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Abstract: Applications of artificial intelligence (AI) models have been massively explored for various
engineering and sciences domains over the past two decades. Their capacity in modeling complex
problems confirmed and motivated researchers to explore their merit in different disciplines. The use
of two AI-models (probabilistic neural network and multilayer perceptron neural network) for the
estimation of two different water quality indicators (namely dissolved oxygen (DO) and five days
biochemical oxygen demand (BOD5)) were reported in this study. The WQ parameters estimation
based on four input modelling scenarios was adopted. Monthly water quality parameters data for
the duration from January 2006 to December 2015 were used as the input data for the building of the
prediction model. The proposed modelling was established utilizing many physical and chemical
variables, such as turbidity, calcium (Ca), pH, temperature (T), total dissolved solids (TDS), Sulfate
(SO4), total suspended solids (TSS), and alkalinity as the input variables. The proposed models
were evaluated for performance using different statistical metrics and the evaluation results showed
that the performance of the proposed models in terms of the estimation accuracy increases with the
addition of more input variables in some cases. The performances of PNN model were superior to
MLPNN model with estimation both DO and BOD parameters. The study concluded that the PNN
model is a good tool for estimating the WQ parameters. The optimal evaluation indicators for PNN
in predicting BOD are (R2 = 0.93, RMSE = 0.231 and MAE = 0.197). The best performance indicators
for PNN in predicting Do are (R2 = 0.94, RMSE = 0.222 and MAE = 0.175).

Keywords: surface water quality; machine learning; Iraq region; input combinations; data engineering

MSC: 90-10; 90-11; 82-11

1. Introduction

Water quality (WQ) is significantly important for water resources, human health, and
the environment [1]. The need for pure, healthy, and sufficient freshwater by billions
of people on the earth encouraged practitioners and researchers to become strongly in-
volved in water quality monitoring and modelling in order to meet this global issue [2,3].
Fundamentally, WQ is presented a synthesis of several physical, chemical, and biological
properties of water that may be used to estimate water quality (WQ) and assist to determine
the level of contamination [4,5]. The assessment and estimation of WQ have continuously
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gained the interest of the environmental management organizations of many nations in
recent years as a result of the numerous occurrences of water contamination [6,7].

As a matter of fact, particular case study surface water quality assessments are essential
to the environmental infrastructure [8]. It is worth mentioning that Iraq has suffered a
significant rise in water scarcity over the previous two decades as a result of river flow
restrictions upstream of main rivers, climatic changes, and a progressive decrease in
rainfall [9,10]. The quality of water resources is determined by the biological, physical,
and chemical characteristics of the water samples. Among the basic water quality factors,
biochemical oxygen demand is a measurement of the dissolved oxygen in a stream and
consequently the quantity of biodegradable matter present for microorganisms [11,12].
Dissolved oxygen is regarded as one of the most important WQ since it is required and
necessary for the existence of all aquatic creatures [13,14]. The quality of the water, DO
and BOD are a composite indicator that may be applied to determine whether or not the
environment is suitable for water species and more generally for the total water quality. The
DO and BOD have an impact on a wide range of biological, chemical, and physical aspects
of water, making them the most essential indicators of WQ. The proper assessment of these
two factors is important for stream pollution control, river water quality management, and
ecological operations. The determination of these quality factors is still done by classical
methods (volumetric titration) which are more subjective as instrumental method. If these
WQ factors can be anticipated with reasonable accuracy, a lot of money, time, and effort
may be conserved. This has prompted scientists to create credible models for predicting
BOD and DO from other readily provided inputs on water quality [15].

Over the past decades, predicting and mathematical modelling of surface water quality
factors is a problematic issue [16]. Numerous abiotic and biotic variables, as well as their
complicated interconnections, influence DO and BOD. Currently, most of these interactions
remain undefined and unclear, and the required information for the process modelling
cannot be easily acquired. Hence, it is difficult to obtain the mathematical representations of
such processes. Consequently, scholars have developed physical models for the modelling
of DO and BOD to simplify these complex physical processes. Yet, these physical models
are still not able to accurately forecast DO and BOD. The fact that BOD and DO in rivers
and streams alter over time and exhibit stochastic behavior prompted the development
of stochastic prediction models. For estimating the stochastic behavior of BOD and DO,
regression models are most applied. On the other hand, the extremely unpredictable
behavior of BOD and DO makes using traditional regression models to reliably simulate
those factors a challenging task. Prediction models are supposed to have a high level of
precognitive capacity when determining the quality of water. Therefore, it is not ideal to
determine the quality of river water using just a simple statistical regression-based model.

