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Abstract: Interval games are an extension of cooperative coalitional games, in which players are
assumed to face payoff uncertainty. Characteristic functions thus assign a closed interval, instead
of a real number. In this paper, we first examine the notion of solution mapping, a solution concept
applied to interval games, by comparing it with the existing solution concept called the interval
solution concept. Then, we define a Shapley mapping as a specific form of the solution mapping.
Finally, it is shown that the Shapley mapping can be characterized by two different axiomatizations,
both of which employ interval game versions of standard axioms used in the traditional cooperative
game analysis such as efficiency, symmetry, null player property, additivity and separability.

Keywords: cooperative interval games; interval uncertainty; Shapley value; solution mapping;
axiomatization
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1. Introduction

This paper examines cooperative game theory when players face uncertainty. One
of the most familiar representations of cooperative game theory without uncertainties
is coalitional games with transferable utility (so-called coalitional games or TU games)
proposed by von Neumann and Morgenstern [1]. A coalitional game consists of a set N of
players and a characteristic function v that gives a real number v(S) (worth of S) to every
subset S of N. For each coalition S, v(S) is the total payoff that S can obtain by itself and
divide among its members in any possible way. A solution concept of coalitional games
such as the Shapley value (Shapley [2]) and core (Gillies [3]) assigns each game a (possibly
empty or singleton) set of outcomes, each of which is represented by an n-dimensional
real-valued vector.

In reality, the payoffs a coalition can obtain entail uncertainty. For instance, when
a project is to be jointly financed by multiple investors and they need to decide whether
to join, they may not know the exact return that would be realized by the project or
the additional costs that would be incurred by them in the interim period before the
project is completed. Similarly, under the classical “bankruptcy problem”, a creditor
must decide on the amount of money to be lent, thus facing uncertainty regarding the
borrower’s future fiscal condition or solvency when the claim is scheduled to be paid
back and cleared. Therefore, introducing uncertainty into standard coalitional games is
a natural and important extension. The existing literature on cooperative game theory
with uncertainty has developed within the following two distinct groups of research. The
first group consists of models where the uncertainty appears as a degree of cooperation
in coalition formations, e.g., fuzzy games in Aubin [4]. The second group considers
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models where player cooperation is as in the classical model, that is, using crisp coalitions,
but uncertainty appears in the payoffs of the coalitions (e.g., games using the stochastic
characteristic function form of Charnes and Granot [5], stochastic payoffs of Suijs et al. [6],
random payoffs of Timmer et al. [7]). Of these, the interval games, initially studied by
Branzei et al. [8] and Alparslan Gök et al. [9], consider “interval uncertainty” in that the
uncertainty regarding coalition payoff is represented by an interval that a characteristic
function assigns, rather than stochastic payoffs. (Various solution concepts applied to
interval games have been proposed and their properties have been examined subsequently
by theoretical studies such as Alparslan Gök et al. [9], Fei et al. [10], Li et al. [11], Liang and
Li [12], Meng et al. [13]. As applications of interval games, Palanci et al. [14] introduced
uncertainty into classical cooperative transportation games and formalized them as interval
games. Alparslan Gök et al. [15] examined the Shapley value and Baker–Thompson rule
in the interval game version of the airport game. For more details on the literature, see
Alparslan Gök [16], Branzei et al. [17] and Ishihara and Shino [18].)

As in coalitional games, an interval game consists of a set N of players and a character-
istic function w. (Throughout our study, w denotes the characteristic function in an interval
game to distinguish it from the characteristic function v in a coalitional game.) However, w
uniquely provides a coalition with a closed interval of real numbers, called the worth set,
rather than a real number as in the characteristic function in a classical coalitional game.
Therefore, we can regard interval games as a generalization of coalitional games. Note
also that this specification is consistent with social situations in the real world, where the
potential rewards or costs are not precisely known but we can estimate the intervals to
which they belong.

The analyses of interval games, similarly to those of coalitional games, aim to examine
the issues of (i) coalition formation (or which coalition will be made) and (ii) payoff
allocation (or how to distribute the total payoff to all players under the grand coalition).
In particular, regarding the issue of (ii), coalitional game analyses have proposed various
types of solution concepts concerning payoff allocation, such as the core, the von Neumann
and Morgenstern stable set and the Shapley value.

An interval game analysis can also examine a desirable payoff allocation under the
grand coalition. However, we argue that interval game analyses have a unique subject to
be carefully considered. The major existing solution concept for n-person interval games,
called the internal solution concept (Alparslan Gök et al. [19,20]), associates with each
game a (possibly empty or singleton) set of n-dimensional interval payoff vectors. Here,
an element of an interval payoff vector is a closed interval rather than a real number.
However, if we consider the underlying social situations that interval games essentially
assume, another type of solution concept could be proposed because the interval solution
concepts do not consider an important aspect of the situation that the uncertainty of
outcomes represented by the intervals will be removed when an outcome is realized and
allocated among players. In particular, if the grand coalition is assumed to be formed, a
solution concept for interval games should instruct how to allocate a realized outcome
represented by a real number in the worth set of the grand coalition w(N) among all
players. Therefore, the solution concept defined as a mapping from each realization in
w(N) to an n-dimensional real-valued vector, rather than one that directly specifies a set of
n-dimensional interval vectors, is worth examining.

