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Abstract: In this work, a novel integrable evolution system in the sense of Lax’s scheme associated
with a mixed spectral Ablowitz-Kaup-Newell-Segur (AKNS) matrix problem is first derived. Then, the
time dependences of scattering data corresponding to the mixed spectral AKNS matrix problem are
given in the inverse scattering analysis. Based on the given time dependences of scattering data, the
reconstruction of potentials is carried out, and finally analytical solutions with four arbitrary functions
of the derived integrable evolution system are formulated. This study shows that some other systems
of integrable evolution equations under the resolvable framework of the inverse scattering method
with mixed spectral parameters can be constructed by embedding different spectral parameters and
time-varying coefficient functions to the known AKNS matrix spectral problem.
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1. Introduction

In nonlinear mathematical physics, the derivation, solution and integrability of equa-
tions are important topics [1–14]. Generally, an evolution equation is called integrable in
the sense of Lax if it can be written as the compatibility condition between the related linear
spectral problem and the adjoint time evolution equation [2]. For example [5], the well-
known Korteweg-de Vries (KdV) equation ut + 6uux + uxxx = 0 has the Lax integrability
owing to the compatibility condition [8]:

[L, N − ∂t] ≡ L(N − ∂t)− (N − ∂t)L = 0, (1)

of a pair of given linear problems:

Lφ = λφ, L = ∂2
x + u, (2)

Lφ = λφ, N = −4∂3
x − 6u∂x − 3ux − ∂t, (3)

where the eigenfunction φ and the potential function u are dependent on the space variable
x and the time variable t, and the spectral parameter λ is a constant.

Since the isospectral AKNS matrix problem [2]:

φx = Mφ, M =

(
−λ q

r λ

)
, φ =

(
φ1(x, t)
φ2(x, t)

)
, λ= ik,

dk
dt

= 0 (4)

and its adjoint time evolution equation:

φt = Nφ, N =

(
A B
C −A

)
(5)
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were proposed in 1974, a large number of important integrable equations [1–9] have been
derived from the compatibility condition of Equations (4) and (5):

Mt − Nx + [M, N] = 0, [M, N] ≡ MN − NM, (6)

such as the KdV equation, the modified KdV (mKdV) equation, the nonlinear Schrödinger
(NLS) equation, and the sine-Gordon equation. In Equations (4) and (5), q and r are two
smooth potential functions of x and t; A, B and C are three undetermined functions of
x, t, q, r and λ; and i is the imaginary unit. The findings of a large number of integrable
equations are due to the pioneering work of Lax’s scheme [1], including Equations (1)
and (6) and their generalizations [5–9]. The generalizations of Equations (4) and (5) can
be summarized as follows: (i) extending the isospectrum λ, which is independent of
t, to the nonisospectral case depending on t; (ii) embedding some coefficient functions
into the evolution equation satisfied by the nonisospectrum λ and/or the function A
for the derivation of time-varying nonisospectral equations or isospectral equations with
time-varying coefficient functions; (iii) coupling isospectral equations and nonisospectral
equations to mixed spectral equations; (iv) modifying local equations to nonlocal equations;
(v) extension of the equations with integer-order derivatives to fractional-order equations.

From the view of physics, the variable-coefficient equations and nonisospectral equa-
tions can be used to describe solitary waves in nonuniform media, and they have their own
advantages [8] in being more suitable for approaching the essence of nonlinear phenomena
than the constant-coefficient equations or isospectral equations. This work aims at general-
izing Equations (4) and (5) to other different forms by proposing that the spectral parameter
λ= ik and the undetermined function A satisfy the following time evolution equation:

i
dk
dt

=
1
2
[δ(t) + 2ikβ(t)], (7)

and assumption:

A = ∂−1(r, q)
(
−B
C

)
− 1

2
[δ(t) + 2ikβ(t)]x− 1

2
α(t)(2ik)3 − 1

2
γ(t), (8)

respectively. Here α(t), β(t), γ(t) and δ(t) are time-varying integrable functions, and B
and C are supposed as:(

−B
C

)
= α(t)L2

(
−q
r

)
+ β(t)

(
−xq
xr

)
+ 2ikα(t)L

(
−q
r

)
+ α(t)(2ik)2

(
−q
r

)
, (9)

with

L = σ∂ + 2
(

q
−r

)
∂−1(r, q), ∂ =

∂

∂x
, ∂−1 =

1
2
(
∫ x

−∞
−
∫ +∞

x
)dx, σ =

(
−1 0
0 1

)
. (10)