The new generation of computer-aided models are advanced artificial intelligence
models [17,18]. AI is a highly efficient and reliable approach for simulating both surface
and groundwater quality [19–22]. On the other hand, AI models demonstrated strong and
reliable modelling techniques for a variety of climatological, hydrological, and environ-
mental applications [23–25]. The basic benefit of AI models is their capacity to handle very
sophisticated nonlinear inter-factor relationships [26], in contrast to traditional statistical
approaches, which are established on the concept of a linear association. Most studies have
introduced AI models in a variety of prediction model formats, such as artificial neural
networks (ANN) [27,28], adaptive neuro-inference system model [29,30], support vector
machine [31,32] and genetic programming [33,34].

Although there is widespread use of AI in WQ modelling, there are currently a number
of problems, including time-consuming algorithms, human modelling engagement, chal-
lenges in tuning internal parameters, and a lack of generality [35,36]. As a result, new and
resilient mathematical models with significant flexibility in managing complex environmen-
tal issues are being developed [37]. The motivation of exploring new versions of AI models
have always been the target of engineers and scientists. Recently, the probabilistic neural
network has gained popularity for its capacity to effectively handle difficult regression
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problems [38–42]. Hence, this study was initiated to develop probabilistic neural network
model in comparison with multi-layer perceptron ANN for the better estimation of BOD5
and DO using the available WQ indicators, such as turbidity, temperature (T), pH- value,
calcium (Ca), Sulfate (SO4), alkalinity, chemical oxygen demand (COD) total suspended
solids (TSS), electrical conductivity (EC), and total dissolved solids (TDS). This study was
aimed at the development of a reliable mathematical formulation and model for good pre-
diction of BOD5 and DO in rivers for the improved management of water quality in areas
where data availability is poor, such as Iraq. This is considered an important methodology
for developing nations such as Iraq, where the funds allocated for environmental quality
monitoring and evaluation are inadequate, yet water pollution is common and devastating.
As a result, launching the present study is very important for developing an intelligent
method to manage the water quality factors of Iraq’s streams and rivers.

2. Case Study and Methodological Overview
2.1. Case Study

Anbar Province is located in the semi-arid area of western Iraq. With an area of
138,579 km2, it is the largest governorate in Iraq, constituting 32% (almost a third) of
Iraq’s total area. The City of Ramadi is the center of Anbar Governorate and is situated
at the intersection of the Euphrates River and Warrar stream, Warrar Stream linking the
Habbaniyah Lake and Euphrates River. Habbaniyah Lake is located a short distance
to the south of the city Ramadi. Habbaniyah lake water quality severs from pollution
which, mostly due to discharge wastewater, there are many point sources on the Warrar
canal [43,44]. The WQ characteristics of Warrar stream determined at Ramadi City, Anbar
province, western Iraq (latitude 33◦24′16.7” N; longitude 43◦17.5′2.4” E) was taken in the
research (Figure 1). Until now, many point sources discharge their waste into the stream
without any treatment, such as agricultural drainage, sewage, or even dispose solid waste.
Because of the weakness of the environmental management, the Warrar stream’s water
quality has decreased and deteriorated over time. Additionally, Warrar stream flows into
Habbaniyah lake, which will be impacted also. Therefore, the prediction of WQ of Warrar
stream is very important for regional environmental quality monitoring and management.
The wastewater samples at the end of the point sources discharges were collected, field
and laboratory tests of water quality variables were carried out in the Anbar Directorate of
Environment laboratories. The sampling frequency was collected monthly over the period
of 2006–2015. The availability of long-term reliable WQ data is a main challenge in Iraq,
as such data are only available for 10 years, and the supplied data were completely used
in the current study. Sewage from residential areas and agricultural areas are the main
sources of water pollution in the Warrar stream. The water quality of the Warrar stream
is quite low. Furthermore, untreated wastewater discharge into the stream introduces a
major risk of many forms of water pollutants. The physical and chemical factors such as
turbidity, temperature, pH, Ca, SO4, TDS, alkalinity, and TSS were used as inputs to initiate
the prediction models.