In fact, such a mapping has already been proposed in Alparslan Gök et al. [9] as the ψα

value. However, the analysis of ψα is limited and, to our knowledge, no subsequent analysis
has since taken place. (The only exception is in Ishihara and Shino’s paper [18], in which
a new solution mapping was proposed, focusing on a two-person interval game.) With
this argument as our motivation, this study proposes a new solution mapping called the
Shapley mapping as a solution concept and applies it to general n-person interval games.
As we discuss in the subsequent sections, the Shapley mapping has some advantages. First,
because a solution mapping assigns an n-dimensional real-valued vector rather than an
n-dimensional interval vector, it does not have to consider “how to handle interval solution
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concepts” after uncertainties are removed. Second, as we discuss later in the analysis, it
is defined without using interval subtraction, and thus no restrictions on the coverage of
interval games are required. Finally, this solution concept can be justified by standard
axiomatizations.

The rest of this paper is organized as follows. Section 2 reviews coalitional and
interval games and solution concepts in interval games. Section 3 examines the existing
solution concept and solution mapping by providing some examples. Section 4 defines
the Shapley mapping and characterizes the mapping by two different axiomatizations.
Section 5 concludes the paper.

2. Coalitional Games and Interval Games

An n-person coalitional game or a TU game is a pair (N, v), where N = {1, 2, . . . , n} is
a set of players and v : 2N → R is a characteristic function that associates a real number
v(S) ∈ R for each set S ⊂ N, with the condition v(∅) = 0. Number v(S) is called the worth
of S. We refer to S and N as a coalition and grand coalition, respectively. Let CG be the set of
all coalitional games with player set N. Define CG+ ⊂ CG as CG+ = {v ∈ CG | v(N) > 0}.
We also denote n-person coalitional games (N, v) simply by v, and use the simpler notation
v(·) instead of v({·})

Representative solution concepts for the coalitional games include the von Neumann
and Morgenstern stable set (von Neumann and Morgenstern [1]), set of imputation, core
(Gillies [3]), Shapley value (Shapley [2]), nucleolus (Schmeidler [21]), bargaining sets (Au-
mann and Maschler [22]) and kernel (Davis and Maschler [23]). In this study, we use the no-
tion of the Shapley value [2]. For an n-person coalitional game v ∈ CG, the Shapley value φ(v)
is defined as the n-dimensional real-valued vector φ(v) = (φ1(v), ..., φi(v), ..., φn(v)) with:

φi(v) = ∑
S:i∈S

(s− 1)!(n− s)!
n!

{v(S)− v(S \{i})}. (1)

Similar to an n-person coalitional game (N, v), an n-person interval game is defined
as a pair (N, w), where N is a set of players and w is a characteristic function of type
2N → I(R) with w(∅) = [0, 0], where I(R) is the set of all closed and bounded intervals
in R. Therefore, an interval game differs from a coalitional form game in that w assigns
a closed interval to each coalition (instead of a real number). Interval w(S) is called the
worth set of S and the minimum and the maximum of w(S) are denoted by w(S) and w(S),
respectively, that is, w(S) = [w(S), w(S)]. An interval game (N, w) considers a situation in
which the players face “interval uncertainty”, in that they know a coalition S could have
w(S) as the minimal reward and w(S) as the maximal one, but do not know ex ante which
one between them would be realized.

Let IG be the set of all interval games with player set N. We also denote n-person
interval games (N, w) simply by w and use the simpler notation w(·) instead of w({·}).
Players i and j are symmetric in an interval game w if w(S ∪ {i}) = w(S ∪ {j}) for any
coalition S ⊂ N \ {i, j}. Player i is a null player in w when w(S ∪ {i}) = w(S) holds for
any S ⊂ N \ {i}.

We provide some interval calculus notations for the following analysis. Let I = [I, I]
and J = [J, J] be two closed intervals. The sum of I and J, denoted by I + J, is given as
I + J = [I + J, I + J]. Next, following Alparslan Gök et al. [20], the partial subtraction
operator denoted by “−” is defined as I− J = [I− J, I− J]. Note that the partial subtraction
operator is only defined for an ordered interval pair, i.e., (I, J) ∈ I(R)× I(R) satisfying
J − J ≤ I − I.

For two different interval games w′, w′′ ∈ IG, the sum of the interval games w′ + w′′ ∈
IG is also an interval game itself, defined by (w′ + w′′)(S) = w′(S) + w′′(S) for every
S ⊂ N. For an interval game w ∈ IG, let vw ∈ CG be a coalitional game generated
from an interval game w, so that vw(S) = w(S) for every S ⊂ N, and vw ∈ CG so that
vw(S) = w(S) for every S ⊂ N. For an interval game w ∈ IG, define vw−w ∈ CG as
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vw−w(S) = vw(S) − vw(S) for every S ⊂ N. Finally, for an interval I = [I, I] and a
coalitional game v ∈ CG, Iv ∈ IG is defined as Iv(S) = [Iv(S), Iv(S)] for every S ⊂ N.

Let I = (I1, ..., In) ∈ I(R)n be an n-dimensional closed interval vector, so that Ii ∈ I(R)
for i ∈ N. For I ∈ I(R)n, we, respectively, define min I ∈ Rn and max I ∈ Rn as follows:

min I = (min I1, ..., min In), max I = (max I1, ..., max In). (2)

Note that, for an interval game w ∈ IG, if all worth sets are singletons, that is,
w(S) = w(S) for every S ⊂ N, w corresponds to the coalitional game v ∈ CG, which is
defined as v(S) = w(S) = w(S). In this case, we say that w ∈ IG and v ∈ CG are equivalent
or w has its equivalent coalitional game v. Let EG ⊂ IG be a set of interval games that has
its equivalent coalitional game.

