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1. Introduction

In the standard literature on quantum mechanics, one of the main axioms of any
well-established approach to the analysis of the microscopic world is that the observables
of a physical system, S , are represented by self-adjoint operators. This is, in particular,
what is required by the Hamiltonian of S . For a few decades, however, it has become more
evident that this is only a sufficient condition to require, but it is not also necessary. This
(apparently) simple remark is on the basis of thousands of papers, and many monographs.
Here, we only cite some of the latter [1–5], where many other references can be found.

The use of non-self-adjoint Hamiltonians opens several lines of research, both for its
possible implications in physics, and mathematical issues raised by this extension. In particular,
in a series of papers and the book [6,7], a particular class of non-self-adjoint Hamiltonians has
been analyzed in detail, together with their connections with a special class of coherent states.
These Hamiltonians are constructed in terms of pseudo-bosonic operators, which are, essentially,
suitable deformations of the bosonic creation and annihilation operators. These deformations
are again ladder operators, and this is why we were (and still are) interested in finding the
eigenstates of these new annihilation operators. Several examples have been constructed over
the years, by us and by other authors [8–13]. In particular, one Hamiltonian that has become
very famous in the literature on PT-quantum mechanics is related to what is now called the
Swanson model [13–15]. The Hamiltonian for this model is Hs = ωsc†c + αc2 + βc†2, where
α, β, ωs ∈ R and where [c, c†] = 11. Of course, since c and c† are unbounded, the above
expressions for Hs and [c, c†] are simply formal. To make them rigorous, we should add, in
particular, details on their domains of definitions. A more mathematical approach to Hs, closer
to what is relevant for us here, can be found in [6,7,15]. In particular, we have shown that Hs
can be rewritten in a diagonal form in terms of pseudo-bosonic operators, and this has been
used to analyze in detail its spectrum and its eigenvectors. In particular, we have shown that
the set of these eigenvectors is complete in H, but it is not a basis. There are many papers
devoted to the Swanson model, in various expressions. Other papers on this model include the
following: [16–20].

In this paper, we focus on a particular version of a fully pseudo-bosonic extension of
Hs, i.e., on a version in which the pair of bosonic operators (c, c†) are replaced, from the
very beginning, by operators (a, b) satisfying certain properties, see Section 2. Moreover, to
simplify the general treatment, and without any particular loss of generality, we choose
α = β. Notice that, while this choice trivializes the original model, in the sense that
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Hs = H†
s , it does not change the lack of self-adjointness of the Hamiltonian H we introduce

later, see (20).
The paper is organized as follows: after a review of pseudo-bosons, in Section 2,

we propose our fully pseudo-bosonic Swanson model, and we find the eigenvalues and the
eigenvectors of the Hamiltonian of the system, and its adjoint. We prove that the sets of
these eigenvectors are complete and bi-orthonormal inL2(R), while they are not bases. This
will be presented in Section 3. Section 4 focuses on bi-coherent states and their properties.
Section 5 presents our conclusions, and plans for the future.

2. Preliminaries

This section is devoted to some preliminary definitions and results on pseudo-bosons
(PBs). This will be needed in the following sections, where the modified Swanson Hamilto-
nian will be introduced and analyzed.

Let a and b be two operators on H, with domains D(a) and D(b), respectively, a†

and b† their adjoints, and let D be a dense subspace of H, stable under the action of a, b
and their adjoints. It is clear that D ⊆ D(a]) and D ⊆ D(b]), where c] = c, c†, and that
a] f , b] f ∈ D for all f ∈ D. Then both ab f and ba f are well-defined, ∀ f ∈ D.

Definition 1. The operators (a, b) are D-pseudo-bosonic (D-pb) if, for all f ∈ D, we have

a b f − b a f = f . (1)

Sometimes, to simplify the notation, rather than (1), one writes [a, b] = 11. It is not
surprising that neither a nor b are bounded byH. This is why the role of D is so relevant
(here and in the rest of these notes).

Our working assumptions for dealing with these operators are as follows:

Assumption D-pb 1.—there exists a non-zero ϕ0 ∈ D, such that a ϕ0 = 0.

Assumption D-pb 2.—there exists a non-zero Ψ0 ∈ D, such that b† Ψ0 = 0.

Notice that, if b = a†, then these two assumptions collapse into a single one and (1)
becomes the well-known canonical commutation relation (CCR), for which the existence
of a vacuum belongs to an invariant set (S(R), for instance) and is guaranteed. Then, for
CCR, Assumptions D-pb 1 and D-pb 2 are automatically true.

In [7], the authors widely discussed the possibility that [a, b] = 11 can be extended
outside L2(R). This gives rise, as we briefly comment later in Section 2, to the so-called
weak PBs (WPBs), in which a central role is no longer played by L2(R), but by other
functional spaces.