2.2. Methodology

1. Multi-Layer Perceptron Neural Network Method (MLPNN)

MLP is a subcategory of FFNN. Neurons in MLP should be arranged in a one-
directional pattern. In MLP, data is transitioned between three types of parallel layers:
input, hidden, and output. Some weights contained inside [1, 1] should be used to charac-
terize the links between the layers [45,46]. Summation and activation are two functions that
each node in the MLP can perform [47,48]. The summing function in Equation (1) sums the
product of inputs, weights, and bias.

Sj =
n

∑
i=1

wij Ii + βi (1)
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Ii is the input variable (i) while j is the bias term; wij is the connection weight while n
is the number of inputs. There are numerous sorts of activation functions available in the
MLP. Previous research has mostly employed the S-shaped curved sigmoid function [49],
Equation (2).

f j(x) =
1

1 + e−sj
(2)

As a result, Equation (3) may be used to calculate the neuron j final output:

yi = fi

(
n

∑
i=1

wij Ii + β j

)
(3)

The learning phase is used to fine-tune and update the weights of the network after
creating the ANN’s structure. To reduce output error and estimate the outcomes, the
network weights are rationalized. The training technique used by the NN is a demanding
task that might reveal the MLP’s ability to address a variety of problems.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 1. The case study location of Warrar stream in Iraq. 

2.2. Methodology 

1. Multi-Layer Perceptron Neural Network Method (MLPNN) 

MLP is a subcategory of FFNN. Neurons in MLP should be arranged in a one-direc-

tional pattern. In MLP, data is transitioned between three types of parallel layers: input, 

hidden, and output. Some weights contained inside [1, 1] should be used to characterize 

the links between the layers [45,46]. Summation and activation are two functions that each 

node in the MLP can perform [47,48]. The summing function in Equation (1) sums the 

product of inputs, weights, and bias. 

𝑆𝑗 = ∑ 𝑤𝑖𝑗𝐼𝑖 + 𝛽𝑖

𝑛

𝑖=1

 (1) 

𝐼𝑖  is the input variable (i) while j is the bias term; 𝑤𝑖𝑗 is the connection weight while 

n is the number of inputs. There are numerous sorts of activation functions available in 

the MLP. Previous research has mostly employed the S-shaped curved sigmoid function 

[49], Equation (2). 

𝑓𝑗(𝑥) =  
1

1 + 𝑒−𝑠𝑗
 (2) 

As a result, Equation (3) may be used to calculate the neuron j final output: 

𝑦𝑖 = 𝑓𝑖 (∑ 𝑤𝑖𝑗𝐼𝑖 + 𝛽𝑗

𝑛

𝑖=1

) (3) 

The learning phase is used to fine-tune and update the weights of the network after 

creating the ANN’s structure. To reduce output error and estimate the outcomes, the net-

work weights are rationalized. The training technique used by the NN is a demanding 

task that might reveal the MLP’s ability to address a variety of problems. 

2. Probabilistic Neural Network 

Specht [50] proposed the probabilistic neural network (PNN) for the first time in 

1989. It is a parallel approach that hybridized the Bayes categorization principles and the 

Figure 1. The case study location of Warrar stream in Iraq.

2. Probabilistic Neural Network

Specht [50] proposed the probabilistic neural network (PNN) for the first time in
1989. It is a parallel approach that hybridized the Bayes categorization principles and the
likelihood density formula estimate approach of the Parzen window. PNN is a supervised
learning NN commonly used in fault detection and pattern recognition. The advantage
of PNN in practical applications, particularly in fault detection, is that it applies a linear
learning algorithm method to accomplish the work done by a nonlinear learning algorithm
while maintaining the nonlinear method’s very high precision and other properties.

PNN is a feedforward NN that is established on the RBS network; it has the Bayesian
minimum risk criteria called Bayesian decision theory as its theoretical foundation. PNN
is a form of RBN mostly used in pattern detection. Figure 2 depicts the PNN’s basic
construction. The input layer, pattern layer, summation layer, and output layer are the
four layers that make up this system. The distribution of sample data is the corresponding
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weight of PNN, and the network is capable of meeting real-time data processing in training
without the need for a training phase.
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The feature vectors from the training samples are received by the input layer, which
then sends them to PNN for processing. The size of the training sample feature vectors
determines how many neurons are in the input layer. The feature vectors X are made up of
each neuron and the wight vectors W where Z = XW is the input variables for the input
layer. The relationship between each node and the input feature vector in the training data
is determined by the pattern layer. The pattern layer has the same number of neurons as
the sum of the training data for each defect class. Each mode unit in this layer has the
following output:

f (X, Wi) = exp

[
− (X−Wi)

T(X−Wi)

2δ2

]
(4)

where the smoothing factor is denoted as Wi, the input feature vectors are denoted as X,
and the connection weight between the input and pattern layers is denoted by Wi.

