, M.; Mittal, H.; Pare, S.; Prasad, M. Routing and scheduling optimization for UAV assisted delivery system: A hybrid

approach. Appl. Soft Comput. 2022, 126, 109225. [CrossRef]
21. Kantor, D.; Von Zuben, F.; Olivetti de França, F. Simulated annealing for symbolic regression. In Proceedings of the GECCO ’21:

Genetic and Evolutionary Computation Conference, Lille, France, 10–14 July 2021; Chicano, F., Krawiec, K., Eds.; ACM: New
York, NY, USA; 2021; pp. 592–599. [CrossRef]

22. Lin, S.; Lee, Z.; Chen, S.; Tseng, T. Parameter determination of support vector machine and feature selection using simulated
annealing approach. Appl. Soft Comput. 2008, 8, 1505–1512. [CrossRef]

23. Elgamal, Z.; Yasin, N.; Tubishat, M.; Alswaitti, M.; Mirjalili, S. An Improved Harris Hawks Optimization Algorithm With
Simulated Annealing for Feature Selection in the Medical Field. IEEE Access 2020, 8, 186638–186652. [CrossRef]

24. Onyezewe, A.; Kana, A.F.; Abdullahi, F.B.; Abdulsalami, A.O. An enhanced adaptive K-nearest neighbor classifier using simulated
annealing. Int. J. Intell. Syst. App. 2021, 13, 34–44. [CrossRef]

25. Biswas, T.; Abbasi, A.; Chakrabortty, R. An MCDM integrated adaptive simulated annealing approach for influence maximization
in social networks. Inf. Sci. 2021, 556, 27–48. [CrossRef]

26. Zhou, A.; Zhu, L.; Hu, B.; Deng, S.; Song, Y.; Qiu, H.; Pan, S. Traveling-Salesman-Problem Algorithm Based on Simulated
Annealing and Gene-Expression Programming. Information 2019, 10, 7. [CrossRef]

27. Moradi, N.; Kayvanfar, V.; Rafiee, M. An efficient population-based simulated annealing algorithm for 0-1 knapsack problem.
Eng. Comput. 2022, 38, 2771–2790. [CrossRef]

28. Jouhari, H.; Lei, D.; AA Al-qaness, M.; Abd Elaziz, M.; Ewees, A.A.; Farouk, O. Sine-cosine algorithm to enhance simulated
annealing for unrelated parallel machine scheduling with setup times. Mathematics 2019, 7, 1120. [CrossRef]

29. Nayeri, S.; Tavakkoli-Moghaddam, R.; Sazvar, Z.; Heydari, J. A heuristic-based simulated annealing algorithm for the scheduling
of relief teams in natural disasters. Soft Comput. 2022, 26, 1825–1843. [CrossRef]

http://doi.org/10.1145/3078810.3078817
http://dx.doi.org/10.3390/math10030329
http://dx.doi.org/10.3390/math9080909
http://dx.doi.org/10.1007/s00170-020-05850-5
http://dx.doi.org/10.3390/math8101833
http://dx.doi.org/10.3390/math10010073
http://dx.doi.org/10.1016/S0377-2217(03)00102-4
http://dx.doi.org/10.1016/j.eswa.2009.03.003
http://dx.doi.org/10.1016/j.cie.2021.107444
http://dx.doi.org/10.1016/j.omega.2017.09.007
http://dx.doi.org/10.1111/j.1937-5956.2004.tb00506.x
http://dx.doi.org/10.1016/j.ejor.2017.10.015
http://dx.doi.org/10.1109/TLA.2019.8891884
http://dx.doi.org/10.1016/j.procs.2017.05.206
http://dx.doi.org/10.1016/j.ejor.2021.04.042
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/j.apm.2020.12.031
http://dx.doi.org/10.3390/math9141625
http://dx.doi.org/10.1016/j.swevo.2021.100911
http://dx.doi.org/10.1016/j.asoc.2022.109225
http://dx.doi.org/10.1145/3449639.3459345
http://dx.doi.org/10.1016/j.asoc.2007.10.012
http://dx.doi.org/10.1109/ACCESS.2020.3029728
http://dx.doi.org/10.5815/ijisa.2021.01.03
http://dx.doi.org/10.1016/j.ins.2020.12.048
http://dx.doi.org/10.3390/info10010007
http://dx.doi.org/10.1007/s00366-020-01240-3
http://dx.doi.org/10.3390/math7111120
http://dx.doi.org/10.1007/s00500-021-06425-6

Mathematics 2022, 10, 3976 25 of 25

30. Frausto-Solis, J.; Hernández-Ramírez, L.; Castilla-Valdez, G.; González-Barbosa, J.J.; Sánchez-Hernández, J.P. Chaotic Multi-
Objective Simulated Annealing and Threshold Accepting for Job Shop Scheduling Problem. Math. Comput. Appl. 2021, 26, 8.
[CrossRef]

31. Attiya, I.; Abualigah, L.; Alshathri, S.; Elsadek, D.; Abd Elaziz, M. Dynamic Jellyfish Search Algorithm Based on Simulated
Annealing and Disruption Operators for Global Optimization with Applications to Cloud Task Scheduling. Mathematics 2022, 10,
1894. [CrossRef]

32. Montero, E. Track-Based Conference Scheduling Problem Instances. 2022. Available online: https://github.com/elimail/Track-
BasedProblemInstances (accessed on 7 September 2022).

33. Hutter, F.; Hoos, H.H.; Stützle, T. Automatic Algorithm Configuration based on Local Search. In Proceedings of the Twenty-
Second Conference on Artificial Intelligence of the Association for the Advancement of Artificial Intelligence 2007 (AAAI),
Vancouver, BC, Canada, 22–26 July 2007; pp. 1152–1157.

http://dx.doi.org/10.3390/mca26010008
http://dx.doi.org/10.3390/math10111894
https://github.com/elimail/Track-BasedProblemInstances
https://github.com/elimail/Track-BasedProblemInstances

	Introduction
	Literature Review
	Attender-Based Approaches
	Presenter-Based Approaches
	Classification

	Track-Based Conference Scheduling Problem
	Mathematical Model
	Variables
	Parameters
	Constraints
	Objective Function

	Heuristic Approach
	Solution Representation
	Initial Solution Generation
	Evaluation Function
	Local Search
	Talk Swap
	Chair Exchange
	Organizer Exchange
	Session Swap

	Experimental Setup
	Instance Generation
	Parameter Tuning

	Experimental Results
	Gurobi Results
	Heuristic Results

	Discussion
	Conclusions
	References