In the present situation, the stability of D under the actions of b and a† implies that, in
particular, ϕ0 ∈ D∞(b) := ∩k≥0D(bk) and that Ψ0 ∈ D∞(a†). Here, D∞(X) is the domain
of all the powers of the operator X. Hence,

ϕn :=
1√
n!

bn ϕ0, Ψn :=
1√
n!

a†n
Ψ0, (2)

n ≥ 0, are well-defined vectors in D and, therefore, they belong to the domains of a], b] and
N], where N = ba and N† is the adjoint of N. We introduce next the sets FΨ = {Ψn, n ≥ 0}
and Fϕ = {ϕn, n ≥ 0}.

It is now simple to deduce the following lowering and raising relations:
b ϕn =

√
n + 1 ϕn+1, n ≥ 0,

a ϕ0 = 0, aϕn =
√

n ϕn−1, n ≥ 1,
a†Ψn =

√
n + 1 Ψn+1, n ≥ 0,

b†Ψ0 = 0, b†Ψn =
√

n Ψn−1, n ≥ 1,

(3)
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as well as the eigenvalue equations Nϕn = nϕn and N†Ψn = nΨn, n ≥ 0, where, more
explicitly, N† = a†b†. Incidentally, we observe that this last equality should be understood,
here and in the following, on D: N† f = a†b† f , ∀ f ∈ D.

As a consequence of these equations, choosing the normalization of ϕ0 and Ψ0 in such
a way 〈ϕ0, Ψ0〉 = 1, it is easy to show that

〈ϕn, Ψm〉 = δn,m, (4)

for all n, m ≥ 0. Therefore, the conclusion is that Fϕ and FΨ are bi-orthonormal sets
of eigenstates of N and N†, respectively. Notice that these latter operators, which are
manifestly non-self-adjoint if b 6= a† and have both non-negative integer eigenvalues; thus,
they are called number-like (or simply number) operators. The properties we deduced for
Fϕ and FΨ, in principle, do not allow us to conclude that they are (Riesz) bases (or not for
H). This is not always the case, Ref. [7], even if sometimes (for regular PBs, see below), this
is exactly what happens. With this in mind, let us introduce the following assumption:

Assumption D-pb 3.—Fϕ is a basis forH.

This is equivalent to assuming that FΨ is a basis as well [21,22]. While Assumption
D-pb 3, is not always satisfied, in most of the concrete situations considered so far in the
literature, it is true that Fϕ and FΨ are total in H = L2(R). For this reason, it is more
reasonable to replace Assumption D-pb 3 with this weaker version:

Assumption D-pbw 3.—Fϕ and FΨ are G-quasi bases, for some subspace G dense (Notice
that G does not need to coincide with D, even if sometimes this happens.) inH.

This means that ∀ f , g ∈ G, the following identities hold

〈 f , g〉 = ∑
n≥0
〈 f , ϕn〉〈Ψn, g〉 = ∑

n≥0
〈 f , Ψn〉〈ϕn, g〉. (5)

It is obvious that, while Assumption D-pb 3 implies (5), the reverse is false. However,
if Fϕ and FΨ satisfy (5), we still have some (weak) form of resolution of the identity, and,
from a physical and mathematical point of view, this is enough to deduce interesting
results. For instance, if f ∈ G is orthogonal to all the Ψn’s (or to all the ϕn’s), then f is
necessarily zero: FΨ and Fϕ are total in G. Indeed, using (5) with g = f ∈ G, we find
‖ f ‖2 = ∑n≥0〈 f , ϕn〉〈Ψn, f 〉 = 0 since 〈Ψn, f 〉 = 0 (or 〈 f , ϕn〉 = 0) for all n. However, since
‖ f ‖ = 0, then f = 0.

For completeness we briefly discuss the role of two intertwining operators which are
intrinsically related to our D-PBs. We only consider the regular case here. More details can
be found in [6].

In the regular case, Assumption D-pb 3 holds in a strong form: Fϕ and FΨ are
bi-orthonormal Riesz bases, so that we have

f =
∞

∑
n=0
〈ϕn, f 〉Ψn =

∞

∑
n=0
〈Ψn, f 〉 ϕn, (6)

∀ f ∈ H. Looking at these expansions, it is natural to ask if sums, such as Sϕ f =

∑∞
n=0〈ϕn, f 〉 ϕn or SΨ f = ∑∞

n=0〈Ψn, f 〉Ψn also make some sense, or for which vectors
they do converge, if any. In our case, since Fϕ and FΨ are Riesz bases, we know that an
orthonormal basis Fe = {en} exists, together with a bounded operator R with bounded
inverse, such that ϕn = Ren and Ψn = (R−1)†en, ∀n. It is clear that, if R = 11, all these sums
collapse and converge to f . However, what if R 6= 11?