The summarizing layer is the third layer; this layer combines the probabilities that
belonged to a specific class previously and computes the probability amount based on
the earlier described approach to get the probability density function (PDF) of the fault
category. There is just one summation layer neuron in each of the fault categories, which
is coupled with the mode layer neuron of the same fault category but not with those
of others inside the mode layer. As a result, the sum layer neuron’s only purpose is to
sum up the outputs of the pattern layer neurons that belong to its own fault category,
without considering the outputs of neurons that belong to the other fault categories. The
predicted probability density for each of the fault categories is comparable to the output of
the summing layer’s neurons. To estimate the likelihood of each fault category, the output
layer can be normalized as follows:

P(
X
Wi

=
1

(2π)
n
2 δnNi

Ni

∑
j=1

exp

[
− (X−Wi)

T(X−Wi)

2δ2

]
(5)

where Xij is Wi’s column sample, n is the sample features vectors’ size, and Ni is Wi’s test sum.
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The output layer of the PNN is comprised of a threshold discriminator that serves
in the selection of the neuron with the best posterior PDF which will act as the system’s
output from the probability density estimated for each of the defect kinds. The number of
neurons in the output layer equates the number of different forms of training sample data
received from the sum output layer of varying fault kinds. One of the largest PDFs of the
neuron output is 1, which typifies the kind of fault category of the unknown samples, with
values ranging from 0 to 1. The nearest classifier is utilized once the distribution density
SPREAD value is approaching 0; however, when the SPREAD amount is high, it serves as
an adjacent classifier for a given number of training examples.

3. Results

Water quality prediction models can be used to examine the trend of water quality
degradation. As previously stated, the main focus of our research was on the simulation
of two key chemical factors (i.e., BOD5 and DO). Both metrics have been traditionally
employed as indicators of water quality for decades, and good prediction is unquestionably
necessary in this scenario to facilitate preventative measures. This paper presents a novel
predictive PPNN model that was compared to the MLP for performance. PNN is a relatively
new method that uses an approximation tool to anticipate complex patterns. The suggested
model’s superiority is tested by examining several types of errors in model simulation. The
prediction results were analyzed and evaluate using several standers such as correlation
coefficient, mean absolute error (MAE), root mean square error (RMSE), mean bias error
(MBE) and others [36].

Table 1 reveals the results of an exploratory analysis of the WQ factors of the Euphrates
River. The correlations of each input parameter with BOD and DO were calculated to help
understand the impact of each predictor on the specified variables (Table 2). Except for
temperature, all the water quality metrics had low and negligible correlation coefficients.
The BOD and DO were predicted using a total of eight parameters. In this regard, four
separate models were built using a mix of different input parameters and labeled (M1, M2,
. . . , M4).

Table 1. The characteristics of the water quality parameters that were measured.

Parameter Unit Min. Max. Average SD Median

Temperature ◦C 9 38 21.8 8.07 22

Turbidity NTU 8.6 72.6 20.4 15.5 13.2

pH - 7.4 8 7.7 0.14 7.8

EC µs/cm 1271 1858 1442 127.5 1402

Alkalinity Mg/L 99 158 121 12.5 120

Ca Mg/L 84 119 96.2 8.25 94

Mg Mg/L 42 95 66.2 11.8 68

SO4 Mg/L 241 511 427 36.7 429

T.D.S Mg/L 845 1253 1069 91.4 1079

T.S.S Mg/L 11 188 55.4 47.9 34.5

Na Mg/L 108 183 135.6 14.3 136

BOD5 Mg/L 2.72 5.28 3.94 0.58 3.85

COD Mg/L 9.13 118.8 12.7 9.9 11.5

DO Mg/L 5.52 7.96 6.83 0.61 6.88
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Table 2. The correlation magnitude between each WQ variable and BOD5 and DO.

Input Variables BOD5 DO

Temperature 0.47 0.61

pH 0.34 0.36

Turbidity 0.32 0.38

EC 0.28 0.29

Ca 0.13 0.12

Alkalinity 0.31 0.37

COD 0.26 0.28

SO4 0.08 0.05

TSS 0.19 0.21

TDS 0.22 0.25

Model 1 (M1), as seen in Table 3, has only temperature as its WQ parameter, while M2
and M4 have two and four WQ parameters as input attributes. Increases in the number of
parameters (from 1 to 4 for M1 to M4) improved the performance of the model by revealing
the relevance of each of the included parameters. To further understand the level sensitivity
of the 5 input WQ variables used in this research to predict DO and BOD5, four models
were built in the current research.