As a results, a novel system of integrable evolution equations:(
q
r

)
t
=

(
α(t)qxxx − 6α(t)qrqx + β(t)q + β(t)xqx − δ(t)xq− γ(t)q
α(t)rxxx − 6α(t)qrrx + β(t)r + β(t)xrx + δ(t)xr + γ(t)r

)
, (11)

is derived in Section 2 for the first time. Equation (11) is a mixed spectral system and this,
due to Equation (7), contains two kinds of spectra. One is isospectrum under the case of
δ(t) + 2ikβ(t) = 0, and the other becomes nonisospectrum when δ(t) + 2ikβ(t) 6= 0. Thus,
we call such a parameter ik in Equation (7) a mixed spectrum. Meanwhile, Equation (11) is
called a mixed spectral system. Several special cases of Equation (11) and their correspond-
ing simplified forms of Equations (7) and (8) can be found in Section 3. In Section 4, the
inverse scattering method [2,3,9] combined with the mixed spectral parameter ik satisfying
Equation (7) is established to solve Equation (11), and implicit solutions are obtained.
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Considering the reflectionless potential, the explicit unified formulae are reduced from
the obtained implicit analytical solutions in Section 4. As a conclusion, we summarize the
results of this article in Section 5.

2. Derivation of Equation (11) by Lax’s Scheme

Substituting the matrices M and N in Equations (4) and (5) into Equation (6), we have:

− i
dk
dt
− Ax + qC− rB = 0, (12)

qt − Bx − 2ikB− 2qA = 0, (13)

rt − Cx + 2ikC + 2rA = 0. (14)

Then, the substitution of Equations (7) and (8) into Equations (12)–(14) shows that
Equation (12) holds automatically, and Equations (13) and (14) are converted as follows:(

q
r

)
t
= L

(
−B
C

)
− 2ik

(
−B
C

)
+ [α(t)(2ik)3 + γ(t)]

(
−q
r

)
+ [δ(t) + 2ikβ(t)]

(
−xq
xr

)
. (15)

Further, we suppose that:(
−B
C

)
=

4

∑
i=1

(
−bi
ci

)
(2ik)4−i, (16)

where bi and ci are all undetermined functions of x and t. Substituting Equation (16) into
Equation (15) and comparing the coefficients of the same powers of 2ik yields:

(2ik)0:
(

q
r

)
t
= L

(
−b4
c4

)
+ δ(t)

(
−xq
xr

)
+ γ(t)

(
−q
r

)
, (17)

(2ik)1:
(
−b4
c4

)
= L

(
−b3
c3

)
+ β(t)

(
−xq
xr

)
, (18)

(2ik)2:
(
−b3
c3

)
= L

(
−b2
c2

)
, (19)

(2ik)3:
(
−b2
c2

)
= L

(
−b1
c1

)
+ α

(
−q
r

)
, (20)

(2ik)4:
(
−b1
c1

)
= 0. (21)

Using Equations (18)–(21) we have:(
−b2
c2

)
= L

(
−b1
c1

)
+ α(t)

(
−q
r

)
= α(t)

(
−q
r

)
, (22)

(
−b3
c3

)
= L

(
−b2
c2

)
= α(t)L

(
−q
r

)
, (23)(

−b4
c4

)
= L

(
−b3
c3

)
+ β(t)

(
−xq
xr

)
= α(t)L2

(
−q
r

)
+ β(t)

(
−xq
xr

)
, (24)

and then Equation (17) gives:(
q
r

)
t
= α(t)L3

(
−q
r

)
+ β(t)L

(
−xq
xr

)
+ δ(t)

(
−xq
xr

)
+ γ(t)

(
−q
r

)
. (25)
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Employing Equation (10), we easily find:

L
(
−xq
xr

)
=

(
q + xqx
r + xrx

)
+ 2
(

q
−r

)
∂−1(−rxq + qxr) =

(
q + xqx
r + xrx

)
, (26)

L3
(
−q
r

)
= L

(
−qxx + 2q2r
rxx − 2qr2

)
=

(
qxxx − 6qrqx
rxxx − 6qrrx

)
, (27)

and finally arrive at Equation (11) by means of Equations (25)–(27).
It should be noted that Equation (11) or Equation (25) cannot be included in the known

mixed spectral AKNS hierarchy [7]:(
q
r

)
t
= L2n+1

(
−xq
xr

)
+ L2n

(
−q
r

)
, (n = 0, 1, 2, · · · ). (28)

In fact, Equation (25) contains one sum of two nonisospectral terms:

L
(
−xq
xr

)
=

(
q + xqx
r + xrx

)
,
(
−xq
xr

)
, (29)

which cannot occur simultaneously in Equation (28). Similarly, Equation (28) cannot contain
the other sum of two isospectral terms:

L3
(
−q
r

)
=

(
qxxx − 6qrqx
rxxx − 6qrrx

)
,
(
−q
r

)
. (30)

In addition, all the four time-varying coefficient functions α(t), β(t), γ(t) and δ(t) are
absent in Equation (28).