The first result follows from the bi-orthonormality of Fϕ and FΨ, which easily implies that

SϕΨn = ϕn, Sψ ϕn = Ψn, (7)
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for all n ≥ 0. These equalities, which are true for biorthogonal bases non necessarily of the
Riesz type, together imply that Ψn = (SΨ Sϕ)Ψn and ϕn = (Sϕ SΨ)ϕn, for all n ≥ 0. These
formulas, in principle, cannot be extended to all ofH except when Sϕ and SΨ are bounded.
If this is the case, then we deduce that

SΨ Sϕ = Sϕ SΨ = 11 ⇒ SΨ = S−1
ϕ . (8)

In other words, both SΨ and Sϕ are invertible and one is the inverse of the other. This
is what happens, in particular, for regular D-PBs. In this situation, it is possible to relate Sϕ

and Sψ with the operator R connecting Fe with Fϕ and FΨ: let f ∈ D(Sϕ), which for the
moment we do not assume to be coincident withH. Then

Sϕ f := ∑
n
〈ϕn, f 〉 ϕn = ∑

n
〈Ren, f 〉 Ren = R

(
∑
n

〈
en, R† f

〉
en

)
= RR† f ,

where we have used the facts that Fe is an orthonormal basis and that R is bounded and,
therefore, continuous. Of course RR† is bounded as well and the above equality can be
extended to all ofH. Therefore we conclude that Sϕ = RR†. In a similar way we can deduce
that SΨ = (R†)−1R−1 = S−1

ϕ , which is also bounded. Using the C*-property for B(H), we
deduce that ‖Sϕ‖ = ‖R‖2 and ‖SΨ‖ = ‖R−1‖2. It is also clear that Sϕ and SΨ are positive
operators, and it is interesting to check that they satisfy the following intertwining relations:

SΨNϕn = N†SΨ ϕn, NSϕΨn = SϕN†Ψn, (9)

Indeed we have, recalling that Nϕn = nϕn and N†Ψn = nΨn, SΨNϕn = n(SΨ ϕn) =
nΨn, as well as N†SΨ ϕn = N†Ψn = nΨn. The second equality in (9) follows from the first
one, simply by left-multiplying SΨNϕn = N†SΨ ϕn with Sϕ, and using (7). These relations
are not surprising, since intertwining relations can be often established between operators
having the same eigenvalues.

The situation is mathematically much more complicated for D-PBs which are not
regular. This is mainly because there is no reason for Sϕ and SΨ to be bounded, or for the
series ∑∞

n=0〈ϕn, f 〉 ϕn and ∑∞
n=0〈Ψn, f 〉Ψn (which are those used to define these operators)

to be convergent, at least on some dense set. We refer to [6,7] for more results on this
and other aspects of PBs. It is also useful to stress that these operators are connected to
what, mostly in the physical literature, are called the metric operators, often appearing in
connection with PT-symmetric Hamiltonians, [4,23,24].

Leaving L2(R)
Moreover, in view of what will be discussed later in this paper, we are interested now

in considering first order differential operators of the form

a = αa(x)
d

dx
+ βa(x), b = − d

dx
αb(x) + βb(x), (10)

for some suitable C∞ functions αj(x) and β j(x), j = a, b [25], where we have shown that
these operators produce, using the strategy outlined before, two families of functions,
Fϕ = {ϕn(x)} and FΨ = {Ψn(x)}, which may, or may not, be square-integrable. More
results on this particular class of PBs are also given in [7,26,27].

We first compute [a, b] on some sufficiently regular function f (x), not necessarily in
L2(R). For what we need, it is sufficient to assume f (x) to be at least C2. Of course, this
requirement could be relaxed if we interpret d

dx as the weak derivative, but this will not be
done here. An easy computation shows that, under this mild condition on f (x), [a, b] f (x)
does make sense, and [a, b] f (x) = f (x) if αj(x) and β j(x), j = a, b, satisfy the equalities{

αa(x)α′b(x) = α′a(x)αb(x),
αa(x)β′b(x) + αb(x)β′a(x) = 1 + αa(x)α′′b (x).

(11)
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In particular, the first equality is always true if αa(x) and αb(x) are both constant, as it
will be the case for our model, see (27). In general, it is convenient to assume that they are
never zero: αj(x) 6= 0, ∀x ∈ R, j = a, b.

Under this assumption, it is easy to find the vacua of a and of b†, as required in
Assumptions D-pb1 and D-pb2. Here

a† = − d
dx

αa(x) + βa(x), b† = αb(x)
d

dx
+ βb(x). (12)

The vacua of a and b† are the solutions of the equations aϕ0(x) = 0 and b†ψ0(x) = 0,
which are easily found:

ϕ0(x) = Nϕ exp
{
−
∫

βa(x)
αa(x)

dx
}

, ψ0(x) = Nψ exp

{
−
∫

βb(x)
αb(x)

dx

}
, (13)

and are well-defined under our assumptions on αj(x) and β j(x). Here Nϕ and Nψ are
normalization constants which will be fixed later. If we now introduce ϕn(x) and ψn(x)
as in (2),

ϕn(x) =
1√
n!

bn ϕ0(x), ψn(x) =
1√
n!

a†n
ψ0(x), (14)

n ≥ 0, we can prove, Ref. [25], the following:

Proposition 1. Calling θ(x) = αa(x)βb(x) + αb(x)βa(x) we have

ϕn(x) =
1√
n!