3. Solution Concepts in Interval Games

In this section, we first review the existing solution concepts applied to interval games—
interval solution concept and interval Shapley value—in Section 3.1. Then, in Section 3.2,
we examine an alternative solution concept, called a solution mapping, by comparing it
with the interval solution concept.

3.1. Existing Solution Concepts: Interval Solution Concepts and Interval Shapley Value

In the literature on interval games, the most popular solution concept, which has
played a central part in analyses, is the interval solution concept. (Another type of solution
concept proposed early in the history of interval game analysis is the selection-based
solution concept proposed by Alparslan Gök et al. [9].) Interval solution concepts are
defined as a (possibly empty or singleton) set of n-dimensional interval vectors. Formally,
by letting Ii ∈ I(R) be the interval payoff of player i and I = (I1, ..., In) ∈ I(R)n be
an n-dimensional closed interval vector, an interval solution concept in w ∈ IG assigns
a (possibly empty or singleton) set of n-dimensional interval vectors K ⊂ I(R)n. The
interval core, interval stable set (Alparslan Gök et al. [19]) and the interval Shapley value
(Alparslan Gök et al. [20]) have been proposed as interval solution concepts. Here, for the
following analysis we review the definition of the interval Shapley value.

Let a permutation of N be σ : N → N and the group of all permutations of N be π(N).
For an interval game w ∈ IG and a permutation σ ∈ π(N), we define player i’s marginal
contribution in σ of w as:

mσ
i (w) = w(Pσ(i) ∪ {i})− w(Pσ(i)), (3)

where Pσ(i) is given by Pσ(i) = {r ∈ N|σ−1(r) < σ−1(i)}, that is, the set of i’s predeces-
sors in permutation σ. A marginal contribution vector in σ of w is defined as mσ(w) =
(mσ

1 (w), ..., mσ
n(w)). With this setup, Alparslan Gök et al. [20] defined the interval Shapley

value Φ : IG → I(R)n as:

Φ(w) = (Φ1(w), ..., Φn(w)) =
1
n! ∑

σ∈π(N)

mσ(w). (4)

The following example shows the interval Shapley value in a simple three-person
interval game.

Example 1. Let the interval game w be as follows: w(1) = [0, 0], w(2) = [0, 0], w(3) = [0, 0],
w(12) = [3, 5], w(13) = [3, 5], w(23) = [3, 5] and w(123) = [18, 27]. Player 1’s marginal con-
tributions for each permutation are as follows: m(123)

1 (w) = w(1)− w(∅) = [0, 0], m(132)
1 (w) =

[0, 0], m(213)
1 (w) = [3, 5], m(231)

1 (w) = [15, 22], m(312)
1 (w) = [3, 5] and m(321)

1 (w) = [15, 22].
Given that the sum of all marginal contributions is [36, 54] and 3! = 6, player 1’s interval Shapley
value is Φ1(w) = [6, 9]. Similarly, we obtain Φ2(w) = [6, 9] and Φ3(w) = [6, 9]. Consequently,
the interval Shapley value of w is of the form:
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Φ(w) = ([6, 9], [6, 9], [6, 9]). (5)

It is not difficult to show that the ith component of the interval Shapley value can be
rearranged as follows:

Φi(w) = ∑
S:i∈S

(s− 1)!(n− s)!
n!

{w(S)− w(S \{i})}. (6)

It is evident from (1) and (6) that the interval Shapley value is a natural extension of
the Shapley value.

Note that the interval Shapley value for an interval game is not always definable be-
cause the partial subtraction operator is used. The following example illustrates this point.

Example 2 (Han et al. [24]). Let the interval game w be as follows: w(1) = [0, 2], w(2) =
[1/2, 3/2], w(3) = [1, 2], w(12) = [2, 3], w(13) = [3, 4], w(23) = [4, 4] and w(123) = [6, 7].
Player 2’s marginal contributions for permutation (123) cannot be computed because m(123)

2 (w) =
[2, 3]− [0, 2] but 2− 0 > 3− 2.

To address the so-called interval subtraction problem, Alparslan Gök et al. [20,25,26]
restricted the coverage of interval games to size monotonic interval games. An interval
game w ∈ IG is called size monotonic if for every pair of coalitions S ⊂ T,

w(S)− w(S) ≤ w(T)− w(T). (7)

When an interval game is size monotonic, a player’s marginal contribution is always
definable as a closed interval. The interval game in Example 2 is not size monotonic.
(A different approach to address the interval subtraction problem is to use Moore’s [27]
subtraction operator in place of the partial subtraction operator. For more detail, see
Han et al. [24].)

Based on these arguments, in the next subsection we examine an alternative solution
concept applied to interval games, called solution mapping.