3. Special Cases of Equation (11)

Proper selections of α(t), β(t), γ(t) and δ(t) can give some special cases of Equation (11),
including the known equations.

Special case 1. Constant-coefficient mixed spectral AKNS equations under the case of
α(t) = β(t) = γ(t) = δ(t) = 1:(

q
r

)
t
=

(
qxxx − 6qrqx + q + xqx − xq− q
rxxx − 6qrrx + r + xrx − xr− r

)
, (31)

associated with:
i
dk
dt

=
1
2
+ ik, (32)

A = ∂−1(r, q)
(
−B
C

)
− 1

2
(1 + 2ik)x− 1

2
(2ik)3 − 1

2
, (33)(

−B
C

)
= L2

(
−q
r

)
+

(
−xq
xr

)
+ 2ikL

(
−q
r

)
+ (2ik)2

(
−q
r

)
. (34)

Special case 2. Constant-coefficient isospectral AKNS equations [5] under the case of
α(t) = 1 and β(t) = γ(t) = δ(t) = 0:(

q
r

)
t
=

(
qxxx − 6qrqx
rxxx − 6qrrx

)
, (35)

associated with:
i
dk
dt

= 0, (36)
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A = ∂−1(r, q)
(
−B
C

)
− 1

2
(2ik)3,

(
−B
C

)
= L2

(
−q
r

)
+ 2ikL

(
−q
r

)
+ (2ik)2

(
−q
r

)
. (37)

Special case 3. Constant-coefficient nonisospectral AKNS equations [5] under the case of
α(t) = γ(t) = δ(t) = 0 and β(t) = 1:(

q
r

)
t
=

(
q + xqx
r + xrx

)
, (38)

associated with:
i
dk
dt

= ik, (39)

A = ∂−1(r, q)
(
−B
C

)
− ikx,

(
−B
C

)
=

(
−xq
xr

)
. (40)

Special case 4. Variable-coefficient mixed spectral KdV equation under the case of q = 1
and r = −u:

ut = α(t)uxxx + 6α(t)uux + β(t)u + β(t)xux − δ(t)xu− γ(t)u, (41)

associated with Equation (7) and:

A = ∂−1(−u, 1)
(
−B
C

)
− 1

2
[δ(t) + 2ikβ(t)]x− 1

2
α(t)(2ik)3 − 1

2
γ(t), (42)

(
−B
C

)
= α(t)L2

(
−1
−u

)
+ β(t)

(
−x
−xu

)
+ α(t)2ikL

(
−1
−u

)
+ α(t)(2ik)2

(
−1
−u

)
. (43)

Special case 5. Constant-coefficient isospectral KdV equation [5] under the case of q = 1
and r = −u, α(t) = 1 and β(t) = γ(t) = δ(t) = 0:

ut = uxxx + 6uux, (44)

associated with Equation (36) and:

A = ∂−1(−u, 1)
(
−B
C

)
− 1

2
(2ik)3, (45)

(
−B
C

)
= L2

(
−1
−u

)
+ 2ikL

(
−1
−u

)
+ (2ik)2

(
−1
−u

)
. (46)

Special case 6. Constant-coefficient isospectral mKdV equation [5] under the case of q = v
and r = ∓v, α(t) = 1 and β(t) = γ(t) = δ(t) = 0:

vt = vxxx − 6v2vx, (47)

associated with Equation (36) and:

A = ∂−1(∓v, v)
(
−B
C

)
− 1

2
(2ik)3, (48)

(
−B
C

)
= L2

(
−v
∓v

)
+ 2ikL

(
−v
∓v

)
+ (2ik)2

(
−v
∓v

)
. (49)



Mathematics 2022, 10, 3975 6 of 16

Special case 7. Constant-coefficient isospectral sine-Gordon equation [5] under the case of
q = ux/2 and r = −ux/2, α(t) = 1 and β(t) = γ(t) = δ(t) = 0:

uxt = sin u, (50)

associated with Equation (36) and:

A = ∂−1
(
−1

2
ux,

1
2

ux

)(
−B
C

)
− 1

2
(2ik)3, (51)

(
−B
C

)
= L2

(
− 1

2 ux
− 1

2 ux

)
+ 2ikL

(
− 1

2 ux
− 1

2 ux

)
+ (2ik)2

(
− 1

2 ux
− 1

2 ux

)
. (52)

Special case 8. Variable-coefficient nonisospectral mKdV equation [5] under the case of
q = v and r = ∓v, β(t) = 1 and α(t) = γ(t) = δ(t) = 0:

vt = v + xvx, (53)

associated with Equations (39) and (40).