πn(x)ϕ0(x), ψn(x) =
1√
n!

σn(x)ϕ0(x), (15)

n ≥ 0, where πn(x) and σn(x) are defined recursively as follows:

π0(x) = σ0(x) = 1, (16)

and

πn(x) =
(

θ(x)
αa(x)

− α′b(x)
)

πn−1(x)− αb(x)π′n−1(x), (17)

σn(x) =
(

θ(x)
αb(x)

− α′a(x)
)

σn−1(x)− αa(x) σ′n−1(x), (18)

n ≥ 1.

In particular, if αa(x) = αa and αb(x) = αb, both non zero, we have

πn(x) =

√(
αb

2αa

)n
Hn

(
x + k√
2αaαb

)
, σn(x) =

√(
αb

2αa

)n
Hn

(
x + k√
2αaαb

)
. (19)

Here Hn(x) is the n-th Hermite polynomial, and the square root of the complex
quantities are taken to be their principal determinations. The proof of (19) is also contained
in [25].

The functions in (13), for αa(x) = αa and αb(x) = αb, turn out to be

ϕ0(x) = Nϕ exp
{
− 1

αa

∫
βa(x) dx

}
, ψ0(x) = Nψ exp

{
− 1

αb

∫
βb(x) dx

}
,

where βa(x) and βb(x), in view of the second equation in (11), are only required to satisfy
the condition αaβb(x) + αbβa(x) = x + k. Then we find that ϕn(x)Ψm(x) ∈ L1(R), for all
n, m ≥ 0 [25]. The proof is based on the fact that ϕn(x)Ψm(x) is the product of a polynomial
of degree n + m times the following exponential
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exp
{
−
∫ (

βa(x)
αa

+
βb(x)

αb

)
dx
}

= exp
{
− 1

αaαb

∫
θ(x) dx

}
=

= exp
{
− 1

αaαb

∫
(x + k) dx

}
= exp

{
− 1

αaαb

(
x2

2
+ kx + k̃

)}
,

where k̃ is an integration constant (which is usually fixed to zero). Notice that this is a
Gaussian term whenever αaαb > 0. In this case, therefore, it is possible to compute the
integral of ϕn(x)Ψm(x), and this integral is what, with a little abuse of language, we call
the scalar product between ϕn(x) and Ψm(x). We refer to [25] for more results and details
concerning the biorthogonality (in this extended sense) of Fϕ and FΨ, both in the case of
constant αj, j = a, b, and when αa(x) and αb(x) are non-trivial functions of x. Moreover,
in [25] it is discussed the validity of Assumption D-pbw 3, as well as a possible way to
introduce the weak bi-coherent states for the operators in (10). What is discussed in [25] is
relevant, in particular, when ϕn(x) or Ψm(x) are not in L2(R). However, as we see in the
next section, this is not the case here. For this reason we end here our review on WPBs,
suggesting the reading of [7,25,27] for more details, and we move to the explicit model we
want to discuss in this paper.

3. The Model

The Hamiltonian we are interested in here is

H = ω b a + λ(b2 + a2), (20)

in which a and b satisfy (1), for some suitable D, dense inH = L2(R), which we identify
later. Here ω and λ are positive real parameters such that ω > 2λ. As we have discussed
in the Introduction, H is a particular version of the Swanson Hamiltonian [14], Hs =

ωsc†c + αc2 + βc†2, where α, β, ωs ∈ R and [c, c†] = 11, in which the bosonic operators
(c, c†) are replaced by their pseudo-bosonic counterparts, (a, b), and where α coincides
with β. It is clear that both Hs and H are manifestly non-self-adjoint, (the latter if α 6= β).
H is not self-adjoint as far as b† 6= a, as will be the case here. The operator H can be
diagonalized by means of a simple transformation. Let us introduce a new pair of operators
(A, B) as follows:

A = a cosh(θ) + b sinh(θ), B = b cosh(θ) + a sinh(θ). (21)

Then (A, B) are pseudo-bosonic operators, at least formally (at this stage), meaning
with this that they also satisfy, as a and b, the commutation rule [A, B] = 11. we see later how
to make this commutator rigorous, according to our preliminary discussion in Section 2.
Now, if we fix θ0 = 1