3.2. An Alternative Solution Concept: Solution Mapping

An interval game analysis essentially assumes that players face the following un-
derlying situation. First, players face payoff uncertainties, represented by the worth sets,
and negotiate over a “rule” or “protocol” that specifies a way to allocate an outcome
among players ex ante, before uncertainties are removed. Second, after the uncertainties
are removed and one of the outcomes in the worth set is realized, the realized outcome is
allocated based on the agreed rule or protocol in the ex ante negotiation. (This situation is
similar to that in Habis and Herings’s [28] TUU game, where uncertainties are introduced
into cooperation games using a different approach. Namely, they constructed a two-stage
model in which the ex ante first stage has multiple coalitional games, and one of them
is realized and played by the players in the second stage.) Specifically, when the grand
coalition forms, the realized outcome in w(N) is allocated. Based on this interpretation, a
mapping that assigns n-dimensional real-valued vectors to each realization in the worth set
of the grand coalition operates as a solution concept in interval games. This is the main
idea of the solution mapping that we employ as a solution concept. Note that this solution
mapping is different from the existing notion of the interval solution concept that assigns
an n-dimensional interval vector.

Formally, for an n-person interval game w ∈ IG, a function F(w) : w(N)→ Rn is called
a solution mapping. For any interval game w, F(w)(t) assigns n-dimensional payoff vectors
to each realization t ∈ w(N). Such a mapping was proposed by Alparslan Gök et al. [9]
as the ψα value at the early stage in the history of interval game analyses. However, their
analysis considered only two-person interval games and no subsequent analysis of the
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solution mapping has been developed. As such, in the next section we propose a solution
mapping, called the Shapley mapping, and apply it to general n-person interval games.

4. Shapley Mapping and Its Axiomatizations

In this section, we first define the Shapley mapping as a specific form of the solution
mapping in Section 4.1. Then, two different axiomatizations of the Shapley mapping are
provided in Sections 4.2 and 4.3, respectively.

4.1. Shapley Mapping

For an n-person interval game w ∈ IG, we define the Shapley mapping as a specific
form of solution mapping. First, for the realization of the worth set of the grand coalition
t ∈ w(N), α ∈ [0, 1] satisfying t = (1− α)w(N)+ αw(N) is uniquely determined. (It should
be noted that there exists a case for which vα

w cannot be defined. This occurs when w(N) is
singleton and w(S) is not singleton for some S ⊂ N \ {i}. We exclude such a “degenerate
case”, because it departs from the underlying situation of interval games, where interval
uncertainty exists regarding the realization of the outcome in the grand coalition.) Second,
we define a coalitional game vα

w generated from w by α as:

vα
w(S) = (1− α)w(S) + αw(S) f or every S ⊂ N.

Note that vα
w(N) = t ∈ w(N). By letting φ(vα

w) = (φ1(vα
w), ..., φi(vα

w), ..., φn(vα
w)) be

the Shapley value in coalitional game vα
w, the Shapley mapping σ∗(w) : w(N) → Rn is

defined as:
σ∗(w)(t) = φ(vα

w). (8)

Since the interval subtraction operator is not used in the definition of the Shapley
mapping, it is free from the “interval subtraction problem” discussed in Section 3. Moreover,
the Shapley mapping is also free from the problem of “how to handle interval solution
concepts” because it directly specifies an n-dimensional real-valued vector, rather than an
n-dimensional interval vector.

It should also be noted that α is endogenously determined depending on t ∈ w(N),
rather than an exogenous parameter representing such factors as players’ risk attitudes.
Therefore, our α is not directly related to the Hurwicz criterion recently examined by
Mallozzi and Vidal-Puga [29] in the context of interval game analyses. We do not impose
any specific risk attitudes on players, and all of the results obtained here hold independent
of those attitudes.

Note that σ∗(w)(t) can be rearranged as follows:

σ∗i (w)(t) = ∑
S:i∈S

(s− 1)!(n− s)!
n!

{vα
w(S)− vα

w(S \{i})}

= ∑
S:i∈S

(s− 1)!(n− s)!
n!

[(1− α){w(S)− w(S \{i})}+ α{w(S)− w(S \{i})}]

= (1− α)φi(vw) + αφi(vw), (9)

where φi(·) is player i’s Shapley value in coalitional games vw and vw.
For the interval game in Example 2, when 6 ∈ w(123) is realized, Shapley mapping σ∗

gives the following real-valued vector:

σ∗(w)(6) =
(

5
4

, 2,
11
4

)
,

while the interval Shapley value, as we discussed, cannot be applied to this game because
it is not size monotonic. Note that the sum of payoffs is 6, which is equal to the realization
of the worth set of the grand coalition. Therefore, the efficiency is satisfied.
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Example 3 (Alparslan Gök [25] and Palanci et al. [30]). w(1) = [7, 7], w(2) = [0, 0],
w(3) = [0, 0], w(12) = [12, 17], w(13) = [7, 7], w(23) = [0, 0] and w(123) = [24, 29]. As this
game is size monotonic, the interval Shapley value exists: Φ(w) = ([27/2, 16], [13/2, 9], [4, 4]).
The Shapley mapping, on the other hand, gives the following three-dimensional real-valued vectors
for the realizations of the worth set of the grand coalition—24, 26.5 and 29 (the minimum, midpoint
and maximum value of w(123), respectively):

σ∗(w)(24) =
(

27
2

,
13
2

, 4
)

, σ∗(w)(26.5) =
(

59
4

,
31
4

, 4
)

, σ∗(w)(29) = (16, 9, 4).

Comparing Shapley mapping σ∗ with interval Shapley mapping Φ, σ∗(w)(24) and
σ∗(w)(29) are the same as the vectors consisting of the lower and upper bounds of each
element in Φ(w), respectively. Similarly, each element of σ∗(w)(26.5) is identical to the mid-
point of the corresponding player’s interval in Φ(w). In general, regarding the relationship
between the Shapley mapping and the interval Shapley value, the following result holds.