Special case 9. Variable-coefficient nonisospectral mKdV equation [5] under the case of
q = 1 and r = −u, β(t) = γ(t) = 1 and α(t) = δ(t) = 0:

ut = xux, (54)

associated with Equations (39) and:

A = ∂−1(−u, 1)
(
−B
C

)
− ikx− 1

2
,
(
−B
C

)
=

(
−x
−xu

)
. (55)

4. Implicit Solutions of Equation (11)

In what follows, we assume that the potentials q, r and their derivatives of each order
with respect to x and t are smooth functions, and when |x|→ ∞ , they all tend to 0.

Theorem 1. Let us assume that q(x, t) and r(x, t) evolve according to Equation (11). Then, the
time-dependences of scattering data:{

Imk = 0, R(t, k) =
b(t, k)
a(t, k)

, κj(t), cj(t), j = 1, 2, · · · , n
}

, (56)

{
Imk = 0, R(t, k) =

b(t, k)
a(t, k)

, κ j(t), cj(t), j = 1, 2, · · · , n

}
, (57)

which correspond to the mixed spectral AKNS matrix problem:

φx = Mφ, M =

(
−λ q

r λ

)
, φ =

(
φ1(x, t)
φ2(x, t)

)
, i

dk
dt

=
1
2
[δ(t) + 2ikβ(t)]. (58)

are as follows:

κj(t) = e
∫ t

0 β(τ)dτ

[
κj(0)−

i
2

∫ t

0
e
∫ τ

0 β(w)dwδ(τ)dτ

]
, (59)

cj(t) = cj(0)e
1
2
∫ t

0 [α(τ)(2ikj(τ))
3+β(τ)+γ(τ)]dτ , (60)

a(t, k) = a(0, k), b(t, k) = b(0, k)e
∫ t

0 [α(τ)(2iκj(τ))
3+γ(τ)]dτ , (61)
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κ j(t) = e
∫ t

0 β(τ)dτ

[
κ j(0)−

i
2

∫ t

0
e
∫ τ

0 β(w)dwδ(τ)dτ

]
, (62)

cj(t) = cj(0)e
− 1

2
∫ t

0 [α(2ikj(τ))
3
+β(τ)+γ(τ)]dτ , (63)

a(t, k) = a(0, k), b(t, k) = b(0, k)e−
∫ t

0 [α(τ)(2iκ j(τ))
3+γ(τ)]dτ , (64)

where cj(0), cj(0), R(0, k) = b(0, k)/a(0, k) and R(0, k) = b(0, k)/a(0, k) are the normaliza-
tion factors and reflection coefficients when q(x, 0) and r(x, 0) are potentials of the mixed
spectral AKNS matrix problem (59).

Proof of Theorem 1. Since φ(x, k) satisfies Equation (58), P(x, k) = φt(x, k)− Nφ(x, k) also
satisfies Equation (58) and then can be expressed by a pair of linearly independent basic
solutions φ(x, k) and φ̃(x, k) [5] of Equation (58):

P(x, k) = φt(x, k)− Nφ(x, k) = ζ(t, k)φ(x, k) + τ(t, k)φ̃(x, k), (65)

where ζ(t, k) and τ(t, k) are two undetermined functions.
Firstly, we start from the discrete spectrum k = κj (Imκj > 0). Because when x → +∞ ,

φ(x, k) decreases exponentially while φ̃(x, k) increases exponentially, τ(t, k) = 0. In this
case, Equation (65) becomes:

φt(x, κj(t))− Nφ(x, κj(t)) = ζ(t, κj(t))φ(x, κj(t)). (66)

Using (φ2(x, κj(t)), φ1(x, κj(t))) to multiply the left-hand side of Equation (66), we have:

[φ1(x, κj(t))φ2(x, κj(t))]t − [Cφ2
1(x, κj(t)) + Bφ2

2(x, κj(t))]= 2ζ(t, κj(t))φ1(x, κj(t))φ2(x, κj(t)). (67)