2 tanh−1
(

2λ
ω

)
, H can be rewritten as

H = Ω B A + γ11, (22)

where Ω = ω
cosh(2θ0)

and γ = −ω
sinh2(θ0)
cosh(2θ0)

. Now, to be more concrete, we assume that a and
b are shifted PBs, i.e.,

a = c + α11, b = c† + β11, (23)

where α, β ∈ R, α 6= β, and where c = 1√
2

(
d

dx + x
)

and c† = 1√
2

(
− d

dx + x
)

are the usual

bosonic operators, densely defined on L2(R). In fact, D(c) and D(c†) both contain S(R),
the set of the Schwartz functions. This implies that a and b in (23) are densely defined, too.
Moreover, this is also true for operators A and B in (21), which can be rewritten as follows:

A = Θ−
d

dx
+ Θ+x + γA11, B = −Θ−

d
dx

+ Θ+x + γB11, (24)
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where we introduced the following quantities:

Θ+ =
1√
2
(cosh(θ0) + sinh(θ0)) =

eθ0
√

2
, Θ− =

1√
2
(cosh(θ0)− sinh(θ0)) =

e−θ0
√

2
, (25)

and
γA = α cosh(θ0) + β sinh(θ0), γB = β cosh(θ0) + α sinh(θ0). (26)

It is clear then that A and B are of the form in (10), with

αa(x) = αb(x) = Θ−, βa(x) = Θ+x + γA, βb(x) = Θ+x + γB, (27)

so that the equalities in (11) are both satisfied. From (24) we have

A† = −Θ−
d

dx
+ Θ+x + γA11, B† = Θ−

d
dx

+ Θ+x + γB11, (28)

since Θ±, γA and γB are all real. Hence,

B = A† + (γB − γA)11. (29)

In particular, this last equality shows that B = A† if and only if γA = γB, which is
surely true if α = β, see (26). However, this would imply also that a = b†, which is not
interesting for us since we would go back to ordinary bosonic operators.

The vacua of A and B† are the following

ϕ0(x) = Nϕ exp
{
− Θ+

2Θ−
x2 − γA

Θ−
x
}

, ψ0(x) = Nψ exp
{
− Θ+

2Θ−
x2 − γB

Θ−
x
}

, (30)

with Nϕ and Nψ normalization constants still to be fixed. Since Θ+
2Θ− = e2θ0

2 , which is always
positive, we conclude that ϕ0(x), ψ0(x) ∈ L2(R). We also observe that N−1

ϕ ϕ0(x) coincides
with N−1

ψ ψ0(x), by replacing γA with γB. Using Proposition 1 and (19), we deduce that

ϕn(x) =
Nϕ√
2n n!

Hn

(
x + k√
2 Θ−

)
exp

{
− Θ+

2Θ−
x2 − γA

Θ−
x
}

, (31)

and

ψn(x) =
Nψ√
2n n!

Hn

(
x + k√
2 Θ−

)
exp

{
− Θ+

2Θ−
x2 − γB

Θ−
x
}

, (32)

where
k = Θ−(γA + γB) =

α + β√
2

. (33)

Incidentally, we observe that the argument of the Hermite polynomials can be rewrit-
ten as x+k√

2 Θ−
= eθ0(x + k), and that, extending what was already found for the vacua,

N−1
ϕ ϕn(x) coincides with N−1

ψ ψn(x) replacing γA with γB, also for n > 0. It is clear that
ϕn(x), ψn(x) ∈ L2(R), for all n ≥ 0 so that, in agreement with what we have seen in
Section 2, ϕn(x)Ψm(x) ∈ L1(R), for all n, m ≥ 0. Restricting to real values of Nϕ and Nψ,
and taking

Nϕ Nψ =
e−

k2
4Θ−

(2π)1/4
√

Θ−
,

we deduce that the sets Fϕ = {ϕn(x)} and Fψ = {ψn(x)} are bi-orthonormal:

〈ϕn, ψm〉 = δn,m. (34)

In the following we choose
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Nϕ = Nψ =
e−

k2
Θ−

√
2π Θ−

. (35)

With this choice, ϕn(x) returns ψn(x), replacing γA with γB. The norm of these
functions can be easily deduced by adopting to the present case similar computations as
those given, for instance, in [6], and which will not be repeated here. In particular, we find

‖ϕn‖2 = e
1
2 (7γ2

A−γ2
B−2γAγB) Ln(−(γB − γA)

2), (36)

where Ln is a Laguerre polynomial. It is clear that ‖ψn‖2 can be deduced from (36) by
replacing γA with γB.