Remark 1. Let Φ and σ∗ be the interval Shapley value and Shapley mapping, respectively. For
a realization of the worth set of the grand coalition t ∈ w(N) in an interval game w ∈ IG, let
α ∈ [0, 1] be a number satisfying t = (1− α)w(N) + αw(N). When w is size monotonic, the
following holds:

σ∗(w)(t) = (1− α)min Φ(w) + α max Φ(w) (10)

Here, min Φ(w) and max Φ(w) are defined by (2).

Proof. When w ∈ IG is size monotonic, Φ(w) can be defined, and the following holds for
every i ∈ N:

Φi(w) = ∑
S:i∈S

(s− 1)!(n− s)!
n!

{[w(S)− w(S \{i}), w(S)− w(S \{i})]}

=

[
∑

S:i∈S

(s− 1)!(n− s)!
n!

{w(S)− w(S\{i})}, ∑
S:i∈S

(s− 1)!(n− s)!
n!

{w(S)− w(S \{i})}
]

= [φi(vw), φi(vw)],

where φi(·) is player i’s Shapley value in coalitional games vw and vw. This implies
min Φi(w) = φi(vw) and max Φi(w) = φi(vw). Therefore, the following holds:

(1− α)min Φi(w) + α max Φi(w) = (1− α)φi(vw) + αφi(vw) = σ∗i (w)(t). (11)

The last equality in (11) holds from (9).

Remark 1 implies some equivalency between the interval Shapley value and Shapley
mapping, such that the allocation for a realization of the worth set of the grand coalition
proposed by the Shapley mapping is identical to the real-valued vector obtained by dividing
internally each interval in the interval Shapley value by the ratio α associated with the
realization of the worth set. As the Shapley mapping can be applied to non-size-monotonic
interval games, it can be interpreted as a generalization of the interval Shapley value.
Furthermore, the Shapley mapping can be characterized by certain axiomatizations.

4.2. An Axiomatization of the Shapley Mapping

In this subsection, we first propose a set of four axioms for a solution mapping σ:
efficiency, symmetry, null player property, and additivity. Then, in Theorem 1, we show that
these four axioms uniquely determine the Shapley mapping.

• Axiom 1: Efficiency (EF)(
∑
i∈N

σi(w)(t) = t
) (
∀w ∈ IG

) (
∀t ∈ w(N)

)
.
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• Axiom 2: Symmetry (SYM)(
σi(w)(t) = σj(w)(t)

) (
∀w ∈ IG where i and j are symmetric

) (
∀t ∈ w(N)

)
.

• Axiom 3: Null player property (NP)(
σi(w)(t) = 0

) (
∀t ∈ w(N)

) (
i f w(S) = w(S ∪ {i}) ∀S ⊂ N \ {i}

)
.

• Axiom 4-1: Additivity-1 (AD1)
For an α ∈ [0, 1] and w′, w′′ ∈ IG, we define t′ ∈ w′(N) and t′′ ∈ w′′(N) as:

t′ = (1− α)w′(N) + αw′(N)

t′′ = (1− α)w′′(N) + αw′′(N).

Then, (
σi(w′ + w′′)(t′ + t′′) = σi(w′)(t′) + σi(w′′)(t′′)

)
(
∀w′, w′′ ∈ IG

) (
∀α ∈ [0, 1]

) (
∀i ∈ N

)
.

Axiom EF asserts that all t ∈ w(N) is allocated to players in the game and no residual
exists. Axiom SYM argues that only what a player can obtain on their own in the game
should matter, not its specific name. Axiom NP asserts that a zero payoff should be assigned
to a null player.

Axiom AD1 essentially comes from the additivity axiom in Shapley [2], which con-
siders a “sum” interval game (w′ + w′′) ∈ IG. Specifically, it asserts that, when σ gives
σi(w′)(t′) to player i for realization t′ ∈ w′(N) in w′ ∈ IG and σi(w′′)(t′′) to i for re-
alization t′′ ∈ w′′(N) in w′′ ∈ IG, in the sum game (w′ + w′′) ∈ IG, σ should give
σi(w′)(t′) + σi(w′′)(t′′) to player i for realization t′ + t′′ ∈ (w′ + w′′)(N). Here, it should
be noted that it imposes restrictions on t′ and t′′, so that these are generated by a “common
factor” α ∈ [0, 1] regarding the worth sets of the grand coalition.

More specifically, an underlying situation that AD1 assumes is as follows. Suppose
that, for example, α = 1, that is, t′ = w′(N) and t

′′
= w′′(N) are realized in w′ and w

′′
,

respectively. This case can be interpreted as the best “common factor”, such as the weather
(if w represents agricultural productions) or aggregate economic growth (if w represents
an individual firm’s profit), contributing positively and generating the largest amounts of
the worth sets both in w′ and w

′′
. In such a case, AD1 requires us to evaluate the allocation

derived by σ in the sum game w′ + w′′ under the same aggregate condition of α = 1. Note that
when all worth sets are singleton, both in w′ and w′′, AD1 becomes identical to Shapley’s [2]
axiom of additivity for the coalitional games equivalent to w′ and w′′.

The following result of the axiomatization can be regarded as an interval game version
of Shapley’s axiomatization [2].