Integrating Equation (67) with respect to x from −∞ to +∞, and considering the
assumption [5]:

2
∫ ∞

−∞
c2

j (t)φ1(x, κj(t))φ2(x, κj(t))dx = 1 (68)

between the normalization function φ(x, κj(t)) and the normalization factor cj(t), we
can find:

ζ(t, κj(t)) = −c2
j (t)

∫ ∞

−∞
[Cφ2

1(x, κj(t)) + Bφ2
2(x, κj(t))]dx, (69)

which has the inner product form:

ζ(t, κj(t)) = −c2
j (t)((φ

2
2(x, κj(t)), φ2

1(x, κj(t)))
T

, (B, C)T), (70)

And then it has:

ζ(t, κj(t)) = −c2
j (t)((φ

2
2(x, κj(t)), φ2

1(x, κj(t)))
T

, (B, C)T) =
1
2

β(t), (71)

Here, the following results have been used:∫ ∞

−∞
[q(x)φ2

2(x, κj(t)) + r(x)φ2
1(x, κj(t))]dx =

∫ ∞

−∞
[φ1(x, κj(t))φ2(x, κj(t))]

x
dx = 0, (72)

(
B
C

)
= β(t)

(
xq
xr

)
+ α(t)

4

∑
l=2

Ll−2
(

q
r

)
(2ik)4−l , (73)

(
(φ2

2(x, κj(t)), φ2
1(x, κj(t)))

T
,
(

xq
xr

))
=
∫ ∞

−∞
x(φ1(x, κj(t))φ2(x, κj(t)))xdx = − 1

2c2
j (t)

. (74)
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Thus, Equation (66) reads:

φt(x, κj(t))− Nφ(x, κj(t)) =
1
2

β(t)φ(x, κj(t)). (75)

Note the asymptotic properties when x → +∞ :

N →
(

n11 0
0 −n11

)
, n11 =

1
2
[δ(t) + β(t)2iκj(t)]x +

1
2

α(t)(2iκj(t))
3 +

1
2

γ(t), (76)

φ(x, κj(t))→ cj(t)
(

0
1

)
eiκj(t)x, (77)

φt →
dcj(t)

dt

(
0
1

)
eiκj(t)x + i

dκj(t)
dt

cj(t)x
(

0
1

)
eiκj(t)x, (78)

from Equation (75) we reach:

dκj(t)
dt

= − i
2
[δ(t) + 2iκj(t)β(t)], (79)

dcj(t)
dt

=

{[
1
2

α(t)(2iκj(t))
3 +

1
2

γ(t)
]
+

1
2

β(t)
}

cj(t). (80)

Directly solving Equations (79) and (80) yields Equations (59) and (60). By a similar
way, we also obtain:

dκ j(t)
dt

= − i
2
[δ(t) + 2iκ j(t)β(t)], (81)

dcj(t)
dt

= −
{[

1
2

α(t)(2iκ j(t))
3 +

1
2

γ(t)
]
+

1
2

β(t)
}

cj(t), (82)

and hence reach Equations (62) and (63).
Secondly, we deal with the real continuous spectrum k. Taking a solution ϕ(x, k) of

Equation (58), then we can see that Q(x, k) = ϕt(x, k) − Nϕ(x, k) solves Equation (58).
Therefore, there are two linearly independent fundamental solutions ϕ(x, k) and ϕ̃(x, k) of
Equation (58), so that:

ϕt(x, k)− Nϕ(x, k) = v(t, k)ϕ(x, k) + θ(t, k)ϕ(x, k), (83)

where v(t, k) and θ(t, k) are two functions to be determined. Setting x → −∞ and using
the asymptotic properties:

ϕt(x, k)→ −i
dk
dt

x
(

1
0

)
e−ikx , ϕ(x, k)→

(
1
0

)
e−ikx , ϕ(x, k)→

(
0
−1

)
eikx , (84)

we have:

i
dk(t)

dt
=

1
2
[δ(t) + 2iβ(t)k(t)], θ(t, k) = 0, v(t, k) =

1
2

α(t)(2ik(t))3 +
1
2

γ(t). (85)

Substituting the Jost relationship:

ϕ(x, k) = a(t, k)φ(x, k) + b(t, k)φ(x, k) (86)

into Equation (83) and using asymptotic properties:

φ(x, k)→
(

0
1

)
eikx , φ(x, k)→

(
1
0

)
e−ikx , (x → +∞) , (87)
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we easily derive from Equation (83):

da(t, k)
dt

= 0,
db(t, k)

dt
= [α(t)(2ik(t))3 + γ(t)]b(t, k). (88)

Similarly, we can also have:

da(t, k)
dt

= 0,
db(t, k)

dt
= −[α(t)(2ik(t))3 + γ(t)]b(t, k). (89)

Solving Equations (88) and (89) arrives at Equations (61) and (64). The proof is completed. �

Theorem 2. Based on the time-dependences of scattering data in Equations (56) and (57) corre-
sponding to the mixed spectral AKNS matrix problem (58), the implicit solutions of Equation (11)
can be expressed by:

q = −2K1(t, x, x), (90)

r =
K2x(t, x, x)
K1(t, x, x)

, (91)

where K(t, x, y) = (K1(t, x, y), K2(t, x, y))T satisfies the Gel’fand-Levitan-Marchenko (GLM)
integral equation:

K(t, x, y)−
(

1
0

)
F(t, x + y) +

(
0
1

)∫ ∞

x
F(t, z + x)F(t, z + y)dz+

∫ ∞

x
K(t, x, s)

∫ ∞

x
F(t, z + s)F(t, z + y)dzds = 0 (92)

with:

F(t, x) =
1

2π

∫ ∞

−∞
R(t, k)eikxdk +

n

∑
j=1

c2
j (t)e

iκj(t)x, (93)

F(t, x) =
1

2π

∫ ∞

−∞
R(t, k)e−ikxdk−

n

∑
j=1

c2
j (t)e

−iκ j(t)x, (94)

where R(t, k) = b(t, k)/a(t, k), R(t, k) = b(t, k)/a(t, k), κj(t), κ j(t), cj(t) and cj(t) are deter-
mined by Equations (59)–(64).

Proof of Theorem 2. Since the proof is similar to that in [5], we omit it here. However, it
is worth noting that the scattering data in Equations (93) and (94) are different. The proof
is finished. �

5. Reflectiveless Potential Solutions of Equation (11)

Theorem 3. In the case of the reflection potentials R(t, k) = R(t, k) = 0, explicit solutions of
Equation (11) can be formulated as follows:

q = 2tr(W−1(x, t)Λ(x, t)ΛT
(x, t)), (95)

r = −
∂

∂x tr(W−1(x, t)P(x, t) ∂
∂x PT(x, t))

tr(W−1(x, t)Λ(x, t)ΛT
(x, t))

, (96)

with:

W(x, t) = I + P(x, t)PT(x, t), P(x, t) =

(
cj(t)cj(t)

κj(t)− κ j(t)
ei(κj(t)−κ j(t))x

)
n×n

, (97)

Λ = (c1(t)e−iκ1(t)x, c2(t)e−iκ2(t)x, · · · , cn(t)e−iκn(t)x)
T

, (98)
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where tr(·) represents the trace of matrix, I is the n× n identity matrix, while κj(t), κ j(t), cj(t)
and cj(t) are determined by Equations (59), (60), (62) and (63).

Proof of Theorem 3. We use K(t, x, y) = (K1(t, x, y), K2(t, x, y))T to rewrite Equation (92) as:

K1(t, x, y)− Fd(t, x + y) +
∫ ∞

x
K1(t, x, s)

∫ ∞

x
Fd(t, z + s)Fd(t, z + y)dzds = 0, (99)

K2(t, x, y) +
∫ ∞

x
Fd(t, z + x)Fd(t, z + y)dz +

∫ ∞

x
K2(t, x, s)

∫ ∞

x
Fd(t, z + s)Fd(t, z + y)dzds = 0. (100)

Considering R(t, k) = R(t, k) = 0, we simplify Equations (93) and (94) as:

∫ ∞

x
Fd(t, s + z)Fd(t, z + y)dz = −

n

∑
j=1

n

∑
m=1

ic2
j (t)c

2
m(t)

k j − km
eikj(x+s)−ikm(x+y). (101)

We suppose that:

K1(x, y, t) =
n

∑
p=1

cp(t)gp(x, t)e−ikpy, (102)

K2(x, y, t) =
n

∑
p=1

cp(t)hp(x, t)e−ikpy, (103)

and substitute them into Equations (99) and (100), then the following equations are derived
for m = 1, 2, · · · , n:

gm(x, t) + cm(t)e−ikmx +
n

∑
j=1

n

∑
p=1

c2
j (t)cm(t)cp(t)