We see that the argument of Ln is strictly negative, for all γA 6= γB, so that we can use
the following asymptotic (in n) formula [28],

Ln(x) ' ex

2
√

π (−x)1/4
e2
√
−nx

n1/4 , (37)

which is true if x < 0. Then, since ‖ϕn‖‖ψn‖ → ∞, a standard argument shows that
(Fϕ,Fψ) are bi-orthonormal sets, but neither set is a basis [6,29]. However, Ref. [30], these
two sets are both complete in L2(R). Hence, Lϕ = l.s.{ϕn} and Lψ = l.s.{ψn}, the linear
spans of the functions ϕn(x) and of ψn(x), are dense in L2(R). Moreover, they are G-quasi
bases, see (5), where G is the following set:

G =
{

f (x) ∈ L2(R) : eqx f (x) ∈ L2(R), ∀q ∈ R
}

. (38)

This set is dense inL2(R), since it contains D(R), the set of all the compactly supported
C∞ functions, which are dense in L2(R). To check Formula (5), we first observe that,
using (31), with the change of variable y = x+k√

2 Θ−
,

〈 f , ϕn〉 =
∫
R

f (x) ϕn(x) dx = Nϕ

√
2 π1/4Θ−e−

1
4 (γA+γB)(γB−3γA)〈 fϕ, en〉,

where

fϕ(x) = f (
√

2 Θ− − k) e−x(γA−γB)/
√

2, en(x) =
1√

2n n!
√

π
Hn(x)e−x2/2.

It is well known that Fe = {en(x)} is the orthonormal basis of eigenstates of the
quantum harmonic oscillator [31,32]. As for fϕ(x), this is a square integrable function since
f (x) ∈ G: fϕ(x) ∈ L2(R). With the same change of variable, if g(x) ∈ G, we can check that

〈ψn, g〉 =
∫
R

ψn(x) g(x) dx = Nψ

√
2 π1/4Θ−e−

1
4 (γA+γB)(γA−3γB)〈en, gψ〉,

where
gψ(x) = g(

√
2 Θ− − k) e−x(γB−γA)/

√
2,

which is also in L2(R). Now, using the closure relation of the set Fe, we obtain

∞

∑
n=0
〈 f , ϕn〉〈ψn, g〉 = 2NϕNψ

√
π Θ2

− e
1
2 (γA+γB)

2
∞

∑
n=0
〈 fϕ, en〉〈en, gψ〉 =

= 2NϕNψ

√
π Θ2

− e
1
2 (γA+γB)

2 〈 fϕ, gψ〉.

Next, with the change of variable y =
√

2 Θ− x− k, we find that 〈 fϕ, gψ〉 = 1
2 Θ− 〈 f , g〉,

which is clearly well-defined since f (x), g(x) ∈ L2(R). Using (35), it is easy to conclude
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that ∑∞
n=0〈 f , ϕn〉〈ψn, g〉 = 〈 f , g〉. The proof of the other identity in (5) is analogous, and will

not be repeated. The conclusion is the following: the families Fϕ and Fψ, made of square
integrable eigenvectors of, respectively, N = BA and N†, Nϕn = nϕn and N†Ψn = nΨn,
are: (i) complete in L2(R); (ii) bi-orthonormal; (iii) not bases for L2(R); (iv) G-quasi bases.

The results deduced in this section allow us to conclude that the pair (A, B) in (24) are
indeed G0-pb operators in the sense of Definition 1, where G0 = {h(x) ∈ G : h(x) ∈ C∞}.
Indeed, G0 is also dense in L2(R), and, ∀ f (x) ∈ G0 [A, B] f (x) = f (x). Moreover, G0 is
stable under the action of A, B, and of their adjoint, and both A and B† admit vacua in G0,
see (30). Finally, Assumption D-pbw 3 is satisfied on (the larger set) G.

4. Bi-Coherent States

In [7], and in some of the references therein, the construction of a special class of
coherent states, the so-called bi-coherent states, was discussed in detail for several classes
of pseudo-bosonic operators, and with different techniques. In this section, we consider
three of such constructions, and compare the respective results.

The first approach we consider is based on a theorem first given in [33], which can be
found in its most recent form in [7]. We present this result without proof.

Let us consider two biorthogonal families of vectors, Fϕ̃ = {ϕ̃n ∈ H, n ≥ 0} and
FΨ̃ = {Ψ̃n ∈ H, n ≥ 0}, which areM -quasi bases for some dense subsetM of H, as
in (5). Consider an increasing sequence of real numbers αn satisfying the inequalities
0 = α0 < α1 < α2 < . . ., and let α be the limit of αn for n diverging. We further consider
two operators, Ã and B̃†, which act as lowering operators, respectively, on Fϕ̃ and FΨ̃ in
the following way:

Ã ϕ̃n = αn ϕ̃n−1, B̃† Ψ̃n = αnΨ̃n−1, (39)

for all n ≥ 1, with Ã ϕ̃0 = B̃† Ψ̃0 = 0. These are the lowering equations, which replace
those in (3), which can be recovered if αn =