Theorem 1. Shapley mapping σ∗, as defined in (8), is the unique solution mapping that satisfies
EF, SYM, NP and AD1.

The proof of this theorem is preceded by the following five lemmas.

Lemma 1. Shapley mapping σ∗ satisfies EF, SYM, NP and AD1.

Proof. EF and SYM are obvious from the definition of the Shapley mapping. For NP, letting
i be a null player in interval game w, it holds that σ∗i (w)(t) = ∑S:i∈S

(s−1)!(n−s)!
n! {vα

w(S)−
vα

w(S \{i})} = 0. For AD1, from (9), it follows that (φi(·) is player i’s Shapley value in a
coalitional game):
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σ∗i (w
′)(t′) + σ∗i (w

′′)(t′′) = (1− α){φi(vw′) + φi(vw′′)}+ α{φi(vw′) + φi(vw′′)}
= (1− α)φi(vw′ + vw′′) + αφi(vw′ + vw′′)

= (1− α)φi(vw) + αφi(vw) = σ∗i (w)(t).

Lemma 2. For a nonempty coalition R ⊂ N, we define a coalitional game vR ∈ CG as:

vR(S) =
{

1 if R ⊂ S
0 otherwise.

Then, for an interval game w ∈ IG, there uniquely exist 2(2n − 1) real numbers, denoted by cR
and cR for a nonempty coalition R ⊂ N (note: the number of R is 2n − 1), which satisfy

vw(S) = ∑
R⊂N

cRvR(S), vw(S) = ∑
R⊂N

cRvR(S) ∀S ⊂ N.

cR and cR are determined by:

cR = ∑
T⊂R

(−1)r−tvw(T), cR = ∑
T⊂R

(−1)r−tvw(T),

where r and t denote the number of players in the coalition of R and T, respectively.

Proof. The proof is essentially identical to Shapley’s [2].

Lemma 3. For a nonempty coalition R ⊂ N in interval game w ∈ IG,

w(S) + ∑
R:cR>cR

[−cR, − cR]vR(S) = ∑
R:cR≤cR

[cR, cR]vR(S) ∀S ⊂ N. (12)

Proof. For a nonempty coalition R ⊂ N satisfying cR ≤ cR, [cR, cR] can be defined as a
closed interval, and for a nonempty coalition R ⊂ N satisfying cR > cR, [−cR, − cR] can
be defined as a closed interval. From Lemma 2, it holds that:

vw(S) = ∑
R⊂N

cRvR(S) = ∑
R:cR≤cR

cRvR(S) + ∑
R:cR>cR

cRvR(S) ∀S ⊂ N,

and the same for the upper bound. Therefore,

[vw(S), vw(S)] + ∑
R:cR>cR

[−cR, − cR]vR(S) = ∑
R:cR≤cR

[cR, cR]vR(S) ∀S ⊂ N.

Lemma 4. Let σ be a solution mapping in w ∈ IG satisfying EF, SYM, NP and AD1. Then, for
an interval game of [c, c]vR ∈ IG and a realization t = (1− α)c + αc:

σi([c, c]vR)(t) =

{ t
r

if i ∈ R

0 otherwise,
(13)

where r is the number of players in the nonempty coalition R ⊂ N.

Proof. First, assume c ≥ 0. If i is not in R, i is a null player in the interval game of [c, c]vR ∈
IG. Therefore, σi([c, c]vR)(t) = 0. Moreover, because i and j in R are symmetric in [c, c]vR ∈
IG, σi([c, c]vR)(t) = σj([c, c]vR)(t). Meanwhile, EF follows ∑i∈R σi([c, c]vR)(t) = t.
Consequently, σi([c, c]vR) = t/r holds for i ∈ R.
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Next, assume c < 0. Then, the following holds: (i) t − c = (1− α) · 0 + α(c − c),
(ii) t = (1− α) · c + α · c and (iii) −c = (1− α) · (−c) + α · (−c). Therefore, from AD1, it
holds that:

σi([0, c− c]vR)(t− c) = σi([c, c]vR + [−c, − c]vR)(t + (−c))

= σi([c, c]vR)(t) + σi([−c, − c]vR)(−c).

Because it holds that:

σi([0, c− c]vR)(t− c) =

{ t− c
r

if i ∈ R

0 otherwise

σi([−c, − c]vR)(−c) =

{ −c
r

if i ∈ R

0 otherwise,

(13) also holds when c < 0.

Lemma 5. Assume φi(vw) and φi(vw) are i’s Shapley values in coalitional games vw and vw,
respectively. Then, the following holds:

φi(vw) = ∑
R:i∈R

cR

r
, φi(vw) = ∑

R:i∈R

cR
r

.

Proof. The proof is essentially identical to Shapley’s [2].

Finally, we prove Theorem 1 using Lemmas 1–5.

Proof of Theorem 1. From Lemma 1, it suffices to prove the uniqueness of σ∗, that is,
letting σ be a solution mapping satisfying EF, SYM, NP and AD1; σ must be σ∗.

For a realization of the grand coalition t = (1− α)w(N) + αw(N) ∈ w(N) in w ∈ IG,
let tR = (1− α)cR + αcR be a realization of the grand coalition in [c, c]vR ∈ IG. Then, from
Lemma 2, vw(N) = ∑

R⊂N
cR and vw(N) = ∑

R⊂N
cR hold. Therefore, t = ∑

R⊂N
tR is true. From

Lemma 3 and AD1, it follows that:

σi(w)(t) + ∑
R:cR>cR

σi([−cR, − cR]vR)(−tR) = ∑
R:cR≤cR

σi([cR, cR]vR)(tR).