(k j − km)(k j − kp)
ei(2kj−km−kp)xgp(x, t) = 0, (104)

hm(x, t)−
n

∑
j=1

1
(k j − km)

c2
j (t)cm(t)ei(2kj−km)x+

n

∑
j=1

n

∑
p=1

c2
j (t)cm(t)cp(t)

(k j − km)(k j − kp)
ei(2kj−km−kp)xhp(x, t) = 0. (105)

Using the notations:

g(x, t) = (g1(x, t), g2(x, t), · · · , gn(x, t))T , (106)

h(x, t) = (h1(x, t), h2(x, t), · · · , hn(x, t))T , (107)

Λ = (c1(t)e−iκ1(t)x, c2(t)e−iκ2(t)x, · · · , cn(t)e−iκn(t)x)
T

, (108)

we can rewrite Equations (104) and (105) as:

W(x, t)g(x, t) = −Λ(x, t), (109)

W(x, t)h(x, t) = iP(x, t)Λ(x, t). (110)

When W−1(x, t) exists, Equations (109) and (110) give:

g(x, t) = −W−1(x, t)Λ(x, t), (111)

h(x, t) = iW−1(x, t)P(x, t)Λ(x, t). (112)

Substituting Equations (111) and (112) into Equations (102) and (103), we have:

K1(x, y, t) = −tr(W−1(x, t)Λ(x, t)ΛT
(y, t)), (113)

K2(x, y, t) = itr(W−1(x, t)E(x, t)Λ(x, t)ΛT
(y, t)). (114)
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We finally obtain Equations (95) and (96) by the substitution of Equations (113) and (114)
into Equations (90) and (91). The proof is finished. �

As two special cases of Equations (95) and (96), we first consider n = n = 1, then
Equations (95) and (96) become:

q =
2c2

1(t)e
−2iκ1(t)x

1 + c2
1(t)c

2
1(t)

(κ1(t)−κ1(t))
2 e2i(κ1(t)−κ1(t))x

, (115)

r =
2c2

1(t)e
2iκ1x

1 + c2
1(t)c

2
1(t)

(κ1(t)−κ1(t))
2 e2i(κ1(t)−κ1(t))x

, (116)

where:

κ1(t) = e
∫ t

0 β(τ)dτ

[
κ1(0)−

i
2

∫ t

0
e
∫ τ

0 β(w)dwδ(τ)dτ

]
, (117)

c2
1(t) = c2

1(0)e
∫ t

0 [α(t)(2ikj(τ))
3+β(τ)+γ(τ)]dt, (118)

κ1(t) = e
∫ t

0 β(τ)dτ

[
κ1(0)−

i
2

∫ t

0
e
∫ τ

0 β(w)dwδ(τ)dτ

]
, (119)

c2
1(t) = c2

1(0)e
−
∫ t

0 [α(t)(2ikj(τ))
3+β(τ)+γ(τ)]dt. (120)

Selecting κ1(0) = 0.5, α(t) = t − 1, β(t) = t, γ(t) = t2 + 1 and δ(t) = i, from
Equation (109) we have:

κ1(t) = e
t2
2

[
0.5 +

1
2

√
π

2
Erf
(

t√
2

)]
, (121)

where Erf(·) is the error function. We depict in Figure 1 the dynamical evolution of the
spectrum κ1. It can be seen from Figure 1 that the dynamical evolution of κ1 presents
nonlinear characteristics.
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Figure 1. Nonlinear dynamical evolution of the spectrum κ1 in Equation (121).

In Figures 2 and 3, the space–time dynamical evolutions of solutions (115) and (116)
are shown by setting κ1(0) = 0.5, κ1(0) = 0.3, c1(0) = 1, c1(0) = −2× 10−15, α(t) = t− 1,
β(t) = t, γ(t) = t2 + 1 and δ(t) = i. We can see from Figure 2 that the space–time dynamical
evolution of solution (115) has the characteristics of a bell-shaped soliton. However,
Figure 3 shows that the space–time dynamical evolution of solution (116) does not have the
characteristics of a soliton, but its amplitude increases infinitely with the increase in time.
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Figure 3. Space–time dynamical evolution of solution (116) with κ1(0) = 0.5, κ1(0) = 0.3, c1(0) = 1,
c1(0) = −2× 10−15, α(t) = t− 1, β(t) = t, γ(t) = t2 + 1 and δ(t) = i.