√
n and if Ã and B̃ obey (1). Then

Theorem 1. Assume that four strictly positive constants Aϕ, AΨ, rϕ and rΨ exist, together with
two strictly positive sequences Mn(ϕ) and Mn(Ψ), for which

lim
n→∞

Mn(ϕ)

Mn+1(ϕ)
= M(ϕ), lim

n→∞

Mn(Ψ)

Mn+1(Ψ)
= M(Ψ), (40)

where M(ϕ) and M(Ψ) could be infinity, and such that, for all n ≥ 0,

‖ϕ̃n‖ ≤ Aϕ rn
ϕ Mn(ϕ), ‖Ψ̃n‖ ≤ AΨ rn

Ψ Mn(Ψ). (41)

Then, putting α0! = 1 and αk! = α1α2 · · · αk, k ≥ 1, the following series:

N(|z|) =
(

∞

∑
k=0

|z|2k

(αk!)2

)−1/2

, (42)

ϕ(z) = N(|z|)
∞

∑
k=0

zk

αk!
ϕ̃k, Ψ(z) = N(|z|)

∞

∑
k=0

zk

αk!
Ψ̃k, (43)

are all convergent inside the circle Cρ(0) in C centered in the origin of the complex plane and of

radius ρ = α min
(

1, M(ϕ)
rϕ

, M(Ψ)
rΨ

)
. Moreover, for all z ∈ Cρ(0),

Ãϕ(z) = zϕ(z), B̃†Ψ(z) = zΨ(z). (44)

Suppose further that a measure dλ(r) does exist, such that

∫ ρ

0
dλ(r) r2k =

(αk!)2

2π
, (45)
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for all k ≥ 0. Then, putting z = reiθ and calling dν(z, z) = N(r)−2dλ(r)dθ, we have∫
Cρ(0)
〈 f , Ψ(z)〉〈ϕ(z), g〉dν(z, z) =

∫
Cρ(0)
〈 f , ϕ(z)〉〈Ψ(z), g〉dν(z, z) = 〈 f , g〉, (46)

for all f , g ∈ M.

We refer to [7] for several comments on this theorem. Here, we just show how to apply
this result to our particular operators A and B in (24), and to the vectors ϕn(x) and ψn(x)
in (31) and (32). In this particular situation, of course, αn =

√
n.

Using (35) and (37), it is possible to check that

‖ϕn‖ ' c(γA, γB)
e
√

n|γA−γB |

n1/8 , ‖ψn‖ ' c(γB, γA)
e
√

n|γB−γA |

n1/8 , (47)

where we have introduced the (inessential) constant

c(γA, γB) =
1√

2
√

π|γB − γA|
e

1
2 (3γ2

A−γB).

Therefore, (41) are satisfied if we put

Aϕ = c(γA, γB); Aψ = c(γB, γA); Mn(ϕ) = Mn(ψ) =
1

n1/8 ,

and
rϕ = rψ = en|γA−γB |.

Hence, M(ϕ) = M(ψ) = 1 and ρ = ∞. Then, for our operators A and B, the series
in (42) and (43) converge in all of C. Moreover, in this case the moment problem in (45)
can be solved, and dν(z, z) = 1

π rdr dθ. Since in this case N(|z|) = e−|z|
2/2, we write (43)

as follows

ϕ(z; x) = e−|z|
2/2 ∑

l=0

zl
√

l!
ϕl(x), ψ(z; x) = e−|z|

2/2 ∑
l=0

zl
√

l!
ψl(x), (48)

where we put in evidence the role of both x and z in the definition of the states. Theorem 1
guarantees that these vectors exist in L2(R), ∀z ∈ C, and produces a resolution of the
identity on the set G in (38), see (46), and eigenstates of A and B†, respectively, with
eigenvalue z, see (44).

It is possible to find a more compact expression for ϕ(z; x) and ψ(z; x). For that we
need the well-known formula of the generating function for the Hermite polynomials:

∞

∑
l=0

tl

l!
Hl(x) = exp

(
−t2 + 2tx

)
. (49)

Now, replacing (31) in (48), we have

ϕ(z; x) = Nϕe−|z|
2/2 exp

{
− Θ+

2Θ−
x2 − γA

Θ−
x
}

∑
l=0

zl

2l l!
Hl

(
x + k√
2 Θ−

)
,

which, using (35) and (49), produces, after some algebra

ϕ(z; x) =
e−izrzi+i zr

Θ−
(x+k)

(2π)1/4
√

Θ−
exp

{
− k2

4Θ2
−
− z2

r −
Θ+

2Θ−
x2 − γA

Θ−
x +

zr

Θ−
(x + k)

}
. (50)
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Here, z = zr + izi, and we separated the phase of ϕ(z; x) from the rest of the function.
In a similar way, we find

ψ(z; x) =
e−izrzi+i zr

Θ−
(x+k)

(2π)1/4
√

Θ−
exp

{
− k2

4Θ2
−
− z2

r −
Θ+

2Θ−
x2 − γB

Θ−
x +

zr

Θ−
(x + k)

}
. (51)

which coincides with ϕ(z; x) with the usual exchange (We remind that k is invariant under
this exchange, see (33), and so are Θ±, see (25).) γA � γB.