Table 3. The input combinations to estimate DO and BOD5 WQ variables.

Models Input Combinations

Model-1 M1 = Temperature (T)

Model-2 M2 = Temperature (T), pH

Model-3 M3 = Temperature (T), Turbidity, pH

Model-4 M4 = Temperature (T), Turbidity, pH, Alkalinity

3.1. Dissolved Oxygen Prediction

Tables 4 and 5 show the predictive accuracy of MLPNN and PPNN, respectively. The
PNN was shown to perform exceptionally well in the simulation of DO utilizing the third
input combination (M3), based on the supplied values (temperature, turbidity, and pH).
The standard approach (MLPNN), on the other hand, achieved the greatest results for the
second input combination (M2) for DO prediction. This is attributed mainly to the fact that
the mathematical models react differently depending on the specificity of the underlying
mechanism between both the predictor and the predictand in each scenario.

Table 4. Statistical indicators values using MLPNN method during testing period.

Model RMSE MAE MBE NSE SI BIAS d CI

Model-1 0.440 0.360 0.020 0.996 0.064 −0.120 0.996 0.992

Model-2 0.254 0.194 0.012 0.999 0.037 −0.072 0.999 0.997

Model-3 0.389 0.312 −0.011 0.997 0.057 0.093 0.997 0.994

Model-4 0.270 0.223 −0.002 0.998 0.039 0.024 0.999 0.997
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Table 5. Statistical indicators values using PNN method during testing period.

Model RMSE MAE MBE NSE SI BIAS d CI

Model-1 0.306 0.240 −0.010 0.998 0.045 0.075 0.998 0.996

Model-2 0.222 0.175 −0.014 0.999 0.032 0.098 0.999 0.999

Model-3 0.177 0.146 −0.009 0.999 0.026 0.063 0.999 0.998

Model-4 0.245 0.205 0.001 0.999 0.036 0.005 0.999 0.997

The scatter plots in Figures 3 and 4 show the effectiveness of the algorithm in pre-
dicting DO. The best DO prediction results were obtained by PNN method using a third
model. Whereas MLPNN achieved a good prediction whiling utilizing the second input
combination. The PNN prediction model performed better than the top MLPNN model.
PNN yielded the strongest correlation R2, 0.94 (Model-3), whereas MLPNN yielded 0.84
(Model-2).
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In order to provide clearer assessment of the effectiveness of the suggested methods,
the outcomes of the best input combinations are illuminated utilizing more sensitive
indicators. Figures 5 and 6 show the percentage relative error for each model over the
testing period. In all situations, the predictive results revealed that the PNN had much less
error than the MLPNN. For example, the greatest percentage error for MLPNN with the
fourth model is +10%, whereas the PNN achieved a percentage error of less than +7% with
the same input combination. According to the relative error indicator, it is clear that PNN
resulted in a significant improvement in the prediction results. Similarly, other assessment
indicators revealed very encouraging results employing PNN for DO prediction.

3.2. Biochemical Oxygen Demand Prediction

The performance of the proposed methods for DOD prediction was evaluated based
on several statistical indicators, as presented in Tables 6 and 7. The results revealed that
both models (i.e., MLPNN and PNN) provide acceptable prediction accuracy when trained
with two different parameters (Model-2). This finding is consistent with the significant
correlation results in Table 2, which show temperature and pH as the key factors influencing
BOD values. In fact, the fundamental objective of the predictor method should be to attain
better results for prediction rather than adding more input variables in the process. From
the standpoint of laboratory efforts, it is quite crucial. This is also extremely useful for
catchments where there are limited or scare environmental data. The results suggest the
need to focus on WQ variables that have high significant effects on the internal relationships
and prediction process, as the addition of more WQ parameters to a model could sometimes
confuse it, leading to erroneous predictions or leading it astray.
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Table 6. Statistical indicators values using MLPNN method during testing period.

Model RMSE MAE MBE NSE SI BIAS d CI

Model-1 0.322 0.255 −0.004 0.994 0.076 0.026 0.995 0.989

Model-2 0.212 0.174 0.003 0.997 0.050 −0.003 0.995 0.992

Model-3 0.318 0.256 0.022 0.994 0.075 −0.083 0.998 0.992

Model-4 0.246 0.195 −0.015 0.987 0.058 0.068 0.997 0.993

Table 7. Statistical indicators values using PNN method during testing period.