For n = n = 2, we select κ1(0) = 0.5, κ2(0) = −1, α = t− 1, β = 1, γ = t + 1 and
δ(t) = i, then two cases of Equation (59) for j = 1 and j = 2 give:

κ1(t) = et
[

0.5 +
1
2
(1− cosh t + sinht)

]
, (122)

κ2(t) = et
[
−1 +

1
2
(1− cosh t + sinht)

]
. (123)

In Figures 4 and 5, we depict the dynamical evolution of the spectrum κ1 in Equation (122)
and κ2 in Equation (123), respectively. It can be seen from Figures 4 and 5 that the dynamical
evolution of κ1 and κ2 presents nonlinear characteristics.
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Figure 5. Nonlinear dynamical evolution of the spectrum κ2 in Equation (123).

It can be seen from Figures 6 and 7 that the space–time dynamical evolution of solution
determined by Equation (95) shows a multipoint feature. However, Figures 8 and 9 show
that in addition to the multipoint feature of the space–time dynamical evolution of the
solution determined by Equation (96), its amplitude also shows a feature of increase
with time.
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Figure 6. Space–time dynamical evolution of the solution determined by Equation (95) with κ1(0) = 0.5,
κ2(0) = −1, α = t− 1, β = 1, γ = t + 1 and δ(t) = i.
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Figure 7. Profile at the position x = 0 of space–time of dynamical evolution of solution determined
by Equation (95) with κ1(0) = 0.5, κ2(0) = −1, α = t− 1, β = 1, γ = t + 1 and δ(t) = i.
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Figure 8. Space–time dynamical evolution of solution determined by solution (96) with κ1(0) = 0.5,
κ2(0) = −1, α = t− 1, β = 1, γ = t + 1 and δ(t) = i.
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Figure 9. Profile at the position x = 0 of space–time of dynamical evolution of solution determined
by Equation (96) with κ1(0) = 0.5, κ2(0) = −1, α = t− 1, β = 1, γ = t + 1 and δ(t) = i.

6. Conclusions

In short, we have derived the mixed spectral integrable Equation (11), time-dependences
of scattering data (59)–(64), implicit solutions (90) and (91), and explicit reflectionless poten-
tial solutions (95) and (96). As far as we know, these obtained results are novel. Especially,
the spectra with error function and hyperbolic functions in Equations (113)–(115) are
new, by which the solutions (95) and (96) with n = n = 1 and n = n = 2 depicted in
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Figures 2, 3 and 6–9 are obtained. Compared with the mixed spectral AKNS hierarchy [7]
mentioned earlier in Equation (28) and the other results in [15–18], the work of this paper
has some differences. Specifically, Equation (11) or its operator form (25) are different from
the following equations [15–18]:(

q
r

)
t
= L3

(
−q
r

)
+

5

∑
n=0

Ln
(
−xq
xr

)
, (124)

associated with [15]:

i
dk
dt

=
1
2

5

∑
n=0

(2ik)5, A = ∂−1(r, q)
(
−B
C

)
− 1

2
(2ik)3 − 1

2

[
5

∑
n=0

(2ik)n

]
x; (125)

(
q
r

)
t
= L

(
−q
r

)
+

3

∑
n=0

Ln
(
−xq
xr

)
, (126)

associated with [16]:

i
dk
dt

=
1
2

3

∑
n=0

(2ik)n, A = ∂−1(r, q)
(
−B
C

)
− 1

2
(2ik)3 − 1

2

[
3

∑
n=0

(2ik)n

]
x; (127)

(
q
r

)
t
= t
(
−q
r

)
+

2

∑
n=0

Ln
(
−xq
xr

)
, (128)

associated with [17]:

i
dk
dt

=
1
2

2

∑
n=0

(2ik)n, A = ∂−1(r, q)
(
−B
C

)
− 1

2
t− 1

2

[
2

∑
n=0

(2ik)n

]
x; (129)

(
q
r

)
t
= α(t)L

(
−q
r

)
+

2

∑
n=0

βn(t)Ln
(
−xq
xr

)
, (130)

associated with [18]:

i
dk
dt

=
1
2

2

∑
n=0

βn(t)(2ik)n, A = ∂−1(r, q)
(
−B
C

)
− ik− 1

2

[
2

∑
n=0

βn(t)(2ik)n

]
x. (131)

The construction of meaningful integrable evolution equations based on the AKNS
matrix problem (4) with some other different spectra and their exact solutions are worth
studying. This paper gives the feasibility of constructing mixed spectral integrable evolu-
tion equations which are solvable in the framework of the inverse scattering method with
time-varying spectrum. Therefore, we also conclude that Equation (11) constructed in this
paper is also integrable in the sense of inverse scattering.
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