From Lemma 4:

σi(w)(t) + ∑
R3i:cR>cR

−tR
r

= ∑
R3i:cR≤cR

tR
r

,

σi(w)(t) = ∑
R:i∈R

tR
r

= ∑
R:i∈R

{
(1− α) ·

cR

r
+ α · cR

r

}
= (1− α) ∑

R:i∈R

cR

r
+ α ∑

R:i∈R

cR
r

hold. From Lemma 5, (φi(·) is player i’s Shapley value in coalitional games vw and vw):

σi(w)(t) = (1− α)φi(vw) + αφi(vw) = σ∗i (w)(t).

4.3. An Alternative Axiomatization of the Shapley Mapping

This subsection shows another axiomatization of the Shapley mapping. Specifically,
we additionally consider the following axioms of additivity-2 and separability.
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• Axiom 4-2: Additivity-2 (AD2)
For w′′ ∈ EG, let t′′ = w′′(N) = w′′(N). Then:(

σi(w′ + w′′)(t′ + t′′) = σi(w′)(t′) + σi(w′′)(t′′)
)

(
∀w′ ∈ IG

)(
∀w′′ ∈ EG

)(
∀t′ ∈ w′(N)

)(
∀i ∈ N

)
.

• Axiom 5: Separability (SP)
Define UG ⊂ IG as UG = {w ∈ IG | ∃v ∈ CG+, ∃U = [U, U] ∈ I(R) s.t. w = Uv}.
A solution mapping σ satisfies separability if there exists a real-valued function fi :
CG+ 7−→ R such that:(

σi(w)(t) = fi(v)t
)(
∀(w, v, U) ∈ UG× CG+ × I(R) with w = Uv

)(
∀t ∈ w(N)

)(
∀i ∈ N

)
.

Similar to AD1, AD2 is an interval game version of the additivity that considers the
sum game (w′ + w′′) ∈ IG. AD2 asserts that, if one of these games entails no uncertainty
(w′′ ∈ EG), then additivity must hold for every realization of the grand coalition t′ ∈ w′(N) in
another game w′.

Axiom SP considers a case in which an interval game w can be broken down into two
components: v and U. v is interpreted as the “basis” of w in that an uncertainty factor is
excluded, and U as a “common uncertainty factor”. As U is independent of i ∈ N, Axiom
SP asserts that, when an interval game w consists of v and U, the following (i) and (ii) on a
solution mapping σ should be satisfied: (i) the allotment to player i is proportional to t with
a constant allotment ratio, and (ii) this allotment ratio fi(v) is determined not by “common
factor” U, but by v, which is the only source that generates asymmetricity among players.
Axiom SP has some similarities to the separability conditions examined in the context of
cost allocation games as in Fishburn and Pollac [31]. However, our axiom SP is unique to
interval game analyses in that this is based on the decomposition consisting of the basis of
an interval game and the common uncertainty factor.

The main result of the second axiomatization using those axioms is as follows:

Theorem 2. Shapley mapping σ∗ is the unique solution mapping that satisfies EF, SYM, NP, AD2
and SP.

To prove Theorem 2, we show the following Lemma.

Lemma 6. Shapley mapping σ∗ satisfies AD2 and SP.

Proof. We first show that Shapley mapping σ∗ satisfies AD2. As σ∗ satisfies AD1 from
Lemma 1, it suffices to show that σ∗ satisfies AD2 whenever it satisfies AD1. For any
w′ ∈ IG, w′′ ∈ EG, t′ ∈ w′(N) and t′′ ∈ w′′(N), there exists α ∈ [0, 1] satisfying t′ = (1−
α)w′(N)+ αw′(N). As t′′ = w′′(N) = w′′(N), it follows that t′′ = (1− α)w′′(N)+ αw′′(N).
As σ∗ satisfies AD1, it follows that:

σi(w′ + w′′)(t′ + t′′) = σi(w′)(t′) + σi(w′′)(t′′) ∀i ∈ N.

Therefore, σ∗ satisfies AD2.
Next, we show that σ∗ satisfies SP. Let σ∗ be a Shapley mapping, and we consider

a combination (w, v, U) ∈ UG× CG+ × I(R) satisfying w = Uv. As w(S) = Uv(S) and
w(S) = Uv(S) hold for every S ⊂ N, from the linearity of the Shapley value, the following
holds for every i ∈ N:

φi(vw) = Uφi(v), φi(vw) = Uφi(v). (14)

(i) Suppose w ∈ EG. As U = U, σ∗i (w)(t) = Uφi(v) = Uφi(v) and t = Uv(N) =

Uv(N). Therefore, letting fi : CG+ → R be fi(v) =
φi(v)
v(N)

, σ∗i (w)(t) = fi(v)t holds.
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(ii) Suppose w 6∈ EG, i.e., w(N) < w(N). Then, note that:

α =
t− w(N)

w(N)− w(N)
=

t−Uv(N)

(U −U)v(N)
, 1− α =

w(N)− t
w(N)− w(N)

=
Uv(N)− t

(U −U)v(N)
.