Model RMSE MAE MBE NSE SI BIAS d CI

Model-1 0.317 0.262 0.031 0.994 0.074 −0.129 0.995 0.989

Model-2 0.145 0.116 −0.008 0.999 0.034 0.036 0.999 0.998

Model-3 0.231 0.197 −0.012 0.997 0.054 0.053 0.997 0.994

Model-4 0.230 0.175 −0.017 0.997 0.054 0.075 0.997 0.994

Figure 7 shows the performance of the MLPNN model during the testing stage utilizing
scatter plots. The BOD prediction for all proposed models (M1:M4) are presented. The
MLPNN model achieved better accuracy with the third and fourth input combinations.
The lowest reliability was attained with the first input combination. MLPNN yielded
the strongest correlation (0.84) with Model-3. The visualization of the diversion from the
identical line clearly is presented more closely and this clearly presenting the matching
between the actual observations and the predicted values.
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The scatter plots for all proposed input combinations employing PNN method are
exhibited in Figure 8. In general, the PNN succeeded in providing acceptable prediction
results. The correlation magnitude between actual and predicted data for all models is
presented. It could be noted that the PNN attained high correlation with third input
combinations, (R2 = 0.93). The results revealed that the PNN is superior to the MLPNN
method in predicting the BOD variable according to the correlation coefficient indicator.
For this modeling scenario, near perfection of scattering was attained between the actual
observations and the predicted values.
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The distribution of the percentage relative error for all the proposed models utilizing
both prediction methods (i.e., MLPNN and PNN) are shown in Figures 9 and 10. It is
observed that the minimum error is achieved by depending on third input combination
for MLPNN and PNN methods. By comparing the proposed methods, the performance of
PNN was superior to that of MLPNN, and the maximum error was +7%.
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The evaluation indicators showed that both methods provided acceptable accuracy
for the prediction of WQ factors. By highlighting PNN, it is a method capable of assigning
a multidimensional pattern of outcome variable responses to changes in control variables
that influence the system’s physical processes. The technique’s strength rests in its ability to
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capture accurate smooth approximations of responses by using a collection of polynomial
functions that can capture the nonlinearity in system behavior. The capacity to use high-
order polynomial functions for precise approximation of responses is PNN’s key advantage
over other AI techniques. As a result, it has greater explanatory power than previous AI-
based regression analyses. Polynomial-based approximations are smooth, which eliminates
numeric fluctuation and allows for accurate response variable prediction. Through basic
measurements of river water temperature, turbidity and pH, the models created in the
current research can be used to forecast BOD and DO at every place along the Euphrates
River. It is commonly known that DO has an inverse relationship with temperature and
turbidity in a river, whereas BOD has a direct relationship with temperature and turbidity.
The prediction method (i.e., PNN) with the most appropriate input combinations succussed
for providing better accuracy compared to MLPNN method.

4. Conclusions

The feasibility of a modern method, PNN, in predicting water quality variables was
investigated in this study. The PNN was used to predict BOD5 and DO parameters in water
of Euphrates River. The goal of developing this method was to create a reliable tool for
determining environmental quality parameters based on past laboratory data. As input
attributes, the models were created utilizing several physical and chemical WQ factors
of water. The models were built using laboratory data collected over a period between
January 2006 to December 2015. The performance of the PNN method was compared to
the MLPNN model, which is a well-known predictive framework. The prediction accuracy
obtained by PNN was higher compared with the MLPNN method. The optimal evaluation
indicators for PNN in predicting BOD are (R2 = 0.93, RMSE = 0.231 and MAE = 0.197). The
best performance indicators for PNN in predicting Do are (R2 = 0.94, RMSE = 0.222 and
MAE = 0.175).

Furthermore, both suggested models showed less reasonable approximation values in
terms of the input attributes, which is critical for BOD5 and DO prediction in river system
with limited environmental, aqueous, or ecological data. Overall, the findings showed
that PNN may be utilized to forecast water quality characteristics in the Euphrates River.
Future studies should focus on incorporating additional useful input features, such as
hydrological, bacteriological or even climatological factors to maximize the precision of
prediction models. Furthermore, the viability of natural-inspired algorithms for selecting
appropriate casual information between predictors and predictands can be investigated.
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