We can now check that the same states, apart from the phases, can be found if we look
for the solutions of the eigenvalue equations of the type given in (44). In particular, if we
call ϕ̃(z; x) the eigenvalue of the operator A in (24), i.e., the solution of

d
dx

ϕ̃(z; x) =
1

Θ−
(z−Θ+ x− γA),

we easily find

ϕ̃(z; x) = Kϕ exp
{

1
Θ−

(
(z− γA)x− Θ+

2
x2
)}

, (52)

while the solution of B†ψ̃(z; x) = zψ̃(z; x) is

ψ̃(z; x) = Kψ exp
{

1
Θ−

(
(z− γB)x− Θ+

2
x2
)}

, (53)

where Kϕ and Kψ are (partly) fixed by the condition 〈ϕ̃, ψ̃〉 = 1. A possible (non-unique)
solution can be obtained using standard Gaussian integration:

Kϕ = Kψ =
1

(2π)1/4
√

Θ−
exp

{
−z2

r +
zr k
Θ−
− k2

4Θ2
−

}
. (54)

If we now compare |ϕ(z; x)| with |ϕ̃(z; x)|, they coincide. Analogously, |ψ(z; x)| =
|ψ̃(z; x)|. Then the procedure proposed by Theorem 1 is equivalent to solving a simple
(first order) differential equation, as it should.

This is not yet the end of the story. Indeed, it is also possible to rewrite our bi-
coherent states by making use of certain displacement-like operators. Using the results
given in [7], which are based on the estimates in (47), it is possible to check that the series
∑∞

l=0
1
l! (αA+ βB)l ϕk(x) and ∑∞

l=0
1
l! (αB† + βA†)l ψk(x) are both convergent for all possible

complex α, β and ∀k ≥ 0. This means that we can introduce two densely defined operators,
Ṽ(α, β) and W̃(α, β), as follows:

Ṽ(α, β) f =
∞

∑
l=0

1
l!
(αA + βB)l f , W̃(α, β)g =

∞

∑
l=0

1
l!
(αB† + βA†)l g, (55)

∀ f ∈ Lϕ and ∀g ∈ Lψ. For obvious reasons, it is natural to write

Ṽ(α, β) f = eαA+βB f , W̃(α, β)g = eαB†+βA†
g,

for the same f and g as above. Now, see [7], our bi-coherent states above can be rewritten
in terms of these operators. In particular,

ϕ(z; x) = Ṽ(−z, z)ϕ0(x), ψ(z; x) = W̃(−z, z)ψ0(x), (56)

which is still a third way to express the bi-coherent states for our extended Swanson model.
In other words, Ṽ(−z, z) and W̃(−z, z) play here the role of the unitary displacement
operator for ordinary coherent states.
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We plot in Figure 1 the square moduli of ψ(z; x) and ϕ(z; x) for λ = 0.1 and ω = 0.5
and for different choices of α and β. We observe that our choice of ω and λ satisfies the
constraint given at the beginning of Section 3, ω > 2λ. We further observe that the different
choices of α and β considered in the figure correspond, see (23), to operators a and b†, which
are more different. This increasing difference is reflected in the plots of the bi-coherent
states, which tend to move away more one from the other when β− α increases. This is
essentially the same behavior we have already observed in several other concrete examples
of bi-coherent states, see [7].

Figure 1. |ψ(z; x)|2 (orangish) and |ϕ(z; x)|2 (blueish) in (50) and (51) for different α and β and for
λ = 0.1 and ω = 0.5: (top left) α = 0.3, β = 0.31; (top right) α = 0.3, β = 0.35; (bottom left) α = 0.3,
β = 0.5; (bottom right) α = 0.3, β = 1.

5. Conclusions

In this paper, we discussed how a particular fully pseudo-bosonic Swanson model
can be introduced and how its Hamiltonian H can be diagonalized. We also found the
eigensystem of H†, using the general framework and results deduced in the context of
PBs. We constructed (using different approaches) the bi-coherent states for the model, we
compared the results, and we deduced some of their properties.

Several extensions of the model proposed here could be considered: first, rather
than the Hamiltonian H in (20), one could consider the more general, but still quadratic,
operator Ĥ = ω b a + λbb2 + λaa2. Further, one could analyze the role, if any, of the WPBs,
attempting to see how much of the results given here can be extended to a distributional
settings, as proposed in [25,26]. Moreover, it would be interesting to apply the results
deduced here in the computation of a propagator, by making use of the properties of
bi-coherent states of the model, in the same line as in [7,34]. These are part of our programs
for the future.
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