Therefore,

σ∗i (w)(t) = (1− α)φi(vw) + αφi(vw) = {(1− α)U + αU}φi(v)

=

{
UUv(N)−Ut
(U −U)v(N)

+
Ut−UUv(N)

(U −U)v(N)

}
φi(v) =

φi(v)
v(N)

· t. (15)

Similar to (i), letting fi : CG+ → R be fi(v) =
φi(v)
v(N)

, (15) implies σ∗i (w)(t) = fi(v)t.

Proof of Theorem 2. From Lemma 1 and 6, it suffices to prove the uniqueness of σ∗. Sup-
pose a solution mapping σ satisfies EF, SYM, NP, AD2 and SP. We show σ must be σ∗.
(i) Suppose w ∈ EG. In this case, t = vw(N) for any t ∈ w(N). Therefore, from Lemma 2,

w(S) = ∑
R⊂N

[cR, cR]vR(S), t = ∑
R⊂N

cR.

Furthermore, it can be shown that, if a solution mapping σ satisfies EF, SYM and NP,
then the following holds (the proof is essentially the same as that of Lemma 4):

σi([cR, cR]vR)(cR) =

{ cR

r
i f i ∈ R

0 otherwise.

Note that [cR, cR]vR ∈ EG. By applying AD2, it holds that:

σi(w)(t) = σi

(
∑

R⊂N
[cR, cR]vR

)(
∑

R⊂N
cR

)
= ∑

R⊂N
σi([cR, cR]vR)(cR) = ∑

R:i∈R

cR

r
.

From Lemma 5, σi(w)(t) = φi(vw). As σ∗i (w)(t) = φi(vw), σi(w)(t) = σ∗i (w)(t).
(ii) Suppose w 6∈ EG, i.e., w(N) < w(N). Define w′ ∈ IG and w′, w′′ ∈ EG as, for every
S ⊂ N,

w′(S) = [0, w(S)− w(S)], w′′(S) = [w(S), w(S)], w′′′(S) = [w(S)− w(S), w(S)− w(S)].

As w′′, w′′′ ∈ EG, similar to (i), it holds that:

σi(w′′)(t′′) = ∑
R:i∈R

cR

r
= φi(vw) ∀t′′ ∈ w′′(N)

σi(w′′′)(t′′′) = ∑
R:i∈R

cR − cR

r
= φi(vw)− φi(vw) ∀t′′′ ∈ w′′′(N).

As w′′′ = [1, 1]vw−w and from SP, there exists a real-valued function fi : CG+ 7−→ R
satisfying σi(w′′′)(t′′′) = fi(vw−w)t′′′ for every t′′′ ∈ w′′′(N) and i ∈ N. As t′′′ = w(N)−
w(N), fi(vw−w) =

φi(vw)−φi(vw)
w(N)−w(N)

. Similarly, because w′ = [0, 1]vw−w, there exists fi satisfying

σi(w′)(t′) = fi(vw−w)t′, which implies σi(w′)(t′) =
φi(vw)−φi(vw)
w(N)−w(N)

t′. From AD2,

σi(w)(t) = σ(w′ + w′′)(t− w(N) + w(N)) = σ(w′)(t− w(N)) + σ(w′′)(w(N))

=
φi(vw)− φi(vw)

w(N)− w(N)
(t− w(N)) + φi(vw) =

w(N)− t
w(N)− w(N)

φi(vw) +
t− w(N)

w(N)− w(N)
φi(vw)

= (1− α)φi(vw) + αφi(vw) = σ∗i (w)(t).
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5. Conclusions

This paper studied cooperative interval games in which the payoff uncertainty that
players face is expressed as a closed interval. We compared the notion of solution mapping
as a solution concept applied to interval games with the existing interval solution concept.
Then, we defined the Shapley mapping as a specific form of the solution mapping and
showed that the Shapley mapping could be characterized by two different axiomatizations,
both of which employed interval game versions of standard axioms used in the traditional
cooperative game analysis.

We conclude the analysis by identifying some topics for further research. First, other
axiomatizations examined in coalitional games such as Young’s [32] strong monotonicity
would enhance the validity of the Shapley mapping. Second, whether the properties of
the Shapley value in coalitional games are preserved in interval game analyses is also an
intriguing topic. For example, whether the Shapley mapping has the consistency property
as analyzed by Hart and Mas-Colell’s [33] potential approach is worth examining. Third,
solution mappings could be applied to actual cooperative game situations with uncertainty
such as the bankruptcy problem and cost allocation games. For example, a classical game-
theoretic analysis of the bankruptcy problem essentially entails the uncertainties that
creditors face regarding a debtor’s future solvency. Here, new insights could be obtained
by reconstructing the bankruptcy problem as an interval game and applying the solution
mapping to those games. (Branzei et al. [8] applied interval games to the bankruptcy
problem taking the credit amount as a source of uncertainty. Debtors’ fiscal conditions
can also be a source of uncertainty for debt contracts.) Finally, as a limitation of our study,
it should be noted that in this paper we restricted our attention to singleton set solution
concepts such as the Shapley mapping. In this regard, nonsingleton set solution concepts
such as the core and stable sets may also be redefined as solution mappings in interval
games. Once those nonsingleton-type solutions are defined as solution mappings, it is
possible to examine the relationships between them. For example, whether a real-valued
payoff vector assigned by the Shapley mapping is included in the core mapping for every
realization of the worth set of the grand coalition or which class of the interval games
satisfies this property may be worth examining.
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